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We do not know if the result is best possible, however if we take nvforjnk v  00,1, *   

and ,00 b we get that all the zeros of the polynomial )(tf lie in the annulus 1
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possible in the sense that the inner and outer radii of the annulus here cannot be improved

 1...)( 1   ttttf mm
. If we take in the theorem 2 nk  we get 
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In particular, taking nvforandj v  001*  in Corollary 1.1, if 
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polynomial with real coefficients satisfying nbbb  ...10 then )(tf has all its zeros in 
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This result sharpen a result due to Joyal, Labelle and Rahman [1]. The Enestrom-Kakeya Theorem is implied by 

(1) when 00 b  
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In particular, if 
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Then )(tf has all its zeros in 
21 RtR   where          
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This result hold good due to Kovacevic and Milovanovic [6] for 1* j , this further reduces to (1) when 

00 b , reduces to the Enestrom-Kakeya Theorem. 

If we have information only about the imaginary parts of the coefficients we have the following theorem which 

is of interest and follows by applying theoem1 to ).(tif  
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By making suitable choice of 
*j and k in the above theorems, one can also obtain the following corollaries 

which appear to be interesting and useful. In each of these 
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Corollary 1.4 Let n  ...10 then all the zeros of )(tf lie in 
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Corollary 1.5 Let n  ...10 then all its zeros of )(tf lie in 
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Corollary 1.6 Let n  ...10 then all the zeros of )(tf lie in 21 RtR   
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Proof of Theorem 2 

Let the polynomial 
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For the inner bound, Let us consider 
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