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Abstract: TIn this research work, we applied different exact methods on Travelling salesman problem and 

Capaciated Vehicle routing problem which are some of the variants of Vehicle routing problem. 
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I. Introduction 
The cost of transportation of goods and services is one of the major challenges people face in their 

daily activities. This area has raised concern in todays society. A large sum of money is spent daily on fuel, 

goods and service delivery, equipment maintenance and so on [1]. This is where the knowledge and technique of 

Operations Research (OR) comes to play. If the available resources is known, one can employ the techniques of 

OR. According to [2], the use of computerized techniques in solving transportation problem most times often 

leads to about 5% 20% savings on transportation cost. Therefore, planning of distribution process, research and 

studying OR-techniques is worthwhile and will save some transportation cost.  

The Vehicle Routing Problem (VRP) has been a problem for several decades and one of the most 

studied problem in logistics engineering, applied mathematics and computer science, and which is described as 

finding optimal routes for a fleet of vehicles to serve some scattered customers from depot [3]. VRP have 

several variants which includes; Travelling Salesman Problem (TSP) [4], Capacitated Vehicle Routing Problem 

(CVRP) [5], Periodic Vehicle Routing Problem (PVRP) [6], Vehicle Routing Problem with Time Windows 

(VRPTW) [7], Vehicle Routing Problem with Skills Sets (VRPSS) [8], Vehicle Routing Problem with Pickup 

and Devlivery (VRPPD) and so on. The VRP is a combinatorial optimization and integer programming problem 

which finds optimal path in order to deliver goods and services to a finite set of customers. The TSP is a 

classical and most widely studied problem in combinatorial optimization [9]. Which has been studied deeply in 

operations research and computer science since in the 1950s as a result of which a large number of techniques 

were developed in solving the problem. TSP describes a salesman who must travel through N cities. The order 

of visiting the cities is not important, as long as he is able to visit each city exactly once and comes back to the 

starting city [10]. Each city is connected to other cities through some link. CVRP is another variant of VRP 

involves vehicles with limited carrying capacity of goods and these goods must be delivered. In CVRP, the 

major factors we consider are the customers demands, number of vehicles availabe and the vehicle capacity.  

The objective is to find optimal route such that each and every customer is served once and every 

vehicle is loaded according to its capacity and not more [1]. The first article was introduced by [11], which was 

on the concept of vehicle routing problem by trying to solve the “truck dispatching problem” with the objective 

of finding optimal supply-technique from the bulk terminal to the large number of service stations. [12] 

implemented the branch and cut algorithm to solve a large scale travelling salesman problem where the problem 

has to be solved many times in branch and cut algorithm before a solution to the TSP was obtained. Using large 

scale instances of the TSP, a substantial portion of the execution time of the entire branch and cut algorithm is 

spent in linear program optimiser. In their work, they constructed a full implementation of branch and cut 

algorithm, utilising the special structure and however, did not implement all of the refinements discussed in 

[13]. Column Generation (CG), an exact approach for solving VRP was used and reported successful in solving 

VRPTW [14, 15]. With its success, more researchers further their research with this technique. [16] proposed 

and used CG technique to solve the Heterogeneous Fleet Vehicle Routing Problem (HVRP). Applications of 

Vehicle Routing Problem cut across several areas which includes; Courier service [17], realtime delivery of 
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customers demand [18], milk runs dispatching system in real time [19], milk collection problem [20]. The goal 

of this paper is to solve some variants of VRP using exacts methods. We shall use methods that will give us 

optimal routes for each of the variants we shall consider. 

 

II. Materials and Methods  
We briefly review Linear Programming (LP). Given a system of Linear Programming (LP) as 
 

     𝑀𝑎𝑥𝑍 = 𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3+. . . +𝑐𝑚𝑥𝑚  
 

Subjected to: 
 

      𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3+. . . +𝑎1𝑚𝑥𝑚 ≤ 𝑏1 
 

     𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3+. . . +𝑎2𝑚𝑥𝑚 ≤ 𝑏2    (1) 
 

     𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3+. . . +𝑎3𝑚𝑥𝑚 ≤ 𝑏3 
 

     ⋮ ⋮   ⋮ 
 

     𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + 𝑎𝑛3𝑥3+. . . +𝑎𝑛𝑚 𝑥𝑚 ≤ 𝑏𝑛  
 

       𝑥𝑖 ≥ 0; 𝑖 ∈  1, . . . , 𝑚  
 

From the LP system above-mentioned, we can define the following 
 

𝐴 =  

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

 , 𝑋 =  

𝑥1
𝑥2
⋮
𝑥𝑛

 and 𝑏 =  

𝑏1
𝑏2
⋮
𝑏𝑛

  

 

From the definition of linear programming given above, we shall give some further definitions and theo- 
rems. 
 

Definition 2.1. Given a system 𝐴𝑥 = 𝑏 of 𝑛 linear equations in 𝑚 variables, for 𝑚 ≥ 𝑛. A basic solution to 

𝐴𝑥 = 𝑏 is obtained by setting variables 𝑛 − 𝑚 = 0and solving for the values of the remaining m variables. 

This assumes that setting the 𝑛 −𝑚 = 0 produce unique values for the remaining 𝑚 variables or, equivalently, 

the columns for the remaining m variables are linearly independent. 
 

Definition 2.2. Any basic solution to  1  in which all variables are non-negative is a Basic Feasible 
Solution (bfs). 
 

Theorem 1 (Extreme point): A point in the feasible region of an LP is an extreme point if and only if it 
is a basic feasible solution to the LP. 
 

 

Theorem 2 (Direction of unboundedness): Consider an LP in standard form, having a bfs 𝑏1 , 𝑏2 ,⋯ , 𝑏𝑛  . 

Any point 𝑥 in the LP’s feasible region may be written in the form 
 

𝑥 = 𝑑 + 𝜎𝑖 𝑏𝑖  

 

where 𝑑 is 0or a direction of unboundedness  and  𝜎𝑖 = 1 and 𝜎𝑖 ≥ 0. 
 

Theorem 3 (Optimal bfs): Consider an LP with objective function  𝑚𝑎𝑥𝐶𝑥and constraints 𝐴𝑥 = 𝑏. Suppose  

this LP has an optimal solution. We now sketch a proof of the fact that the LP has an optimal bfs. If an LP has 

an optimal solution, then it has an optimal bfs. 
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Proof 

Let 𝑥 be an optimal solution to our LP in  1 . Because 𝑥is feasible, theorem 2 tells us that we 

may write 𝑥 = 𝑑 +  𝜎𝑖 𝑏𝑖  , where 𝑑 is 0 or a direction of unboundedness and   𝜎𝑖 = 1and 𝜎𝑖 ≥ 0. 
If 𝑐𝑑 > 0, then for any 𝑘 ≥ 0, 𝑘𝑑 +  𝜎𝑖 𝑏𝑖  is feasible, and as 𝑘 becomes larger and larger,  

the objective  function value approaches  ∞. This contradicts the fact that the LP has an optimal solution. If 

𝑐𝑑 < 0, then the feasible point  𝜎𝑖 𝑏𝑖  has a larger objective function value than 𝑥. This contradicts the 

optimality of 𝑥. In short, we have shown that if 𝑥 is optimal, then 𝑐𝑑 = 0. Now the objective function value for 

𝑥is given by 
 

    𝑐𝑥 = 𝑐𝑑 +  𝜎𝑖 𝑐𝑏𝑖 =  𝜎𝑖 𝑐𝑏𝑖  
 

suppose that 𝑏1is the bfs  with largest objective function value.  Because   𝜎𝑖 = 1and 𝜎𝑖 ≥ 0. 
 

       𝑐𝑏1 ≥ 𝑐𝑥 
 

because 𝑥is optimal, this shows that 𝑏1is also optimal, and the LP does indeed have an optimal bfs. 
 

III. Mathematical Formulation of TSP  
According to [21] there are many mathematical formulations for variants of the TSP, employing a 

variety of constraints that enforce the requirements of the problem in order to demonstrate how such a 

formulation is used in the comparative analysis as follows; 
 

Given a complete graph 𝐺 =  𝑉, 𝐸  with  𝑉 = 𝑛 and  𝐸 = 𝑚 = 𝑛
 𝑛−1 

2
 distances 𝑑𝑖𝑗  containing each  

vertex exactly once. Introducing binary variables 𝑥𝑖𝑗 for the possible inclusion of any edge  𝑖, 𝑗 ∈ 𝐸 in the tour 

we get the following classical ILP formulation; Basic assumptions inlude; travel from any city to another, the 

graph is complete. That is to say, there is an edge between every pair of nodes. For each edge in the graph, we 

associate a binary variable as follows 
 

 𝑥𝑖𝑗 =  
1,𝑖𝑓 𝑖,𝑗  ∈𝐸∈𝑡𝑜𝑢𝑟

0,𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
     (2) 

Also since the edges are undirected, it suffices to include only edges with 𝑖 < 𝑗 in the model. Furthermore, 

since we are minimizing the total distance travelled during the tour, so we calculate 𝑑𝑖𝑗  between each pair of 

nodes 𝑖 and 𝑗. So the total distance travelled is then the sum of all the distances of the edges which are included 

in the tour as follows;  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  𝑑𝑖𝑗 𝑥𝑖𝑗       (3) 

Since the tour can only pass through each city exactly once, then each node in the graph should have exactly one 

incoming and one outgoing edge i.e for every i node, exactly two of 𝑥𝑖𝑗  binary variables should be equal to (3). 

And we write it as follows, 

  𝑥𝑖𝑗 = 2, ∀𝑖 ∈ 𝑉      (4) 

Furthermore, eliminating sub tours that might arise from the above constraint, we add the following constraints; 

  𝑥𝑖𝑗 ≤  𝑆 − 1, ∀𝑆 ⊂ 𝑉, 𝑆 ≠ 0     (5) 

This constraints requre that for each proper(non-empty) subset of the set of cities V, the number of edges 

between the nodes of 𝑆 must be at most  𝑆 − 1. 
Therefore, the final integer linear program of our TSP formulation is as follows; 

   𝑀𝑖𝑛 𝑑𝑖𝑗 𝑥𝑖𝑗         (6) 

subjected to: 

     𝑥𝑖𝑗 = 2, ∀𝑖 ∈ 𝑉                (7) 

     𝑥𝑖𝑗 ≤  𝑆 − 1, ∀𝑆 ⊂ 𝑉, 𝑆 ≠ 0    (8) 

    𝑥𝑖𝑗 ∈ {0,1}       (9) 

 

And if the set of cities 𝑉 is of size 𝑛 , then there are 2𝑛 − 2 subset of 𝑆 of 𝑉 , excluding 𝑆 = 𝑉 and 𝑆 = 0.  
Where equation (6) defines the objective function, (7) is the degree equation for each vertex, (8) are the subtour 

elimination constraints (SEC), which forbid solution consisting of several disconnected tours, and (9)  defines 
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all of these with the integrality constraints. Also note that some of the SEC are redundant: for the vertex sets 

𝑆 ⊂ 𝑉, 𝑆 ≠ 0, and𝑆! = 𝑉 − 𝑆 we get pairs of SEC both enforcing the connection os 𝑆 and 𝑆! .    
  
Algorithm  1: Branch-and-Cut 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The branch and cut algorithm is given above. 
We shall solve this mathematical formulation using the above algorithm. Similarly, let formulate the 
CVRP as well. 
 

IV. Mathematical Formulation of CVRP 
All vehicles will originate and end at the depot, while each of the customer is visited exactly once. Let 
us define the following: 
 

 C = {v1 , v2 , . . . , vm }: represent the set of 𝑚-customers to be considered. 
 L: denote the fleet of available vehicles in a single depot. All vehicles considered are homogeneous, and we 

have n-vehicles. 
 Q: is the maximum capacity of a vehicle, which limits the number of customers to be visited before 

returning to the depot. 
 

The vehicle routing problem is a directed graph G(V, E) with a cost-matrix, C where 

 𝑉 = {𝑣0, 𝑣1,..., 𝑣𝑚 , 𝑣𝑚+1}is the set of vertices associated with 𝐶. The vertices {𝑣0 , 𝑣𝑚+1} represent the 

depot, i.e 𝑣0 = 𝑣𝑚+1 and  {𝑉1,..., 𝑣𝑚 } represent m-customers. 

 𝐸 = { 𝑣𝑖 , 𝑣𝑗  ∨ 0 ≤ 𝑖, 𝑗 ≤ 𝑚, 𝑖 = 𝑗}is a set of   𝑉 ×   𝑉 − 1  directed routes/edges between the 

vertices. If in both directions the distance between two vertices are identical, we then add the  𝑖 < 𝑗   

restriction, and this is the symmetric variant. 

 𝐶 = 𝐶𝑖𝑗 is a cost-matrix and 𝐶𝑖𝑗 ≥ 0 is the corresponding distance of edges   𝑣𝑖 , 𝑣𝑗  , the diagonal of the 

matrix i.e 𝑐𝑖𝑖 = 0 always. Depending on whether the VRP variant in consideration is symmetric or not, 

𝑐𝑖𝑗 = 𝑐𝑗𝑖  . The triangle inequality is assumed to hold generally, i.e 𝑐𝑖𝑗 ≤ 𝑐𝑖𝑘 + 𝑐𝑘𝑗   and  0 ≤ 𝑖, 𝑗, 𝑘 ≤

𝑚 . 
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Furthermore, we need to define some important terms in this VRP problem; 

• 𝑅𝑖 = {𝑣0
𝑖 , 𝑣1

𝑖 , . . . , 𝑣𝑘𝑖

𝑖 , 𝑣𝑘𝑖+1
𝑖 }is a vector of the route of vehicle 𝑖 which start and end at the depot, with 

𝑣0
𝑖 = 𝑣𝑘𝑖+1

𝑖 = 𝑣0 ,  𝑣𝑗
𝑖 ≠ 𝑣𝑙

𝑖 ,   0 ≤ 𝑗 < 𝑙 ≤ 𝑘𝑖 , and 𝑘𝑖   is the length of route 𝑅𝑖  . 

• 𝑆 = {𝑅1,𝑅2,. . . , 𝑅𝑛}is the set of route which represent the VRP solution instance. 

•  𝐶 𝑅𝑖 =  𝐶
𝑘𝑖
𝑗=0  𝑣𝑗

𝑖 , 𝑣𝑗+1
𝑖  is the cost of route 𝑅𝑖  . 

•  𝐶 𝑆 =  𝐶𝑛
𝑖=1  𝑅𝑖 is the total cost of solution 𝑆  which satisfies; 

   𝑅𝑖 ∩ 𝑅𝑗  = {v0 } ∀Ri , Rj , (1 ≤ i, j ≤ n, 𝑖 ≠ 𝑗)   and  

 

       .∪𝑖=1
𝑛 𝑅𝑖 = 𝑉 

 
in order for each customer to be served once. The route vectors is treated here as a set. The goal of the VRP is to 

minimize the 𝐶 𝑆  on the graph 𝐺 𝑉, 𝐸 . 
 

G is the graph which contains  𝐸 + 2vertices, and the customers ranges from (1, 2, . . . , m). The starting and 

returning depots are denoted by 0 and m + 1 respectively. Earlier in this section, we introduced the vehicle 

routing problem which we have now defined. However, the problem is not all about visiting the customers, there 

is more to their demands. In the following definitions, we shall specify these additional demands of the 

customers: 
 demand; d = (d0 , . . . , dm , dm+1 ) with di> 0 and m is the total number of customers which is a vector of the 

demands of customer, the demand of the depot is denoted by d0 ; d0 = dm+1 = 0 always. 
 service time; δ is a function of service time: time to unload all the goods at customer vi ,  
i = 1, 2, . . . , m. Often times, δ is dependent on the size of the customer’s demand. Henceforth, we shall use 

these notations as the same henceforth, δi = δ(vi). 
 Let us define our decision variable as yij = 1 if (i, j) is a route and 0 otherwise. 
 

The problem definition will be based on the following assumptions; 
 The capacity constraints of all the vehicles are observed. 
 Each customer can be served by only one vehicle. 
 Each and every route starts at vertex 0 and ends at vertex (m + 1). 
The mathematical formulation of Capacitated Vehicle Routing Problem is stated below. 
 

We start with the objective function; 
 

      𝑚𝑖𝑛  𝐶𝑖𝑗
𝑚+1
𝑗=0

𝑚+1
𝑖=0 𝑦𝑖𝑗 ,     (10) 

 

Subjected to: 
 

      𝑦𝑖𝑗
𝑚+1
𝑗=1

𝑗≠1

= 1, ∀𝑖 = 1,2, . . . , 𝑚     (11) 

 

 

        𝑦𝑖𝑗
𝑚+1
𝑗=1

𝑗≠1

= 1,       (12) 

 

        𝑦𝑖𝑕𝑖=0

𝑖≠𝑕

−  𝑦𝑕𝑗𝑗=1

𝑗≠𝑕

= 0,     (13) 

 

        𝑦𝑖,𝑚+1𝑖 = 1,      (14) 

 

 

   𝑥𝑗 ≥ 𝑥𝑖 + 𝑑𝑗𝑦𝑖𝑗 − 𝑄 1 − 𝑦𝑖𝑗  , ∀𝑖, 𝑗 = {0,1, . . . , 𝑚 + 1}   (15) 

 

     𝑑𝑖 ≤ 𝑥𝑖 ≤ 𝑄, ∀𝑖 = {0,1, , . . . , 𝑚 + 1},    (16) 
 

     𝑦𝑖𝑗 ∈ {0,1}, ∀𝑖, 𝑗 = {0,1, , . . . , 𝑚 + 1},    (17) 
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where (10) is the objective function which minimize the total travel cost by vehicle, This function is subjected to 

several constraints. Constraint (11) restrict each customer to be visited and served by only one vehicle. 

Constraints (12), (13) and (14) ensure that each and every vehicle must originate from starting depot; 0, pass 

through various destinations of demands and return to end depot; m + 1. Constraints (15) and (16) ensures the 

capacity constraint is observed. And constraint (17) indicate integrality constraints. 

Note that subtours are avoided in the solution with constraint (14) that is, cycling paths which do not pass 

through the depot. Constraints (15) and (16) advantage in this problem is that in terms of our customers, 

the formulation has a polynomial number of constraints. 

 

 
Figure 1: Column generation procedures 

 
We shall solve this formulation using the column generation technique. A brief explanation of this technique is 

as follow; 

(1) Restricted Master Problem: The Restricted Master Problem (RMP) is a set partitioning problem. Some 

routes have the potential to improve the objective function, the RMP considers these paths which were added to 

the set of routes due to their potential to improve the objective function. The advantage of this technique is, only 

routes with high potential are added to the set of routes. Set partitioning problem has been considered because it 

is flexible with the objective function and its constraints. This approach allows the adding of constraints and this 

has an impact on the existing routes. This constraint-adding characteristics, makes set-partitioning problem more 

flexible than several other approaches [22]. When solving RMP, a dual value is assigned to each customer, this 

assigned value correspond to how much we can improve the total solution by adding better routes including this 

customer. 

(2) Pricing Problem: The second part of CG is the pricing-problem which is a sub-problem following the RMP 

to identify and generate new routes and column that will enter the set of routes (variables) in the RMP. The 

RMP assigns dual values to customers, which assists to identify new routes with potential to improve the 

objective function. The new routes generated from pricing-problem are added to the master problem. RMP is 

then re-solved to generate new dual-values to each customers. 

(3) Lastly, we use post-optimisation technique to further improve the solution we obtained. Further explanation 

can be obtain in [1]. Now that we have defined the two algorithms, we proceed to the experiments as given in 

the next section. 

 

V. Results 
Our experimental results for the problems are given here. We use the branch and bound algorithm to solve TSP 

and column generation technique to solve CVRP. 

 

Experiment 1: Exact Method with TSP 

This section presents the performance tests of branch and cut algorithm on Euclidean instances of 

TSPLIB library. The tests were performed on a computer processor intel(R) core (TM) i5-2450m cpu 2.60GHZ 

@ 2.60GHT and 8GB of Ram. The adaptation of the proposed algorithm is coded into a python programming 

language version 3.6 . Result obtained by applying the exact method in solving the symmetric TSP problem is 

summarised in the tables below. 
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Table 1 containing the following features; Instances (denotes the data file), No of instance (number of 

cities in the graph), Optimality (best known solutions), Exact Method (our  experimental result), Time (python 

time in seconds), Error (the optimality gap between the Optimality and exact method). 

 

Table 1: Exact method with optimal solution 
Instances No  of instance Optimality Exact method Time(s) Error (%) 

Wi29 29 27603 27603 0.10 0.00 

DJ38 38 6656 6656 0.12 0.00 

Berlin52 52 7542 7542 0.15 0.00 

Pr76 76 21282 21282 0.66 0.00 

KroA100 100 108159 108159 0.62 0.00 

Pr136 136 96772 96772 0.44 0.00 

Pr144 144 58537 58537 1.63 0.00 

Ch150 150 6528 6528 7.44 0.00 

qa192 192 9352 9352 1.82 0.00 

KroA200 200 29437 29437 1.61 0.00 

 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑔𝑎𝑝 =
 𝐸𝑥𝑎𝑐𝑡𝑀𝑒𝑡 𝑕𝑜𝑑−𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦  

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦
× 100%(18) 

 

Table  (1)  shows a summary of the results obtained when we applied our exact method algorithm on the 

TSPLIB instances. And (18) is the optimal gap formula. 

 

We shall further visualize results of table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: A plot of wi29 Instance     Figure 3: A plot of Dj38 Instance 

 

 

 

 

Figure 4: A plot of Berlin52 Instance      Figure 5: A plot of pr76 Instance 
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Figure 6: A plot of KroA100 Instance      Figure 7: A plot of pr136 Instance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: A plot of pr144 Instance   Figure 9: A plot of ch150 Instance 

 

 

 

Figure 10: A plot of qa194 Instance    Figure 11: A plot of KroB200 Instance 

 

Figures (2) - (11) above shows the routes for each of the instance considered in this experiment. The cost 

of each tour have been shown in (1). 

 

Experiment 2: Exact Method with CVRP  
The Column Generation (CG) method is an exact method for solving the CVRP and the VRP in 

general, this technique has been explicitly explained in Section (2.4), and gives an optimal solution to a small-

size problem but become inefficient on big-size problem. Table (3) gives the summary of the comparison of this 

techniques primal and (cost value) dual problem, since CG work on dual solution of the relaxed master problem, 
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their optimal gap in percentage. Table (3) consists of five columns; Instances, Relaxed Master Problem (RMP), 

(cost value) Column Generation (based on dual values), column generation computational time and optimality 

gap. Table (4) shows the optimal tours for each vehicles if the cost value is to be respected. These results were 

obtained using gurobi solver in python [23]. 

 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑔𝑎𝑝 =
𝑈𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 −𝐿𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑

𝐿𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑
× 100%    (19) 

 

Table 2: Column Generation results 
Instances RMP(Primal) Cost value CG time(s) Gap (%) 

P-n16-k8 450 450.00 14.72 0.00 

P-n20-k2 220 220.00 38.64 0.00 

P-n22-k2 216 216.00 44.31 0.00 

P-n22-k8 603 603.00 19.66 0.00 

 

Table 3: Optimal Routes 

Table 2 above shows the experimental results for the CVRP, and table 3 shows the optimal tour for these 

instances. Table 3 contains three features; Instance, Optimal tour and cost which implies; the instance 

considered, the routes that will give the optimal solution and the cost of each routes respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig

ure 

8: Tour with 16 locations and 8 route   Figure 9: Tour with 19 locations and 2 route 
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Figur

e 10: Tour with 22 locations and 2 route    Figure 11: Tour with 22 locations and 8 route 

 

Figures (8) - (11) above shows the routes for each of the instance considered in this experiment. Each 

locations have also been shown in table (4). 

 

VI. Conclusion  
So far, we considered only two variants of the vehicle routing problem which are; travelling salesman 

problem and capacitated vehicle routing problem. For the travelling salesman problem, we used branch and cut 

algorithm to solve the problem and applied it on some instances. We considered the following TSPLIB instance; 

Wi29, DJ38, Berlin52, Pr76, KroA100, pr136, pr144, ch150, qa19 and KroA200. Since technique produced an 

optimal solution, which ascertain the fact that exacts methods give optimal solutions. The results are shown in 

(1). For the capacitated vehicle routing problem, we used column generation technique to solve this 

mathematical model and applied it on Augerat et. al (E) data. These technique produced optimal solutions as 

well. The results are given in (3). 

In this research work, we applied some exact solution methods of solving VRP. Where our 

concentration was based on the Branch and Cut algorithm for Travelling Salesman Problem and Column 

generation technique for the Capacitated Vehicle Routing Problem.  

These techniques; branch-and-bound and column generation produced optimal solutions for travelling saleman 

problem and capacitated vehicle routing problem respectively. Other variants of Vehicle Routing 

Problem can also be solved using other exact algorithms. 
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