Efficiency of various Bandwidth Selection Methods across Different Kernels

Kimari Florence ⁽¹⁾, AdemAggrey⁽¹⁾, Kiti Leonard ⁽²⁾

¹(Department of Mathematics and Physics, Technical University of Mombasa, Kenya) ²(Department of Mathematics and Computer Science, Pwani University) Corresponding Author: Kimari Florence

Abstract: In statistics, it is common to come across data from a population whose distribution is not known. In such statistics, non-parametric estimation becomes a useful alternative since it does not make assumptions about the distribution of the data. One of themethods used in non-parametric estimation is the kernel density estimation. Kernel density estimation involves use of kernels to estimate the density of random variables. Kernels are functions that have satisfied the particular properties of a Probability Distribution Function(PDF) that are explained in this study. Popular kernels featured in the research were Gaussian, Epanechnikov, Biweight and Triweight. The objective of the study was to determine the most efficient Bandwidth selection method across different kernels. Identifying the optimal Bandwidth among the Bandwidth selection methodswas a problem that this study aimed to address. The methods of Bandwidth selectionused were least squares cross-validation (LSCV), biased cross-validation (BCV), direct plug-in (DPI) and Polasky and Baker plug-in (PBPI). Random samples of size25, 50, 75, 100, 125 and 150 were generated from normal, binomial, Poisson and uniform distributions using R software. Efficiency of eachBandwidth selection methodwas obtained through the Mean Integrated Square Error(MISE). The findings showed that DPI was the most optimal Bandwidth selector method. The results of this research shall be used by other mathematicians in building non-parametric statistical models to address societal needs. _____

Date of Submission: 08-05-2018

Date of acceptance: 24-05-2018

I. Introduction

Non-parametric estimation is a data modelling procedure that allows one to make inferences of a population distribution based on a data sample $x_1, x_2, x_3, ..., x_n$ (Eidous, 2010). Parametric methods assume that the sample comes from a known population distribution, but non-parametric estimation methods make no assumptions (Mugdadi&Jetter, 2010). All the interpretations are made based on the sample statistics, in order to come up with a model that best describes the population. In this perspective, non-parametric estimation becomes more superior to parametric estimation. Non-parametric methods can reveal some aspects of data features that could have passed unnoticed if parametric methods or measures of central tendency were used (Wilcox, 2004). The kernel density estimation is a non-parametric method of estimating the pdf of a random variable whose distribution is unknown.

The kernel function is a pdf, hence symmetrical about zero on the horizontal axis. Its first moment is zero and the second moment is greater than zero (Silverman, 1986;Harpole, 2014). The components of the pdf are the kernel, k, and the Bandwidth, h.(Silverman, 1986, Sheather& Jones, 1991;Harpole, 2014). The kernel functions mostly considered are Gaussian, Epanechnikov,Biweight, Tricube and Triweight(Harpole, 2014). Bandwidths that have gained popularity are the cross-validation methods; plug in methods and rules of thumb.

A Bandwidth is a data smoothing parameter, which controls the smoothing of the kernel. It is the one responsible for the appearance of the bumps in a kernel. If the Bandwidth is large, the kernel is smooth in appearance. A large value of h results in a large bias, a low variance and over-smoothing of the curve. This is what causes some of the features to be concealed (Zambom, 2013). A small value of h results in a low bias and an increased variance which results in a spiky curve. The spiky curve is not appealing, though it brings out most of the details in the data. A bias-variance trade-off needs to be considered in the choice of k and h (Silverman, 1986; Bert, 1992).

A Bandwidth chosen using various Bandwidth selection methods helps in the accurate choice of the estimator (Mugdadi&Jetter, 2010). One of the most popular and traditional method is least squares cross validation technique (LSCV) which was proposed by Rudemo (1982) and Bowman (1984). Scott & Terrell (1987) initiated the use of biased cross-validation technique (BCV) to choose the Bandwidth. Silverman (1986) introduced Silverman's rule of thumb (SROT)which was a modification of Normal Rule of Thumb (NROT). Plug-in-methods (PI) and solve the equation methods were suggested by Woodroofe (1970) and later by

Parkand Marron (1990). LSCV is the most studied one but BCV and PI methods have been proved to perform better than LSCV(Park & Marron, 1990).

These Bandwidth selection methods were recommended by researchers instead of subjectively selecting a Bandwidth through trial and error methods. These methods gave optimal values of the smoothing parameter, h, that was tested using ISE, MISE, AMISE or any other error measures. Hence many authors have studied this area of choosing the optimal Bandwidth using various methods of Bandwidth selection (Sheather& Jones, 1991; Wand & Jones, 1995; Chiu, 1996; Eidouset al., 2010). Choosing the most efficient Bandwidth is critical in order to get a good estimate (Silverman, 1986; Sheather, 2004; Harpole, 2014).

II. Material and Methods

The true density, f(x), of a random variable X can be written as:

Kernel Density Estimators

for each value of x. This f(x) is estimated by $\hat{f}(x)$ which is given by:

Wherek is the kernel, h is the Bandwidth and n is the sample size.

This estimate depends on the parameters, k, h and n. Kernels, have the following properties:

The kernel is also symmetrical as k(-z) = k(z) (silverman,1986). Some of the kernel weights commonly used in kernel density estimation are given by Table 1.

Kernel	Kernel weight, k(z)	$R(k) = \int k^2(z) dz$	$\alpha_2 k = \int z^2 k(z) dz$
Epanechnikov	$\frac{3}{4} \left(1 - z^2 \right), z < 1$	$\frac{3}{5}$	$\frac{1}{5}$
Gaussian	$\frac{1}{\left(2\pi\right)^{\frac{1}{2}}}\exp\left(\frac{-1}{2}z^{2}\right)$	$\frac{1}{2\sqrt{\pi}}$	1
Biweight	$\frac{15}{16}(1-z^2)^2$, $ z < 1$	$\frac{5}{7}$	$\frac{1}{7}$
Triweight	$\frac{35}{32} (1 - z^2)^3, z < 1$	$\frac{350}{429}$	$\frac{1}{9}$

Table no1:Kernels and their respective Density Functions

ISE, MISE and AMISE

In non-parametric methods, an error is created when f(x) is used to estimate this truedensity, f(x). The error is given by the difference between the true density and the estimate. When the error is squared, and then integrated, ISE is the resulting value. ISE is used in finding some methods of Bandwidth selection shown in equation 1.14. The expected value of ISE is called the mean integrated square error (MISE) as in equation 1.7. Therefore, MISE is defined as follows:

The expanded equation of MISE gives the integrated square bias and the integrated variance. The bias is calculated as follows:

where the second term is the bias of f(x). The variance is given by:

Thus, the sum of integral of the square bias and the integral of the variance yields the MISE.

where $\alpha_2 k$ is the variance of the kernel and f''(x) is the curvature of the density at point x.

As $n \to \infty$ and $h \to 0$ such that $nh \to \infty$, MISE becomes Asymptotic Mean Integrated Square Error (AMISE) which is defined as

Where $R(k) = \int k^2(x) dx$ and $\alpha_2 k$ is the variance for each kernel as given in Table 1. The unknown $R(f'') = \int (f'')^2 dx$ is a measure of the curvature of the density (Sheather, 2004). By differentiating equation 1.11 with respect to h and equating to zero, the result is h_{AMISE} .

$$h_{AMISE} = \left[\frac{R(K)}{\alpha_2(k)^2 n R(f'')}\right]^{\frac{1}{5}}.....112$$

The MISE and h_{MISE} were calculated for each Bandwidth method using different sample sizes in order to find the relative efficiency of each Bandwidth selector method. Relative efficiency, eff(h), was calculated as:

Each Bandwidth was compared with the LSCV Bandwidth, denoted as h_0 , since it was used as the default Bandwidth in R packages. The most optimal Bandwidth was one whose MISE value was smaller than that of the

LSCV method, resulting in an efficiency, $eff(\hat{h})$, greater than one.

Bandwidth Selection Methods

The optimal Bandwidth, h_{MISE} , is chosen when MISE is minimized. Since the true density is unknown, ways of calculating the optimal Bandwidth have been proposed by many authors. The methods discussed in this research comprised of least squares cross-validation(LSCV), biased cross-validation (BCV), Direct plug-in(DPI) and Polasky and Baker plug-in (PBPI).

Least Squares Cross-Validation

The least squares cross-validation (LSCV), also called unbiased cross-validation, involves the integrated square error, ISE(Rudemo, 1982, Bowman, 1984, Borrajo et al, 2017). The error comes from the

difference between the true density, f(x), and the density estimator, f(x). ISE is the result of integrating the square of the error.

The f(x) can be estimated by an unbiased estimator which involves using (n-1) data points by leaving out the x_i value such that

Minimizing the LSCV_hfunction makes the MISE function minimum so as to get h_{LSCV} (Scott & Terrell,1987; Wand & Jones, 1995; Sheather, 2004).

Biased Cross-Validation

This method is an improvement of LSCV. Unlike LSCV that uses ISE, Biased cross-validation (BCV) involves minimizing the Asymptotic MISE. To do so, the unknown estimate R(f'') in AMISE which depends on the underlying true density is estimated by $\hat{R}(f'')$ (Scott & George, 1987; Jones et al., 1996;Harpoleet al.,

2014). In this case, the second derivative of the kernel being used to estimate f(x) is used instead of the unknown second derivative of the underlying true density, R(f'').

The least value that minimizes BCV_hlocally qualifies to be the h_{BCV}(Jones et al, 1996).

Direct Plug-in Method

Direct Plug-in methods (DPI) have been discussed widely (Sheather & Jones 1991; Wand & Jones 1995; Sheather 2004; Harpoleet al, 2014; Varetet al, 2019). The R(f'') in h_{AMISE} is replaced by an estimate by

choosing a pilot Bandwidth b to get $R(f_b'')$. An initial density estimate, commonly from Gaussian kernel, is used to estimate *h*. This value is plugged into the h_{AMISE} and computed. Then after a series of iterations, which are two or more, the result ish_{DPI} (Zambom& Dias, 2013). The h_{DPI} is given by:

$$h_{DPI} = \left[\frac{R(K)}{\alpha_2(k)^2 n R(\hat{f}_b^{(\prime)})}\right]^{\frac{1}{5}}.....119$$

Polansky and Baker Plug-inMethod

Polansky and Baker(2000) proposed a plug-in method which uses an initial Bandwidth gin the iterations(Hussein, et al, 2018).

DOI: 10.9790/5728-1503015562

Simulation and Data Presentation

Simulation is an artificial method of creating data for making inferences instead of using a real data sample.Random samples of size 25, 50, 75, 100, 125 and 150 were be generated from normal, uniform, binomial and Poisson distributions in R software.Normal and Uniform are continuous distributions, while Binomial and Poisson distributions are discrete.

III. Results

Efficiency of BandwidthSelection Methods using Normal Data

From the results of the Bandwidth selectors, DPI method had high efficiency withEpanechnikov, Biweight and Triweight kernels, as in Table 2.However DPI with Gaussian produced very low efficiency. DPI Bandwidths produced wiggly bumps especially using Gaussian kernel as shown in Figure 1. LSCV gave the distribution a smooth curve especially with Gaussian kernel.The most Optimal Bandwidth was the DPI, when Normal data was used. It was followed by PBPI method, then LSCV, and lowest performer was BCV.

Normal	sample	LSCV	BCV	DPI	PBPI		
	25	1	0.259323	1.865835	1.195394		
	50	1	0.384032	4.372846	1.903808		
Enonochnikov	75	1	0.320851	4.225239	2.016743		
Еранесникоv	100	1	0.345750	5.308450	2.327113		
	125	1	0.259791	4.067305	2.154894		
	150	1	0.205945	3.534605	2.057926		
	25	1	0.408761	0.324801	0.865374		
	50	1	1.010251	0.446627	0.937632		
Gaussian	75	1	1.028547	0.419931	0.912893		
	100	1	1.087226	0.502955	0.981441		
	125	1	0.995964	0.391021	0.867578		
	150	1	0.986089	0.404849	0.822101		
Biweight	25	1	0.276188	1.554377	1.131728		
	50	1	0.895828	5.512556	2.601693		
	75	1	0.939525	6.356082	1.990899		
	100	1	1.208417	7.150958	2.188042		
	125	1	0.964384	6.559132	2.137574		
	150	1	0.790598	5.719086	2.091937		
	25	1	0.344796	3.776865	1.162187		
Triweight	50	1	0.998316	6.366004	1.704151		
	75	1	1.004130	7.594819	1.920563		
	100	1	1.228358	8.627121	2.255285		
	125	1	1.008789	8.882262	2.183052		
	150	1	0.749534	7.007179	1.952000		

Table no?. Efficienc	vof	h	using	Normal	data
Table no2: Efficienc	V OL 1	n	using	Normai	uata

Λ

Kernel density estimation

Kernel gaussian ; Bandwidth = 0.628 **Figureno 2:** Gaussian Kernel, LSCV using normal data n=25, h=0.628

Efficiency of Bandwidth Selection Methodsusing Binomial Data

PBPI was optimal at sample sizes of 50, 100, 125 and 150 while at n=25 and n=75, DPI was optimal when used with Triweight kernel. BCV was optimal with Gaussian kernel in all sample sizes except at n=25 when PBPI was optimal as in Table 3. DPI and PBPI were the most optimal Bandwidth selectors when Biweight kernel was used. Then when Triweight was used, DPI was optimal at sample sizes 25, 75, 100 and 125. PBPI was then optimal at 50 and 150 sample sizes.

The most optimal Bandwidth selector method for the Binomial data was PBPI method. PBPI was followed by DPI, then BCV and lastly LSCV. In research studies, plug-in methods performed better than the cross-validation methods (Sheather& Jones, 1991).

Lablenos: Efficiency of <i>h</i> using Binomial data							
Binomial	sample	LSCV	BCV	DPI	PBPI		
Epanechnikov	25	1	0.271962	2.04173	0.69221		
	50	1	0.406971	2.26313	3.37815		
	75	1	0.478978	4.76460	3.94058		
	100	1	0.439625	4.12934	5.72991		
	125	1	0.485359	5.02904	7.73257		
	150	1	0.506906	5.46020	9.09538		
Gaussian	25	1	1.055414	0.43956	1.31828		
	50	1	10.47727	2.09696	3.04026		
	75	1	9.618486	2.99271	8.68318		
	100	1	8.969581	2.47452	6.47083		
	125	1	8.856780	2.46051	5.66450		
	150	1	8.412354	2.35722	4.34284		
Biweight	25	1	0.672366	6.59465	1.49302		
	50	1	0.604064	3.94308	5.70131		
	75	1	0.785633	7.92427	3.77270		
	100	1	0.607181	7.07686	6.03642		
	125	1	0.765770	8.65072	8.84154		
	150	1	0.759204	9.36811	12.6826		
Triweight	25	1	0.927407	7.43981	4.25357		
-	50	1	0.867301	5.62751	7.69795		
	75	1	1.089805	10.6101	3.42110		
	100	1	0.858644	9.87447	5.58596		
	125	1	1.182552	12.0975	8.47698		
	150	1	1.202683	13.1095	13.8640		

	\wedge	
Tableno3:Efficiency of	h	using Binomial data

Efficiency of Bandwidth Selection Methods using Poisson Data

In Poisson data, when Bandwidth methods were compared with LSCV, PBPI was optimal when Epanechnikov kernel was used. BCV was optimal when Gaussian kernel was used except when n=25, when PBPI had a higher efficiency. DPI was optimal using Biweight and Triweight kernels, except at n=50 when PBPI was optimal.Therefore, the Bandwidth selector with highest efficiency was DPI for Poisson data. DPI was followed by PBPI, then BCV and finally LSCV.

Tableno 4: Efficiency of h using Poisson data						
Poisson	sample	LSCV	BCV	DPI	PBPI	
Epanechnikov	25	1	0.12107	0.64039	1.48204	
-	50	1	0.19485	1.34784	3.16844	
	75	1	0.22204	1.61619	3.68055	
	100	1	0.25326	2.09454	4.08807	
	125	1	0.21645	2.70761	3.86848	
	150	1	0.18240	3.78784	4.22832	
Gaussian	25	1	0.88434	0.34389	1.03240	
	50	1	10.8566	4.05083	10.4289	
	75	1	10.3293	3.42805	3.17485	
	100	1	9.91906	3.07787	9.55401	
	125	1	9.92458	2.80774	8.59837	
	150	1	9.67671	2.69459	7.69452	
Biweight	25	1	0.24468	2.37968	0.66423	
-	50	1	0.99994	0.93334	2.52794	
	75	1	0.56479	6.20669	1.60456	
	100	1	0.60713	7.09975	2.05174	
	125	1	0.73729	6.90131	2.67122	
	150	1	0.73121	7.54467	3.78404	
Triweight	25	1	0.69561	6.29925	1.39409	
-	50	1	0.75380	6.19863	1.33635	
	75	1	0.83594	8.24595	1.54540	
	100	1	0.87006	9.75962	1.93622	
	125	1	0.90255	9.79133	2.49516	
	150	1	1.18413	10.7664	3.50534	

Tableno 4:Efficiency of \hat{h} using Poisson data

Efficiency of Bandwidth Selection Methods using Uniform data

Fablelo 5. Efficiency of (<i>n</i>) using Official Data							
Uniform	sample	LSCV	BCV	DPI	PBPI		
Epanechnikov	25	1	0.28966	2.31579	0.94394		
	50	1	0.35695	4.05997	1.49352		
	75	1	0.18178	2.45576	0.93219		
	100	1	0.12809	1.97297	1.03040		
	125	1	0.10892	1.83497	0.87134		
	150	1	0.34622	6.23204	2.74453		
Gaussian	25	1	0.63203	0.36818	0.97036		
	50	1	0.82591	0.46180	1.03161		
	75	1	0.84885	0.53945	1.00159		
	100	1	0.84885	0.53945	1.00159		
	125	1	0.87010	0.48561	0.90171		
	150	1	0.96401	0.46875	0.93052		
Biweight	25	1	0.46371	3.33573	0.93397		
	50	1	0.63401	5.51341	1.44092		
	75	1	0.69904	5.75585	2.86744		
	100	1	0.23061	2.58779	0.98761		
	125	1	0.22959	2.61538	0.86708		
	150	1	0.83558	8.21351	2.41573		
Triweight	25	1	0.51324	4.18401	0.98702		
-	50	1	0.69141	6.43117	1.46488		
	75	1	0.69711	5.77724	1.57031		
	100	1	0.27266	3.14815	1.05107		
	125	1	0.29801	3.46881	0.97622		
	150	1	0.85990	9.30216	2.24739		

Tableno 5:Efficiency of (\hat{h}) using Uniform Data

When the efficiencies of the Bandwidth selectors were compared, LSCV was followed closely by PBPI when Gaussian kernel was used. DPI was most efficient when using Epanechnikov, Biweight and Triweight kernels. Hence the most optimal Bandwidth method in Uniform data was DPI followed by PBPI, LSCV and finally BCV.

IV. Discussion

The objective of the study was to determine the most efficient Bandwidth selection method across different kernels. In Normal Distribution, DPI Bandwidth selector was the most optimal, especially with Biweight and Triweight kernels. In Binomial distribution, PBPI Bandwidth selector was optimal especially with Epanechnikov kernel. In Poisson distribution, best Bandwidth methodwasDPI. In Uniform distribution, optimal Bandwidth was DPI. DPI had higher efficiencies with Biweight and Triweight kernels compared to its performance with other kernels. The DPI Bandwidths were small; the MISE values were low, resulting in high efficiency. The plug-in methods produced higher efficiencies than the cross-validation methods. In other researches, DPI is said to have a higher convergence rate and a higher consistency than LSCV selector method. The optimal Bandwidth depended on the kernel, the sample size and also on the true density.

V. Conclusion

All in all, DPI Bandwidth selection method was the most optimal method in the study. It was followed by PBPI method. Hence DPI qualified to be a universal method in Bandwidth selection.

References

- Bert, V.E.(1992). Asymptotics for least squares cross-validation Bandwidths in non- smooth cases. The Annals of Statistics,20(3), 1647–1657.
- [2]. Borrajo, M. I., González-Manteiga, W. &Martínez-Miranda, M. D. (2017)Bandwidth selection for kernel density estimation with length-biased data, Journal of Non-parametric Statistics, 29(3), 636–668.
- [3]. Bowman, A. (1984). An alternative method of cross-validation for the smoothing of density estimates. Biometrika, 71(2), 353–360.
- [4]. Chu, C.Y., Henderson, D. J.&Parameter, C. F. (2015). Plug-in Bandwidth selection for kernel density estimation with discrete data. Econometrics, 3, 199–214.
- [5]. Chiu, S.T.(1996). A comparative review of Bandwidth selection for kernel density estimation. StatisticaSinica,6,129–145.
- [6]. Eidous, O. M., Marie, M. A., Ebrahem, M. H. (2010). A comparative study for bandwidth selection in kernel density estimation. Journal of Modern Applied Statistical Methods: 9(1), Article 26.
- [7]. Harpole, J. K., Woods, C. M., Rodebaugh, T. L., Levinson, C. A., Lenze, E. J. (2014). HowBandwidth selection algorithms impact exploratory data analysis using kernel density estimation. Psychological Methods, 19(3), 428–443.
- [8]. Hussein, K, Nehme, B. and Strauss, O. (2018). Interval Estimation of Value-at-Risk Based on Nonparametric Models. Journal of econometrics, 6(4), 47.
- [9]. Jones, M.C., Marron, J.S., Sheather S.J. (1996). A brief survey of bandwidth selection for density estimation. Journal of the American Statistical Association, 91, 401–407.
- [10]. Marron, J. S., Wand, M. P. (1992). Exact mean integrated squared error. The Annals of statistics, 20(2), 712-736.
- [11]. Mugdadi,A. R., Jetter,J. (2010). A simulation study for the Bandwidth selection in the kernel density estimation based on the exact and the Asymptotic MISE.Pak. J. Statist, 26(1), 239–265.
- [12]. Park, B.U., Marron, J.S. (1990). Comparison of data-driven Bandwidth selectors. Journal of the American Statistical Association, 85, 66–72.
- [13]. Polansky, A.M., Baker, E.R. (2000). Multistage plug-in bandwidth selection for kernel distribution function estimates, Journal of Statistical Computation and Simulation, 65, 63–80.
- [14]. Rosenblatt, M. (1956). Remarks on some non-parametric estimates of a density function. Annals of MathematicalStatistics, 3, 832–837.
- [15]. Rudemo, M. (1982). Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics, 9, 65–78.
- [16]. Scott, D.W. & George, R. T. (1987). Biased and unbiased cross-validation in density estimation. Journal of the American Statistical Association, 82, 1131–1146.
- [17]. Scott, D. & Terrell, G. (1987). Biased and unbiased cross-validation in density estimation. Journal of the American Statistical Association, 82(400), 1131–1146.
- [18]. Sheather, S.J. (2004) .Density estimation. Statistical Science, 19, 588–597.
- [19]. Sheather, S. J. & Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society, 53, 683–690.
- [20]. Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall, London.
- [21]. Varet. S., Lacour. C., Massart. P., Rivoirard. V.(2019). Numerical performance of Penalized comparison to Overfitting for multivariate kernel density estimation. Retrieved from https://hal.archives-ouvertes.fr/hal-02002275.
- [22]. Wand, M.P., Jones, M.C. (1995). Kernel Smoothing. Chapman and Hall, London.
- [23]. Wilcox, R. (2004). Kernel density estimators: An approach to understanding how groups differ. Understanding Statistics, 3(4), 333–348.
- [24]. Woodroofe, M. (1970). On choosing a delta-sequence. The Annals of Mathematical Statistics, 41,1665–1671.
- [25]. Zambom, A. Z., Dias, R. (2013). A review of kernel density estimation with applications to econometrics.IntEconom Rev (IER), 5(1), 20–42.

Kimari Florence. "Efficiency of various Bandwidth Selection Methods across Different Kernels." IOSR Journal of Mathematics (IOSR-JM) 15.3 (2019): 55-62.