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Abstract: In this study we present a two-stage adaptive estimator p™a of prevalence in the presence of
test errors. We assume that tests are not 100 % perfect. We obtain the adaptive estimator using
Maximum Likelihood Estimate (MLE) method and use Fisher information to determine the variance
of the estimator. We use Matlab, for simulation and veri cation of the model. We analyse and discuss
the properties of the constructed estimator in comparison with other existing estimators in the
literature of pool testing. We also provide the con dence interval of the estimator. When the test kits
have low sensitivity and speci city, we establish that the adaptive estimator outperforms other existing
estimators. Further more, we demonstrate that the e ciency of the adaptive estimation scheme
improves as the number of stages increases. This makes the adaptive testing scheme more ideal in
areas where errors are rampant.
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. Introduction
Pool testing has been recognized as a sampling scheme that can provide substantial
benefits (ef. Hughes-Oliver and Swallow, 1994). Early application of pool testing in
estimating prevalence of plant virus transmission by insects (Watson, 1936; Thomp-
son, 1962) was one of the pioneering applications of this concept. Dorfmjan (1943)
introduced the statistical and mathematical concept of pool testing when he used
it to estimate the proportion of diseased individuals among the US conscripts. He
also derived optimum group sizes assuming that the population was large enough
for application of a binomial model and consequently realized significant savings
amounting up to 80% in the numbers of tests required. He developed a statis-
tical model as follows: Thompson (1962) discussed estimation in statistics using
a pool testing procedure. In the subsequent vears this concept has had relevant
application in various clinical studies including phytopathology, public health and
plant quarantine (cf. Chiang and Reeves, 1962; Bhattacharyya et al., 1979; Swal-
low, 1987; Yamamura and Sugimoto, 1995; Hughes and Gottwald, 1998; Zenios and
Wein, 1998; Remund et al.,2001;). Positively pooled samples can be partitioned
into relatively smaller subsets there by reducing on cost and effort, which provides
the obvious motive for pooling samples together (Sobel and Elashorff, 1975). On
the same subject, Nyongesa (2011) developed an estimation model based on pool
testing with retesting the pools that test negative and the model has been shown
to be applicable for blood donors. Theobald and Davie (2007) argued that pool
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testing need not only be applied to populations where retesting is needed, like in
identification of diseased individuals in a human population, but also on other popu-
lations with no intention of retesting the individuals contributing to positive pooled
samples. For instance if a batch of food items is being tested for contamination,
there may be no interest in identifying the particular items which are affected. The
emphasis may instead be on estimating the proportion of defective items in a popu-
lation or on deciding that the number of positive pooled samples justifies removing
a food product from the market. In another related study, bacteriological testing of
egg-laying hens for salmonella in Great Britain was carried out using organ cultures
pooled five at a time. Individual samples contributing to positive pooled samples
are not tested again. A population comprises birds in a hen house. If infection
was confirmed they were destroved and compensation paid for the number of birds
estimated to be uninfected (Richards, 1991). Oliver-Hughes and Swallow (1994)
developed a two-stage adaptive pool testing procedure with perfect tests. The idea
here was to estimate small proportions in a population with ideal tests. They used
the Maximum Likelihood Estimate (MLE) method to estimate the proportion and
Cramer-Rao Lower bound method for determining the variance of the estimator.
They realised impressive results with the two-stage adaptive estimator p4 being
more efficient than the non-adaptive estimator p. In their study however, they
assumed that tests are perfect, yet in real life situations, errors in experiments are
inevitable. In real life situations manufactured test kits are never 100% perfect as
assumed by Oliver-Hughes and Swallow (1994). In this study, we present a two-
stage adaptive pool testing model with imperfect tests that is applicable to real life

situations, hence generalizing the Oliver-Hughes and Swallow (1994) model.

Il.  Adaptive Scheme
Here we obtain a two-stage adaptive estimator PA of prevalence of a trait in the presence of test errors.

That is we compute the maximum likelihood estimator (MLE) of prevalence and investigate its properties.

The adaptive model involves testing groups in stages and updating group sizes from one stage to the
next, with group size at a stage depending on the group size of the preceeding stage(s). That is, testing nl
groups, each of size k1 in the rst stage; n2 groups each of size k2 in the second stage; n3 groups each of size k3
in the third stage; for a three- stage model, and so on; where, k3 depends on both k2 and k1 , while for a two-
stage model, k2 depends on k1 . For a general adaptive scheme, at stage i, ni groups each of size ki where the ki
depends on ki 1; ki 2, ..... k1 are constructed. The constructed groups are then subjected to testing. These ni
groups at this stage are all of equal sizes, ki . The ni is determined before the experiment is carried out while ki
's are sequentially determined as the experiment progresses.

First we introduce the Non-adaptive testing scheme with errors as it will be the basis of our subsequent
discussions. Suppose we have a population with the purpose of characterising it into two distinct groups, that is,
defective and non-defective. For clarity of this procedure consider a population of size N . Divide this
population into n homogenous groups as shown in Figure 1
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Figure 1: Construction of groups with the purpose of testing.

Each constructed group is subjected to testing as shown in Figure 1. Notice that the test kits in practice
have errors (cf. Kline et al., 1989). From Figure 1 if a group is tested, it either yields positive or negative results.
We also observe from Figure 1 that there are n groups to be tested, thatis, i=1; 2; 3,...... , N . Suppose X out of
n groups test positive then X has a binomial distribution simply written as

X ~ Binomial(n, =(p)). (1)

Some authors have used Equation (??)to obtain the estimator p” of prevalence p, for the non-adaptive scheme
with test errors, for instance see Brookmeyer (1999) and Nyongesa (2011) as
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And the asymptotic variance of Equation (??) can easily be obtained from Equation (??) upon applying Cramer-
Rao lower bound method, see for instance (Gupta and Kapoor,1978, p766-770) as

(1—p)’m(p)(1 —w(p))(1 —p)~2*
nki(n+¢—1)>2

Equations (??) and (??) will be vital in the development of the succeeding sections.

(3)

Var(p) =

2.1 Two-stage adaptive scheme
For this Scheme, we set 11 = An and na = (1 — A)n, where n is the total number
of groups constructed initially, nq the number of groups tested at stage-one and
mno the number of groups tested at stage two. The group size at stage one, kp is
determined by
ki = argming[Var(p)||p=p,- (4)
Suppose Xy groups test positive on the test at stage-one follows a Binomial
Distribution written as
X1 ~ Binomial( An, w(p)| k=, ). (5)
The likelihood form of Equation (77) is given by
L{p|An, X1) < 7™ (p)[1 — (p)P (6)

The MLE of prevalence at stage one is obtained from Equation (77) as

'r—%'- o
hh=1—|—2"— : (7)
b n+o—1 (1)
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2.2 Properties of the prevalence estimator in stage-one
In this sub-section, we investizgate one key property of the estimator as given hy
Equation (77). this property is Unbiasedness.

We wish to establish whether or not $; is unbiased. To this end we have

E(p1)=1-E (8)

1
X =
"~ |
n+o—1

It is not easy to simplify this equation, therefore we consider special cases. For
example if &1 = 1, we have

y— EXy)
o . _ T
E(p1) =1 EIE%TL (9)

It is clear from Equation (77) that E(X{) = Anm(p). Upon substituting Anw(p) in
Equation (77), utilizing Equation (77) and noting that £y =1 we have

E(p1) = p. (10)

Therefore for &y = 1, p1 is an unbiased estimator of p. However, for k1 = 1 it
is not easy to solve Equation (77). We shall therefore apply Jensen’s inequality
(Mood et al., 1974, p72) since Equation (77) is convex on ® and E(X;) is bound,
that is,

E(X;) = Anm(p) < oc.

Applying Jensen’s inequality in this case we have,

-3]—51 1 _ﬂ_ffg.’f]}--"f_l
E 1_[ IJ!.H ],lq < 1- .Jm
n+¢—1 n+o—1
[ — B0 Fr
— E(j) > 1—-|—2An | | (11)
n+ao—1

Noting that F(X,) = Anm(p), Equation (77) becomes
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ROt
E[ﬁﬂél—[% Ny (12)

Equation (77) can be expanded using Taylor’s series about E(X;) as follows:
Let p1 = f(X1)
Then §; expressed in Taylor’s expansion about E(X;) is

1 = fIEX)]+ FIEX)][X - E(Xy)] + 5 f"[E (X1)][X1 — B(X1)]?
+EIMBO)X - BOGP + ...+ ﬁ O [B(X)][ X — B,

where f'[E(X1)], f"[E(X1)] and f"[E(X1)] are first, second and third derivatives
respectively of f[E(X1)] with respect to Xi.

Determining the terms of Taylor's expansion, combining them and taking ex-
pectation we get

1

Ep) =z 1-(1-p) {%}FHI

k1 — 1 (1-p) [n—(6—1)]F>
! (Er’c?[knlg) (1 —p)2k [ n+oé—1 } Var(X1)
+ ((k‘_”[zkl —11) (1—p) [ﬂ— CE
12k (An)3 A—p | pro—1

3 +

where pg = [X1—FE(X 1)]3 is called the third cummulant. Notice from the expansion
above that when ky =1 and n=¢ =1, E(p;) = p implving that p; is either an
unbiased estimator of p or upwardly biased. However, when %y > 1,

ﬁ n- (-] (k-1 (1-p) [1-(6-1)
) 2 [5G () [?Hm—ll o
(Uﬂ—l}[ﬂkt—li) (1-p) {n—(fﬁ—l}
12k$(Mn)3 1—p) | p+o—1

which implies that py is upwardly biased.

From the discussion of the properties of our adaptive estimator at stage-one
we observe that the properties are similar to those of the non-adaptive estimator
with the difference being the parameter (A). Therefore, for further analysis of
the properties of this adaptive estimator just like for the non-adaptive estimator,
see Nyongesa (2011) and Brookmeyer (1999). The result in (77) is useful in the
construction of ko as it will be seen in the following sub-section.Construction of ko
enables us to estimate the adaptive estimator, p4 in stage two.

1
1 p3+...,
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2.3 Adaptive Estimator at Stage two, PA
At this stage, as in stage-one, the group size, ko is determined by

ka = argmim|[Var(i1)]|p;=p (13)

where ka can be obtained by solving the equation

d
= Upuxn (D) =0,

where, ko is a function of (n.,A, X{) or simply written as ks = ka(n, A, X1).
The ng = (1 — A)n groups each of size ko are tested at stage two. Suppose Xo
groups test positive on the test, then

Xo=0,1,2,.....,(1 = A)n
Therefore, for fixed Xy we have
Xo| Xy ~ Binomial((1 — A)n, m1(p)) (14)

where
ma(p) = [l — (1 —p)*] + (1 - ¢)(1 — p)* (15)
The joint distribution of X; and X5 is given by
f(X1,X9) = Binomial(An, 7(p)|k=k, ) * Binomial((1 — A)n, w1 (p)). (16)

The likelihood function of Equation (77) is

L{pln, Xi, X9) = (WI(PJ}X'[I—m[pjj’*”‘-’f'

()1 (p)) X2 (1 — gy (p)) -2, (17)

Notice that X9 depends on X; through the size ks, that is ko = k2(X7). Indeed
this assumption simplifies Equation (77) as T9)1(p) takes the form

m(p) = nll—(1 — )X 4 (1 — ¢)(1 — p)tX)
1 — g=2FV] 4+ (1 — g)g™=XV)

Utilizing Equation (77) the MLE of p, that is p4 is obtained as the solution to
kiX1g" (1= @) —n] | ka(X1)Xog™XV[(1 — ) — 0]

n—(n+(1— o))" n—(n+ (1 - ¢))gk(Xv)
kg (An — X1)(n+ (1= ¢)) | ka(X1)g™=FV[(1 — N — Xo][n + (1 — 9)]
L—[n—(n+(1—¢))ak] L—[n—(n+(1—¢))gk=X1)]

(18)
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I1l.  Asymptotic Variance of pA
This is done by employing Cramer-Rao Lower bound method. V ar( f)A) is obtained as
Var(ga) . B . ‘
_ mi(p)ma(p) (1 — mi(p))(1 — m2(p))
(n+ ¢ — 1)?n[ma(p)(1 — ma(p)) Ak(1 — p)?F1 P + m(p)(1 — w1 (p)) (1 — A)k3 (X1 )(1 — p)2kalXa)-
i1

IV.  Results and discussion

Here we highlight our findings in this study. We estimated prevalence using the
adaptive testing scheme. We accomplished this by employing MLE procedure. For
us to recommend the suitability of the adaptive estimator, it would be in order to
compare with the past constructed estimators in the literature of pool testing and
in particular in the presence of test errors. In statistical inference, estimators with
small bias are considered to be the best estimators and since in this study we did not
discuss the biasness of our two-stage adaptive estimator, we shall not use bias as a
measure to compare previous estimators with our adaptive estimator and similarly
with mean squared error (MSE). Therefore the only measure of comparison herein
is the computation of Asymptotic Relative Efficiency (ARE) values. The ARE in
this study is obtained by dividing (77) by (77), that is,

where V ar PA) and V ar( PA) are as given in (??) and (??) respectively, which upon simpli cation reduces to

ARE
PA

M+ m(p)(1 - m(p)(1

— MR (X1)(1 — p)2(X1)]
T(p)ma(p)(1 — m1(p))(1 — ma(p))(1 — p)2* |

(20)
with k1 and k2 as de_ned by (??) and (?7?) respectively. Using this Equation andmatlab software Table 1 was
generated.

p |lnm=0=09 | n=0=098 |n=0=097 | n=0=0.96 | 5 =0¢=0.90
0.1 11.7739 11.8024 11.8304 11.8577 12.0005
0.2 G.1184 6.4223 6.7152 G6.9974 8.4904
0.3 3.6109 4.2835 4 8918 D.4448 T7.0336
0.4 3.0823 43658 53725 6. 1880 0.0662
0.5 4.4239 6.3134 T.4865 8.3030 10.5715
0.6 T.3875 9.0611 0.9042 10.4289 11.6667T
0.7 10.2335 11.1440 11.5420 11.7672 12.2284
0.8 11.9115 12,1858 12.2856 12.3372 12.4329
0.9 12.4422 12.4616 12.4681 12.4713 12.4772
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Table 1: ARE values of yi4 relative to p for specified p,n and o
Table 1 provides generated ARE wvalues for given p, n and ¢. From the tabulated
ralues ARE is high when p is small and decreases as p increases, attaining the
minimum at p = 0.4 across the board, except for 7 = ¢ = 0.9 where the minimum
is attained at p = 0.3. The ARE again improves as p moves away from 0.4 for
1, @ = 0.9. A similar scenario is observed for the case of n = ¢ = 0.9 where ARE
improves as p moves away from 0.3. To depict these observations graphically, see

Figure 2.
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Figure 2: ARE vs probability p .

The figure reprpsents ARE values plotted against prevalence p values. Clearly,

as noted in Table 2, the ARE drops significantly as p increases up to the walue

p:

0.4, then it improves as p moves away from 0.4. From Figure 2, the adaptive

estimator outperforms the non-adaptive estimator as the sensitivity and specificity
of the test kit decreases. Hence in cases where the test kits have low sensitivity and
specificity, the adaptive scheme is preferred for more efficient results.
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