Generalization of Enestrom Kakeya Theorem

Jahangeer Habibullah Ganai ${ }^{1}$ and Anjna Singh ${ }^{2}$
${ }^{1,2}$ Department of Mathematical Sciences A.P.S. University, Rewa (M.P.) 486003 India, Govt. Girls P.G. College Rewa,(M.P)

```
Abstract. In this paper we will give generalizations of polynomials with complex coefficients when we have only real or imaginary parts of the coefficients.
```

Keywords. Enestrom-Kakeya Theorem, Maximum modulus principal, Schwarz's lemma.

I. Introduction

Suppose $F(t)=\sum_{v=0}^{n} b_{v} t^{v}$ is a polynomial of degree m whose coefficients satisfy $0 \leq b_{0} \leq b_{1} \leq \ldots \leq b_{m}$. Then $F(t)$ has all its zeros in the closed unit disk $|t| \leq 1$
An equivalent but perhaps more useful statement of the above theorem due to in fact to Enestorm[3] is the following.
Theorem 1. Suppose $F(t)=\sum_{v=0}^{n} b_{v} t^{v}, n \geq 1$ be a polynomial of degree m with $b_{v}>0 \quad \forall \quad 0 \leq v \leq n$. If

$$
\beta=\beta[f]:=\min _{0 \leq v \leq n}\left\{\frac{b_{v}}{b_{v}+1}\right\}, \gamma=\gamma[f]:=\max _{0 \leq v \leq n}\left\{\frac{b_{v}}{b_{v}+1}\right\}
$$

then all the zeros of $f(t)$ are contained in $\beta \leq|t| \leq \gamma$
Theorem 2. Let $F(t)=\sum_{v=0}^{n} b_{v} t^{v}, \operatorname{Re} \quad b_{j^{*}}=\beta_{j^{*}}$ and $\operatorname{Im} b_{j^{*}}=\gamma_{j^{*}}$ for $j^{*}=0,1, \ldots, n, b_{n} \neq 0$ and for some k,

$$
\beta_{0} \leq j^{*} \beta_{1} \leq j^{* 2} \beta_{2} \leq \ldots \leq j^{* k} \beta_{k} \geq j^{* k+1} \beta_{k+1} \geq j^{* k+2} \beta_{k+2} \geq \ldots \geq j^{* n} \beta_{n}
$$

for some positive j^{*}.
Then $f(t)$ has all its zeros in $R_{1} \leq|t| \leq R_{2}$ where

$$
R_{1}=\frac{j^{*}\left|b_{0}\right|}{2 j^{* k} \beta_{k}-\beta_{0}-j^{* n} \beta_{n}+j^{* n}\left|b_{n}\right|+\left|\gamma_{0}\right|+\left|\gamma_{n}\right| j^{* n}+2 \sum_{i=1}^{n-1}\left|\beta_{i}\right|^{* i}}
$$

and

$$
R_{2}=\max \frac{\left|\beta_{0}\right| j^{* n+1}+\left(j^{* 2}+1\right) j^{* n-k-1} \beta_{k}-j^{* n-1} \beta_{0}-j^{*} \beta_{n}+}{j^{*-i-1} \beta_{i}+\left(1-j^{* 2}\right) \sum_{i=k+1}^{n-1} j^{n-i-1} \beta_{i}+\sum_{i=1}^{n}\left(\left|\gamma_{i}\right|+j^{*}\left|\gamma_{i}\right|\right) j^{* n-i}} ⿻\left|b_{n}\right|, \frac{1}{j^{*}} \quad .
$$

We do not know if the result is best possible, however if we take $k=n, j^{*}=1, \quad \gamma_{v}=0$ for $0 \leq v \leq n$
and $b_{0} \geq 0$, we get that all the zeros of the polynomial $f(t)$ lie in the annulus $\frac{b_{0}}{2 b_{n}-b_{0}} \leq|t| \leq 1$ which is best
possible in the sense that the inner and outer radii of the annulus here cannot be improved $\left(f(t)=t^{m}+t^{m-1}+\ldots+t+1\right)$. If we take in the theorem $2 k=n$ we get
Corollary1.1 Let $f(t)=\sum_{v=0}^{n} b_{v} t^{v}, \quad \operatorname{Re} \quad b_{j^{*}}=\beta_{j^{*}} \quad$ and $\operatorname{Im} b_{j^{*}}=\gamma_{j^{*}} \quad$ for $\quad j^{*}=0,1, \ldots, n, b_{n} \neq 0$ and

$$
\beta_{0} \leq j^{*} \beta_{1} \leq j^{* 2} \beta_{2} \leq \ldots \leq j^{* n} \beta_{n}
$$

for some positive j^{*}. Then $f(t)$ has all its zeros in $R_{1} \leq|t| \leq R_{2}$ where

$$
\begin{aligned}
& R_{1}=\frac{j^{*}\left|b_{0}\right|}{\left(j^{* n} \beta_{n}-\beta_{0}+j^{* n}\left|b_{n}\right|+\left|\gamma_{0}\right|+\left|\gamma_{n}\right| j^{* n}+2 \sum_{i=1}^{n-1}\left|\gamma_{i}\right| j^{* i}\right)} \\
& \text { and } \quad R_{2}=\max {\left[\left|b_{0}\right| j^{\left.{ }^{* n+1}+j^{*-1} \beta_{n}-j^{* n-1} \beta_{0}+\left(j^{* 2}-1\right) \sum_{i=1}^{n} j^{{ }^{* n-i-1}} \beta_{i}+\sum_{i=1}^{n}\left(\left|\gamma_{i}-1\right|+j^{*}\left|\gamma_{i}\right| j^{* n-i}\right)\right]}\right.} \\
&\left|\beta_{n}\right|, \frac{1}{j^{*}}
\end{aligned}
$$

In particular, taking $j^{*}=1$ and $\gamma_{v}=0$ for $0 \leq v \leq n$ in Corollary 1.1, if $f(t)=\sum_{v=0}^{n} b_{v} t^{v}$ is a polynomial with real coefficients satisfying $b_{0}=\leq b_{1} \leq \ldots \leq b_{n}$ then $f(t)$ has all its zeros in

$$
\begin{equation*}
\frac{\left|b_{0}\right|}{b_{n}-b_{0}+\left|b_{n}\right|} \leq|t| \leq \frac{\left|b_{0}\right|+b_{n}-b_{0}}{\left|b_{n}\right|} \tag{1}
\end{equation*}
$$

This result sharpen a result due to Joyal, Labelle and Rahman [1]. The Enestrom-Kakeya Theorem is implied by (1) when $b_{0} \geq 0$

Corollary 1.2. Let $f(t)=\sum_{v=0}^{n} b_{v} t^{v}, \operatorname{Re} b_{j^{*}}=\beta_{j^{*}}$ and $\operatorname{Im} b_{j^{*}}=\gamma_{j^{*}}$ for $j^{*}=0,1, \ldots, n, b_{n} \neq 0$ and $\beta_{0} \geq j^{*} \beta_{1} \geq j^{* 2} \beta_{2} \geq \ldots \geq j^{* n} \beta_{n}$ for some positive j^{*}. Then $f(t)$ has all its zeros in $R_{1} \leq|t| \leq R_{2}$ where

$$
R_{1}=\frac{j^{*}\left|b_{0}\right|}{\left(\beta_{0}-j^{* n} \beta_{n}+j^{* n}\left|b_{n}\right|+\left|\gamma_{0}\right|+\left|\gamma_{n}\right| j^{* n}+2 \sum_{i=1}^{n-1}\left|\gamma_{i}\right| j^{*_{i}}\right)}
$$

and

$$
R_{2}=\max \frac{\left[\left|b_{0}\right| j^{*^{n+1}}+j^{* n+1} \beta_{0}-j^{*} \beta_{n}+\left(1-j^{* 2}\right) \sum_{i=1}^{n} j^{*_{n-i-1}} \beta_{i}+\sum_{i=1}^{n}\left(\left|\gamma_{i}-1\right|+j^{*}\left|\gamma_{i}\right| j^{*^{* n-i}}\right)\right]}{\left|\beta_{n}\right|, \frac{1}{j^{*}}}
$$

In particular, if $f(t)=\sum_{v=0}^{n} b_{v} t^{v}$ is with real coefficients satisfying $b_{0} \geq b_{1} \geq \ldots \geq b_{n}$ then it has all its zeros in

$$
\begin{equation*}
\frac{\left|b_{0}\right|}{b_{0}-b_{n}+\left|b_{n}\right|} \leq|t| \leq \frac{\left|b_{0}\right|+b_{0}-b_{0}}{\left|b_{n}\right|} \tag{2}
\end{equation*}
$$

Theorem 3 Let $f(t)=\sum_{v=0}^{n} b_{v} t^{v} \operatorname{Re} b_{j^{*}}=\beta_{j^{*}}$ and $\operatorname{Im} b_{j^{*}}=\gamma_{j}^{*}$ for $j^{*}=0,1, \ldots, n \quad b_{n} \neq 0$ and for some k, $j^{*}{ }^{n} \beta_{0} \leq j^{* n-1} \beta_{1} \leq j^{* n-2} \beta_{2} \leq \ldots \leq j^{* k} \beta_{n-k} \geq j^{* k-1} \beta_{n-k+1} \geq \ldots \geq j^{*} \beta_{n-1} \geq \beta_{n}$ for some positive j^{*}.

Then $f(t)$ has all its zeros in $R_{1} \leq|t| \leq R_{2}$ where

$$
R_{1} \min =\binom{\frac{\left|b_{0}\right|}{\left(\left|b_{n}\right| j^{* n+1}+\left(j^{* 2}+1\right) j^{* n-k-1} \beta_{n-k}-j^{* n-1} \beta_{n}-j^{*} \beta_{0}+\left(j^{* 2}-1\right) \sum_{i=1}^{k-1} j^{* n-j-1} \beta_{n-j} \beta_{n-j^{*}}\right.}}{+\left(1-j^{* 2}\right) \sum_{i=k+1}^{n-1} j^{* n-i-1} \beta_{n-j}+\sum_{i=1}^{n}\left(\left|\gamma_{n-j^{*+1}}\right|+j^{*}|m-i| j^{* n-j}\right), j^{*}}
$$

and

$$
R_{2}=\left(\frac{2 j^{* k} \beta_{n-k}-\beta_{n}-j^{* n} \beta_{0}+j^{* n}\left|\beta_{0}\right|+\left|\gamma_{0}\right| j^{*_{n}}+\left|\gamma_{n}\right|+2 \sum_{i=1}^{n-1}\left|\gamma_{n-i}\right| j^{* i}}{\left(j^{*}\left|\beta_{n}\right|\right)}\right)
$$

In particular, if we take $k=0$ and $\gamma_{v}=0$ for $0 \leq v \leq n$, we get that if $f(t)=\sum_{v=0}^{n} b_{v} t^{v}$ is a polynomial of degree m with real coefficients satisfying $j^{* n} b_{0} \leq j^{* n-1} b_{1} \leq \ldots \leq j^{*} b_{n-1} \leq b_{n}$ for some positive j^{*}, then all the zeros of $f(t)$ lie in

$$
\min \left[\frac{\left|b_{0}\right|}{\left|b_{n}\right| j^{* n+1}+j^{* n+1} b_{n}-j^{*} b_{o}+\left(1-j^{* 2}\right) \sum_{i=1}^{n} j^{* n-i-1} b_{n}-i}, j^{*}\right] \leq|t| \leq \frac{b_{n}-j^{* n} b_{0}+\left|b_{0}\right| j^{*_{n}}}{j^{*}\left|b_{n}\right|}
$$

This result hold good due to Kovacevic and Milovanovic [6] for $j^{*}=1$, this further reduces to (1) when $b_{0} \geq 0$, reduces to the Enestrom-Kakeya Theorem.
If we have information only about the imaginary parts of the coefficients we have the following theorem which is of interest and follows by applying theoem1 to -if (t).

Theorem 4 Let $f(t)=\sum_{v=0}^{n} b_{v} t^{v}$, Re $b_{j^{*}}=\beta_{j^{*}}$ and $b_{j^{*}}=\gamma_{j^{*}}$ for $j^{*}=0,1, \ldots, n, b_{n} \neq 0$ and for some k, $\gamma_{0} \leq j^{*} \gamma_{1} \leq j^{* 2} \gamma_{2} \leq \ldots \leq j^{* k} \gamma_{k} \geq j^{* k+1} \gamma_{k+} \geq j^{* k+2} \gamma_{k+2} \geq \ldots \geq j^{* n} \gamma_{n}$ for some positive j^{*}. Then $f(t)$ has all its zeros in $R_{1} \leq|t| \leq R_{2}$ where

$$
R_{1}=\frac{j *\left|b_{0}\right|}{\left(2 j^{*} \gamma_{k}-\gamma_{0}-j^{* n} \gamma_{n}+j^{*{ }^{*}}\left|b_{n}\right|+\left|\beta_{0}\right|+\left|\beta_{n}\right| j^{*^{n}}+2 \sum_{i=1}^{n-1}\left|\beta_{i}\right| j^{*_{i}}\right)}
$$

and

$$
R_{2}=\max \frac{\left[\begin{array}{l}
\left(\left|b_{0}\right| j^{*_{n} n+1}+\left(j^{* 2}+1\right) j^{* n-k-1} \gamma_{k}-j^{* n-1} \gamma_{0}-j^{*} \gamma_{n}+\right. \\
\left(j^{* 2}-1\right) \sum_{i=1}^{k-1} j^{*^{*}-i-1} \gamma_{j}+\left(1-j^{* 2}\right) \sum_{i=k+1}^{n-1} j^{*_{n-i-1}} \gamma_{i}+\sum_{i=1}^{n}\left(\left|\beta_{i}-1\right|+j^{*}\left|\beta_{i}\right| j^{* n-i}\right)
\end{array}\right]}{\left|b_{n}\right|, 1 / j^{*}}
$$

By making suitable choice of j^{*} and k in the above theorems, one can also obtain the following corollaries which appear to be interesting and useful. In each of these

$$
f(t)=\sum_{v=0}^{n} b_{v} t^{v}, \operatorname{Re} \quad b_{j}^{*}=\gamma_{j^{*}} \text { and } \operatorname{Im} \quad b_{j^{*}}=\gamma_{j^{*}} \text { for } j^{*}=0,1, \ldots, n \text { and } b_{n} \neq 0
$$

Corollary 1.3 Let $\beta_{0} \leq \beta_{1} \leq \ldots \leq \beta_{n}$ then all the zeros of $f(t)$ lie in $R_{1} \leq|t| \leq R_{2}$ where

$$
\begin{aligned}
& R_{1}=\frac{\left|b_{0}\right|}{\left\{\beta_{n}-\beta_{0}+\left|\beta_{n}\right|+\left|\gamma_{0}\right|+\gamma_{n}+2 \sum_{i=1}^{n-1}\left|\gamma_{i}\right|\right\}} \\
& R_{2}=\frac{\left[\left|b_{0}\right|-\beta_{0}+\beta_{n}+\left|\gamma_{0}\right|+\left|\gamma_{n}\right|+2 \sum_{i=1}^{n-1}\left|\gamma_{i}\right|\right]}{\left|b_{n}\right|}
\end{aligned}
$$

Corollary 1.4 Let $\beta_{0} \geq \beta_{1} \geq \ldots \geq \beta_{n}$ then all the zeros of $f(t)$ lie in $R_{1} \leq|t| \leq R_{2}$ where
and

$$
\begin{aligned}
& R_{1}=\frac{\left|b_{0}\right|}{\left[\beta_{0}-\beta_{n}+\left|b_{n}\right|+\left|\gamma_{0}\right|+\left|\gamma_{n}\right|+2 \sum_{i=1}^{n-1}\left|\gamma_{i}\right|\right]} \\
& R_{2}=\frac{\left(\left|b_{0}\right|+\beta_{0}-\beta_{n}+\left|\gamma_{n}\right|++2 \sum_{i=1}^{n-1}\left|\gamma_{i}\right|\right)}{\left|b_{n}\right|}
\end{aligned}
$$

Corollary 1.5 Let $\gamma_{0} \leq \gamma_{1} \leq \ldots \leq \gamma_{n}$ then all its zeros of $f(t)$ lie in $R_{1} \leq|t| \leq R_{2}$ where

And

$$
\begin{aligned}
& R_{1}=\frac{\left|b_{0}\right|}{\left[\gamma_{n}-\gamma_{0}+\left|b_{n}\right|+\left|\beta_{0}\right|+\left|\beta_{n}\right|+2 \sum_{i=1}^{n-1}\left|\beta_{i}\right|\right]} \\
& R_{2}=\frac{\left[\gamma_{n}-\gamma_{0}+\left|b_{0}\right|+\left|\beta_{0}\right|+\left|\beta_{n}\right|+2 \sum_{i=1}^{n-1}\left|\beta_{i}\right|\right]}{\left|b_{n}\right|}
\end{aligned}
$$

Corollary 1.6 Let $\gamma_{0} \geq \gamma_{1} \geq \ldots \geq \gamma_{n}$ then all the zeros of $f(t)$ lie in $R_{1} \leq|t| \leq R_{2}$

$$
\begin{gathered}
R_{1}=\frac{\left|b_{0}\right|}{\left[\gamma_{0}-\gamma_{n}+\left|b_{n}\right|+\left|\beta_{0}\right|+\left|\beta_{n}\right|+2 \sum_{i=1}^{n-1} \beta_{i}\right]} \\
R_{2}=\frac{\left[\gamma_{0}-\gamma_{n}+\left|b_{0}\right|+\left|\beta_{0}\right|+\left|\beta_{n}\right|+2 \sum_{i=1}^{n-1} \beta_{i}\right]}{\left|b_{n}\right|}
\end{gathered}
$$

Proof of Theorem 2

Let the polynomial $F(t)=\left(j^{*}-t\right) f(t)=j^{*} b_{0}+\sum_{i=1}^{n}\left(j^{*} b_{i}-b_{i}-1\right) t^{j^{*}}-b_{n} j^{* n+1}=-b_{n} j^{* n+1}+G_{2}^{*}(t)$
We first note that

$$
\begin{equation*}
\left|b_{i-1}-j^{*} b_{i}\right|=\mid b_{i-1}-j^{*} \beta_{i}+i\left(\gamma_{i-1}-j^{*} \gamma_{i} \mid\right. \tag{3}
\end{equation*}
$$

Then

$$
\begin{aligned}
& \left|t^{n} G_{2}^{*}\left(\frac{1}{t}\right)\right|=\left|j^{*} b_{0} t^{n}+\sum_{i=1}^{n}\left(j^{*} b_{i}-b_{i-1}\right) t^{n-j^{*}}\right| \text { and on }|t|=j^{*} \text { by (3) } \\
& \quad\left|t^{n} G_{2}^{*}\left(\frac{1}{t}\right)\right| \leq\left|j^{*} b_{0}\right| j^{* n}+\sum_{i=1}^{n}\left|j^{*} a_{i}-a_{i-1}\right| j^{* n-i} \\
& \quad \leq\left|b_{0}\right| j^{* n+1}+\sum_{j=1}^{n}\left|j^{*} \beta_{j}-\beta_{j-1}\right| j^{* n-j}+\sum_{j=1}^{n}\left(\left|\gamma_{j-1}\right|+j^{*}\left|\gamma_{j}\right|\right) j^{*_{n-j}} \\
& =\left|b_{0}\right| j^{* n+1}+\sum_{i=1}^{k}\left(j^{*} \beta_{i}-\beta_{i-1}\right) j^{* n_{n-i}}+\sum_{i=k+1}^{n}\left(\beta_{i-1}-j^{*} \beta_{i}\right) j^{* n-i}+\sum_{i=1}^{n}\left(\left|\gamma_{i-1}\right|+j^{*}\left|\gamma_{i}\right|\right) j^{*_{n-i}} \\
& =\left|b_{0}\right| j^{*^{n+1}}+\left(j^{* 2}+1\right) j^{* n-k-1} \beta_{k}-j^{* n-1} \beta_{0}-j^{*} \beta_{n}+\left(j^{* 2}-1\right) \sum_{i=1}^{k-1} j^{* n-i-1} \beta_{i} \\
& \quad+\left(1-j^{* 2}\right) \sum_{i=k+1}^{n-1} j^{* n-i-1} \beta_{i}+\sum_{i=1}^{n}\left(\left|\beta_{i-1}\right|+j^{*}\left|\gamma_{i}\right|\right) j^{*_{n-i}}
\end{aligned}
$$

Hence, by the Maximum Modulus Principal

$$
\left|t^{n} G_{2}^{*}\left(\frac{1}{t}\right)\right| \leq M_{2} \quad \text { for }|t| \leq i
$$

Which implies

$$
\left|G_{2}^{*}\left(\frac{1}{t}\right)\right| \leq M_{2}|t|^{n} \quad \text { for }|t| \geq \frac{1}{j^{*}}
$$

This follows

$$
\begin{aligned}
|F(t)| & =\left|-b_{n} t^{n+1}+G_{2}^{*}(t)\right| \\
& \geq\left|b_{n}\right||t|^{n+1}-M_{2}|t|^{n}=|t|^{n}\left(\left|b_{n}\right| t\left|-M_{2}\right|\right) \quad \text { for }|t| \geq \frac{1}{j^{*}} .
\end{aligned}
$$

So if $|t|>\max \left[\frac{M_{2}}{\left|b_{n}\right|}, \frac{1}{j^{*}}\right]=R_{2}$, then $F(t) \neq 0$ and in turn $f(t) \neq 0$, thus establishing the outer radii for the theorem.
For the inner bound, Let us consider

$$
F(t)=\left(j^{*}-t\right) f(t)=j^{*} b_{0}+\sum_{i=1}^{n}\left(j^{*} b_{i}-b_{i-1}\right) t^{i^{*}}-b_{n} t^{n+1}=j^{*} b_{0}+G_{1}(t)
$$

Then for

$$
\begin{aligned}
& |t|=j^{*} \text { by (2) } \\
& \begin{aligned}
\left|G_{1}(t)\right| & \leq \sum_{i=1}^{n}\left|b_{i-1}-j^{*} b_{i}\right| j^{*_{i}}+\left|b_{n}\right| j^{* n+1} \\
& =\sum_{i=1}^{n}\left|\beta_{i-1}-j^{*} \beta_{i}\right| j^{*_{i}}+\sum_{i=1}^{n}\left(\left|\gamma_{i-1}\right|+j^{*}\left|\gamma_{i}\right|\right) j^{*_{i}}+\left|b_{n}\right| j^{*^{* n+1}}
\end{aligned}
\end{aligned}
$$

$$
=-j^{*} \beta_{0}+2 j^{*^{k+1}} \beta_{k}-j^{* n+1} \beta_{n}+\left|b_{n}\right| j^{*^{n+1}}+\left|\gamma_{0}\right| j^{*}+\left|\gamma_{n}\right| j^{* n+1}+2 \sum_{i=-1}^{n-1}\left|\gamma_{i}\right| j^{* i+1}=M_{1} \text { Applying Schwartz's }
$$

Leema [2] to $G_{1}(t)$, we get

$$
G_{1}(t) \leq \frac{M_{1}(t)}{j^{*}} \quad \text { for } \quad|t| \leq j^{*}
$$

So

$$
\begin{gathered}
|F(t)|=\left|j^{*} b_{0}+G_{1}(t)\right| \geq j^{*}\left|b_{0}\right|-\left|G_{1}(t)\right| \geq j^{*}\left|b_{0}\right|-\frac{M_{1}(t)}{j^{*}} \\
\frac{j^{*}\left|b_{0}\right|}{M_{1}} \leq j^{*} \text {. So if }|t|<\frac{j^{* 2}\left|b_{0}\right|}{M_{1}}=R_{1} \text { then } F(t) \neq 0 \text { and in turn } f(t) \neq 0 .
\end{gathered}
$$

References

[1]. A.Joyal,G.Labelle, and Q.I.Rahman, On the location of zeros of polynomials, Canadian Math. Bull.,10(1967),55-63.
[2]. E.Titchmarsh, The Theory of Functions, Oxford Univeristy Pree (Oxford, 1932).
[3]. G.Enestrom, Harledning af en allamn formel for antalet pensionarer..., Ofv. Af. Kungl. Vetenskaps-Akademiens Forhandlingen, No. 6 (Stockholm, 1893)
[4]. K.K.Dewan and N.K Govil, On the Enestorm-kakeya Theorem, J.Approx. Theory,42 (1984),239-244.
[5]. M.Marden, Gepmetry of polynomials, Amer. Math. Soc. Math. Surveya 3 (1996).
[6]. M.Kovacevic and I.Milovanovic, On a generalization of the Enestrom-kakeya Theorem, Pure Math. And Applic.,Ser.A,3(1992),4347.
[7]. N.Anderson,E.B.saff and R.S varga, An extension of the Enestrom-kakeya theorem and its sharpnsess, SIAM J.Math. Anal.,12(1981),10-22
[8]. N.Anderson, E.B.Saff,and R.S varga, On the Enestrom-kakeya theorem and its sharpness, Linerar Algebra and its Application,2891979),5-16.
[9]. R.Gardner and N.K.Govil, On the Enestrom-Kakeya theorem, J.Approx. Theory, 42(1984),239-244.
[10]. S.kakeya, On the limits of the roots of an algebraic equation with positive coefficients, Tohoku Math.J., 2(1912-13),140-142.

[^0]
[^0]: Jahangeer Habibullah Ganai. " Generalization of Enestrom Kakeya Theorem." IOSR Journal of Mathematics (IOSR-JM) 15.3 (2019): 45-50.

