A Quantum Relationship between Degree and Radian to find the Accurate Value of the Pi ($\boldsymbol{\pi}$)

S.E.Rahaman ${ }^{1}$, T.Ahmed ${ }^{1}$, G.Ali.Sarkar ${ }^{2}$
${ }^{1}$ (Indian Institute of Technology (ISM) Dhanbad, India)
${ }^{2}$ (Indian Institute of Engineering Science And Technology, Shibpur, India)
Corresponding Author: S.E.Rahaman

Abstract

The aim of this research paper is to derive an accurate relationship between degree and radian in very small level of angle. This relationship is called as "Quantum Relationship". The Value of Pi (π) has been calculated in degree as well as radian (number) using this relationship.

Keywords: Degree, Radian, Linear, Nonlinear, Pi (π)
Date of Submission: 20-05-2019

I. Introduction

$\operatorname{Pi}(\pi)$ is the important mathematical constant in all the domains of the Sciences and technologies. First, the value of $\operatorname{Pi}(\pi)$ was roughly estimated by The Greek mathematician Archimedes in around 250 BC. The Value of $\operatorname{Pi}(\pi)$ is defined by the ratio between the circumference and two times of radius (i.e. diameter) of a circle. Mainly, different geometrical shapes are used to measure the value of $\operatorname{Pi}(\pi)$ using angle in degree method. Since, angle in degree method is always represented by the linear ratio of any two arms of a geometrical object and it measure linear length instead of curve. As a result, a small difference of length is present between line $(B C)$ and curve $(B S C)$ as shown in Fig. 1. So, there is limitation to derive the value of Pi (π) due to error in measurement of circumference of a circle .Use of radian would be the more accurate in measurement of circumference of a circle because it is directly related to curvature of any geometrical shape. Therefore, we need an accurate relationship between degree and radian to get perfect value of circumference of a circle. In this paper, an accurate relationship has been proposed and the value of the $\operatorname{Pi}(\pi)$ has been calculated in degree as well as radian based on this.

II. Derivation of Proposed Equation

Consider a circle with radius r and a triangle $\triangle A B C$ on this circle as shown in Fig. 1.

Figure 1: A Circle with Triangle

Figure.2. Associating Curvature with Sampled Triangle

Assume that the angle between $A B$ and $A C$ is θ_{d} in degree, and $A B=A C=r$. Where $C D$ is the perpendicular on the $A B(C D \perp A B)$. Therefore,

$$
\begin{aligned}
& A D=r \cos \theta_{d} \quad \text { and } \\
& C D=r \sin \theta_{d}
\end{aligned}
$$

So,

$$
D B=A B-r \cos \theta_{d}
$$

Since $A B=r$, therefore

$$
D B=r-r \cos \theta_{d}
$$

Now, the value of $C B$ using the Pythagoras formula on the triangle $\triangle D B C$ is

$$
\begin{align*}
C B & =\sqrt{D B^{2}+C D^{2}} \\
C B & =\sqrt{\left(r-r \cos \theta_{d}\right)^{2}+\left(r \sin \theta_{d}\right)^{2}} \\
& =\sqrt{\left(r^{2}-2 r^{2} \cos \theta_{d}+\left(r \cos \theta_{d}\right)^{2}+\left(r \sin \theta_{d}\right)^{2}\right.} \\
& =\sqrt{\left(2 r^{2}-2 r^{2} \cos \theta_{d}\right.} \\
& =r \sqrt{2\left(1-\cos \theta_{d}\right)} \tag{1}
\end{align*}
$$

We have to apply the definition of radian to get how much curvature or circumference $B S C(S)$ of that circle associated with the triangle $\triangle A B C$ as shown in Fig. 2. So, angle in radian $\left(\theta_{\gamma}\right)$ is

$$
\theta_{r}=\frac{\text { Civcumfernace }[S]}{\text { Radius }[(V)}
$$

Therefore, Circumference

$$
\begin{equation*}
S=r \theta_{r} \tag{2}
\end{equation*}
$$

So, the error in length between curve $B S C$ and linear $B C$ is

$$
\begin{equation*}
\varepsilon=r \theta_{r}-r \sqrt{2\left(1-\cos \theta_{d}\right)} \tag{3}
\end{equation*}
$$

This equation (3) shows that error depends on the radius (r) of the circle and size $\left(\theta_{d}\right)$ of the sampled geometrical shape. Therefore, the error would be considerable in measurement of circumference of a large circular objects like Earth, Sun.

Therefore, we need an accurate relationship between degree and radian to get perfect value of circumference of a circle. To get that relationship, the derivation will be related to the Fig. 2 and derived equation (3). Now, from Fig. 2, we can see that the error (ε) would be zero when θ_{d} is closed to zero, i.e.

Therefore,

$$
C B \cong B S C \quad \text { When } \theta_{d} \cong 0
$$

$$
\begin{equation*}
\theta_{r}=\sqrt{2\left(1-\cos \theta_{d}\right)} \tag{4}
\end{equation*}
$$

Equation (4) represents a very important relationship between the radian and degree when angle is very small. We would like to call it as "quantum relationship" since it is valid only in quantum level. Therefore, this equation is capable to give the more accurate value of radian and used to calculate the circumference, where value of $\cos \theta_{d}$ is simply calculated by the Taylor Series expansion.
A part of circumference ($B S C$) of a circle associated with the small triangle ($\triangle A B C$) is calculated by putting equation (4) into equation (2).Therefore, total circumference of the circle will be

$$
\begin{equation*}
S_{T}=r \theta_{r} * \text { number of samples }=r \theta_{r} \times\left(\frac{260^{\mathrm{D}}}{\theta_{d}}\right) \tag{5}
\end{equation*}
$$

III. The Value of $\operatorname{Pi}(\pi)$ in Degree

The Value of $\operatorname{Pi}(\pi)$ is defined by the ratio between the circumference $\left(S_{T}\right)$ and diameter ($2 r$) of a circle.

$$
\begin{aligned}
& \pi=\frac{s_{T}}{2 r}=\frac{q_{r} * 260^{\mathrm{D}}}{2 \theta_{X}} \\
& =\lim _{\theta_{d} \rightarrow 0} \frac{360^{\mathrm{D}} \times \sqrt{2\left(1-\cos \theta_{d i}\right)}}{2 \theta_{d}} \\
& =\lim _{\theta_{X A} \rightarrow 0}\left(\frac{360^{0}}{\sqrt{2}}\right) \times\left(\frac{\sin \theta_{x}}{2 \sqrt{\left(1-\cos \theta_{X i}\right)}}\right) \\
& =\lim _{\theta_{i} \rightarrow 0}\left(\frac{360^{0}}{\sqrt{2}}\right) \times\left(\frac{\sqrt{\left(1-\left(\cos \theta_{a}\right)^{2}\right)}}{2 \sqrt{\left(1-\cos \theta_{i l}\right)}}\right) \\
& =\lim _{\theta_{i} \rightarrow 0}\left(\frac{360^{(1)}}{\sqrt{2}}\right) \times\left(\frac{\sqrt{\left(1-c o s \theta_{A}\right) \times\left[1+c o s \theta_{M}\right)}}{2 \sqrt{\left(1-c o s \theta_{i J}\right.}}\right)
\end{aligned}
$$

Since $\left[\frac{0}{0}\right]$, using L. Hospital Rule

$$
=\lim _{\theta_{x} \rightarrow 0}\left(\frac{360^{0}}{\sqrt{2}}\right) \times\left(\frac{\sqrt{\left.1+\cos \theta_{a j}\right)}}{2}\right)
$$

Putting the limit,

$$
\begin{equation*}
\pi=\left(\frac{360^{0}}{\sqrt{2}}\right) \times\left(\frac{\sqrt{(1+1)}}{2}\right)=180^{\circ} \tag{6}
\end{equation*}
$$

Therefore, the value of the $\operatorname{Pi}(\pi)$ in degree is equal to the 180°. So, we can conclude that the equation (4) gives a perfect relationship between the degree and radian.

IV. The Value of $\operatorname{Pi}(\pi)$ in Radian

Consider a very small angle in degree is θ_{d} and its corresponding value in radian θ_{γ} is calculated by the equation (4). In previous section, it has been shown that value of $\operatorname{Pi}(\pi)$ in degree is equal to the 180°.

Therefore, the value of the $\operatorname{Pi}(\pi)$ will be

$$
\begin{align*}
\pi & =\theta_{r} * \text { number of samples } \\
& =\theta_{r} *\left(\frac{180}{\theta_{i}}\right) \quad \text { Where } \theta_{d} \cong 0 \\
& =180 *\left(\frac{\theta_{r}}{\theta_{i}}\right) \tag{7}
\end{align*}
$$

Where $\left(\frac{Q_{9}}{Q_{d}}\right)$ is linear ratio between radian and degree, which is called the one radian as shown in Table I. Equation (8) shows that this linear ratio does not valid in classical level other than the quantum level.

$$
\begin{align*}
\theta_{r} & =\sqrt{2\left(1-\cos \theta_{d}\right)} \\
& =\sqrt{\left(2\left(1-\left[1-\frac{\theta_{d}^{2}}{2}+\frac{\theta_{d}{ }^{4}}{4!}-\frac{\theta_{d} d^{6}}{6!}+\cdots\right]\right)\right.} \tag{8.a}
\end{align*}
$$

When value of θ_{d} in quantum level $\left(\theta_{d} \ll 1\right)$, we can neglect the higher order terms of this equation.
Therefore,

$$
\begin{equation*}
\theta_{y} \cong \theta_{d} \tag{8.b}
\end{equation*}
$$

Equation (8.b) shows a linear relationship between radian and degree in quantum level. So, the $\frac{\theta_{r}}{\theta_{i}}$ can be directly used to measure value of 1 radian.

At classical level, ($\theta_{d} \geq 1$) we cannot neglect the higher order terms of the equation (8.a). Therefore equation (8.a) becomes

$$
\begin{equation*}
\theta_{r} \cong \sqrt{\theta_{d}^{2}-\frac{\theta_{i}^{4}}{12}} \tag{8.c}
\end{equation*}
$$

Equation (8.c) shows a nonlinear relationship between radian and degree in classical level. So we cannot calculate the value of 1 radian $\operatorname{using}\left(\frac{\theta_{9}}{\theta_{d}}\right)$.

Table. I

Level	Degree (θ_{d})	Radian(θ_{r})	$1 \text { Radian }\left(\frac{\theta_{9}}{\theta_{d}}\right)$	$\text { Value of } \operatorname{Pi}(\pi)\left(\frac{\theta_{9}+180}{\theta_{d}}\right)$
Quantum Level Classical	0.00001	$1.744136200952474 * 10^{\wedge}-7$	0.01744136200952474	3.1394451617144536
	0.0001	0.0000017453452194240843	0.017453452194240843	3.1416213949633516
	0.001	0.00001745329316723716	0.01745329316723716	3.141592770102689
	0.01	0.00017453292467515142	0.017453292467515142	3.1415926441527255
	0.1	0.0017453290304737818	0.017453290304737818	3.1415922548528075
Level	1	0.017453070996746128	0.017453070996746128	3.1415527794143028

In Table I, a set of value of 1 radian and $\boldsymbol{P i}(\boldsymbol{\pi})$ is calculated. The calculated value of $\boldsymbol{P i}(\boldsymbol{\pi})$ in quantum level is more accurate than classical level because at the quantum level, 1 Rad $=\left(\frac{\theta_{R}}{\theta_{d}}\right)$ is valid but at classical level that 1 rad relation does not valid due to nonlinearity. Therefore, among the values of Pi $(\boldsymbol{\pi})$ in Table I, $3.1394451617144536 \ldots$ is the accurate value of $\boldsymbol{P i}(\boldsymbol{\pi})$.

V. Conclusion

We have established a quantum relationship between degree and radian. It has been shown that calculated value of $\boldsymbol{P i}(\boldsymbol{\pi})$ in quantum level is more accurate than classical. The calculated the value of $\operatorname{Pi}(\pi)$ in degree and radian are equal to the 180° and $3.1394451617144536 \ldots$ respectively.

References

[1]. Archimedes; Little Heath, Sir Thomas; (2002). The Works of Archimedes. Courier Corporation. ISBN - 0-486-42084-1.
[2]. Srinjoy Srimani , A Geometrical Derivation of π (Pi), IOSR Journal of Mathematics (IOSR-JM), e-ISSN: 2278-5728, p-ISSN: 2319-
[3]. 765X. Volume 11, Issue 6 Ver. 1 (Nov. - Dec. 2015), PP 19-22
[4]. Laxman S. Gogawale ,Exact Value of Pi (П), International Journal of Engineering Research and Applications (IJERA), Vol. 3, Issue 4, Jul-Aug 2013, pp.1881-1903.

[^0]
[^0]: S.E.Rahaman. " A Quantum Relationship between Degree and Radian to find the Accurate Value of the Pi (π). " IOSR Journal of Mathematics (IOSR-JM) 15.3 (2019): 01-04.

