Generalization of Enestrom Kakeya Theorem

Jahangeer Habibullah Ganai¹ and Anjna Singh²

^{1,2}Department of Mathematical Sciences A.P.S. University, Rewa (M.P.) 486003 India, Govt. Girls P.G. College Rewa,(M.P)

Abstract. In this paper we will give generalizations of polynomials with complex coefficients when we have only real or imaginary parts of the coefficients. **Keywords.** Enestrom-Kakeya Theorem, Maximum modulus principal, Schwarz's lemma.

Date of Submission: 08-06-2019

Date of acceptance: 25-06-2019

I. Introduction

Suppose $F(t) = \sum_{\nu=0}^{n} b_{\nu} t^{\nu}$ is a polynomial of degree *m* whose coefficients satisfy $0 \le b_0 \le b_1 \le \dots \le b_m$. Then

F(t) has all its zeros in the closed unit disk $|t| \le 1$

An equivalent but perhaps more useful statement of the above theorem due to in fact to Enestorm[3] is the following.

Theorem 1. Suppose $F(t) = \sum_{\nu=0}^{n} b_{\nu} t^{\nu}$, $n \ge 1$ be a polynomial of degree m with $b_{\nu} > 0 \quad \forall \quad 0 \le \nu \le n$. If $\beta = \beta[f] := \min_{0 \le \nu \le n} \left\{ \frac{b_{\nu}}{b_{\nu} + 1} \right\}, \gamma = \gamma[f] := \max_{0 \le \nu \le n} \left\{ \frac{b_{\nu}}{b_{\nu} + 1} \right\}$

then all the zeros of f(t) are contained in $\beta \leq |t| \leq \gamma$

Theorem 2. Let $F(t) = \sum_{\nu=0}^{n} b_{\nu} t^{\nu}$, Re $b_{j^*} = \beta_{j^*}$ and Im $b_{j^*} = \gamma_{j^*}$ for $j^* = 0, 1, ..., n$, $b_n \neq 0$ and for

some k,

$$\beta_0 \le j^* \beta_1 \le j^{*2} \beta_2 \le \ldots \le j^{*k} \beta_k \ge j^{*k+1} \beta_{k+1} \ge j^{*k+2} \beta_{k+2} \ge \ldots \ge j^{*n} \beta_n$$

*1- 1

for some positive j^* .

Then f(t) has all its zeros in $R_1 \le |t| \le R_2$ where

$$R_{1} = \frac{j^{*}|b_{0}|}{2j^{*k}\beta_{k} - \beta_{0} - j^{*n}\beta_{n} + j^{*n}|b_{n}| + |\gamma_{0}| + |\gamma_{n}|j^{*n} + 2\sum_{i=1}^{n-1}|\beta_{i}|j^{*i}|$$

and

$$\begin{aligned} &|\beta_0|j^{*^{n+1}} + (j^{*^2} + 1)j^{*^{n-k-1}}\beta_k - j^{*^{n-1}}\beta_0 - j^*\beta_n + \\ R_2 &= \max\frac{(j^* - 1)\sum_{i=1}^{k-1} j^{*^{n-i-1}}\beta_i + (1 - j^{*^2})\sum_{i=k+1}^{n-1} j^{n-i-1}\beta_i + \sum_{i=1}^n \left(|\gamma_i| + j^*|\gamma_i|\right)j^{*^{n-i}}}{|b_n|, \frac{1}{j^*}} \end{aligned}$$

We do not know if the result is best possible, however if we take k = n, $j^* = 1$, $\gamma_v = 0$ for $0 \le v \le n$

and $b_0 \ge 0$, we get that all the zeros of the polynomial f(t) lie in the annulus $\frac{b_0}{2b_n - b_0} \le |t| \le 1$ which is best

possible in the sense that the inner and outer radii of the annulus here cannot be improved $f(t) = t^m + t^{m-1} + \dots + t + 1$. If we take in the theorem 2 k = n we get

Corollary1.1 Let $f(t) = \sum_{\nu=0}^{n} b_{\nu} t^{\nu}$, Re $b_{j^*} = \beta_{j^*}$ and $\operatorname{Im} b_{j^*} = \gamma_{j^*}$ for $j^* = 0, 1, ..., n, b_n \neq 0$ and

$$\beta_0 \le j^* \beta_1 \le j^{*2} \beta_2 \le \dots \le j^{*n} \beta_n$$

for some positive j^* . Then f(t) has all its zeros in $R_1 \le |t| \le R_2$ where

$$R_{1} = \frac{j^{*}|b_{0}|}{\left(j^{*n}\beta_{n} - \beta_{0} + j^{*n}|b_{n}| + |\gamma_{0}| + |\gamma_{n}|j^{*n} + 2\sum_{i=1}^{n-1}|\gamma_{i}|j^{*i}\right)}$$

and
$$R_{2} = \max \frac{\left[|b_{0}|j^{*n+1} + j^{*-1}\beta_{n} - j^{*n-1}\beta_{0} + (j^{*2} - 1)\sum_{i=1}^{n}j^{*n-i-1}\beta_{i} + \sum_{i=1}^{n}\left(|\gamma_{i} - 1| + j^{*}|\gamma_{i}|j^{*n-i}\right)\right]}{|\beta_{n}|, \frac{1}{j^{*}}}$$

In particular, taking $j^* = 1$ and $\gamma_v = 0$ for $0 \le v \le n$ in Corollary 1.1, if $f(t) = \sum_{v=1}^{n} b_v t^v$ is a polynomial with real coefficients satisfying $b_0 = \le b_1 \le \dots \le b_n$ then f(t) has all its zeros in

$$\frac{|b_0|}{b_n - b_0 + |b_n|} \le |t| \le \frac{|b_0| + b_n - b_0}{|b_n|} \tag{1}$$

This result sharpen a result due to Joyal, Labelle and Rahman [1]. The Enestrom-Kakeya Theorem is implied by (1) when $b_0 \ge 0$

Corollary 1.2. Let $f(t) = \sum_{n=0}^{n} b_{v} t^{v}$, Re $b_{j^{*}} = \beta_{j^{*}}$ and Im $b_{j^{*}} = \gamma_{j^{*}}$ for $j^{*} = 0, 1, ..., n$, $b_{n} \neq 0$ and

 $\beta_0 \ge j^* \beta_1 \ge j^{*2} \beta_2 \ge \ldots \ge j^{*n} \beta_n$ for some positive j^* . Then f(t) has all its zeros in $R_1 \le |t| \le R_2$ where ;*|b|

$$R_{1} = \frac{j |b_{0}|}{\left(\beta_{0} - j^{*n}\beta_{n} + j^{*n}|b_{n}| + |\gamma_{0}| + |\gamma_{n}|j^{*n} + 2\sum_{i=1}^{n-1}|\gamma_{i}|j^{*i}\right)}$$

and

$$R_{2} = \max \frac{\left[\left| b_{0} \right| j^{*n+1} + j^{*n+1} \beta_{0} - j^{*} \beta_{n} + (1 - j^{*2}) \sum_{i=1}^{n} j^{*n-i-1} \beta_{i} + \sum_{i=1}^{n} \left(\left| \gamma_{i} - 1 \right| + j^{*} \right| \gamma_{i} \left| j^{*n-i} \right) \right]}{\left| \beta_{n} \right|, \frac{1}{j^{*}}}$$

In particular, if $f(t) = \sum_{\nu=0}^{n} b_{\nu} t^{\nu}$ is with real coefficients satisfying $b_0 \ge b_1 \ge ... \ge b_n$ then it has all its zeros in

$$\frac{|b_0|}{b_0 - b_n + |b_n|} \le |t| \le \frac{|b_0| + b_0 - b_0}{|b_n|} \tag{2}$$

Theorem 3 Let $f(t) = \sum_{n=1}^{n} b_{v} t^{v}$ Re $b_{j^{*}} = \beta_{j^{*}}$ and Im $b_{j^{*}} = \gamma_{j}^{*}$ for $j^{*} = 0, 1, ..., n$ $b_{n} \neq 0$ and for some k, $j^{*n}\beta_0 \le j^{*n-1}\beta_1 \le j^{*n-2}\beta_2 \le ... \le j^{*k}\beta_{n-k} \ge j^{*k-1}\beta_{n-k+1} \ge ... \ge j^*\beta_{n-1} \ge \beta_n$ for some positive j^* .

DOI: 10.9790/5728-1503034550

Then f(t) has all its zeros in $R_1 \le |t| \le R_2$ where

$$R_{1} \min = \left(\frac{|b_{0}|}{(|b_{n}|j^{*n+1} + (j^{*2} + 1)j^{*n-k-1}\beta_{n-k} - j^{*n-1}\beta_{n} - j^{*}\beta_{0} + (j^{*2} - 1)\sum_{i=1}^{k-1} j^{*n-j-1}\beta_{n-j^{*}}\beta_{n-j^{*}}} + (1 - j^{*2})\sum_{i=k+1}^{n-1} j^{*n-i-1}\beta_{n-j} + \sum_{i=1}^{n} (|\gamma_{n-j^{*}+1}| + j^{*}|\gamma_{n} - i|j^{*n-j}), j^{*} \right)$$
and
$$\left(\sum_{i=k+1}^{n-1} j^{*n-i-1}\beta_{n-j} + \sum_{i=1}^{n} (|\gamma_{n-j^{*}+1}| + j^{*}|\gamma_{n-i}|) + j^{*}|\gamma_{n-j^{*}}| + j^{*}|\gamma_{n$$

а

$$R_{2} = \left(\frac{2j^{*k}\beta_{n-k} - \beta_{n} - j^{*n}\beta_{0} + j^{*n}|\beta_{0}| + |\gamma_{0}|j^{*n} + |\gamma_{n}| + 2\sum_{i=1}^{n-1}|\gamma_{n-i}|j^{*i}|}{(j^{*}|\beta_{n}|)}\right)$$

In particular, if we take k = 0 and $\gamma_v = 0$ for $0 \le v \le n$, we get that if $f(t) = \sum_{v=0}^{n} b_v t^v$ is a polynomial of degree m with real coefficients satisfying $j^{*n}b_0 \leq j^{*n-1}b_1 \leq ... \leq j^*b_{n-1} \leq b_n$ for some positive j^* , then all the zeros of f(t) lie in

$$\min\left[\frac{|b_0|}{|b_n|j^{*n+1}+j^{*n+1}b_n-j^*b_o+(1-j^{*2})\sum_{i=1}^n j^{*n-i-1}b_n-i}, j^*\right] \le |t| \le \frac{b_n-j^{*n}b_0+|b_0|j^{*n}}{j^*|b_n|}$$

This result hold good due to Kovacevic and Milovanovic [6] for $j^* = 1$, this further reduces to (1) when $b_0 \ge 0$, reduces to the Enestrom-Kakeya Theorem.

If we have information only about the imaginary parts of the coefficients we have the following theorem which is of interest and follows by applying theorem 1 to -if(t).

Theorem 4 Let $f(t) = \sum_{\nu=0}^{n} b_{\nu} t^{\nu}$, Re $b_{j*} = \beta_{j*}$ and $b_{j*} = \gamma_{j*}$ for $j^* = 0, 1, ..., n$, $b_n \neq 0$ and for some k,

 $\gamma_0 \leq j^* \gamma_1 \leq j^{*2} \gamma_2 \leq \ldots \leq j^{*k} \gamma_k \geq j^{*k+1} \gamma_{k+1} \geq j^{*k+2} \gamma_{k+2} \geq \ldots \geq j^{*n} \gamma_n \text{ for some positive } j^*. \text{ Then } f(t) \text{ has}$ all its zeros in $R_1 \leq |t| \leq R_2$ where

$$R_{1} = \frac{j^{*}|b_{0}|}{\left(2j^{*}\gamma_{k} - \gamma_{0} - j^{*n}\gamma_{n} + j^{*n}|b_{n}| + |\beta_{0}| + |\beta_{n}|j^{*n} + 2\sum_{i=1}^{n-1}|\beta_{i}|j^{*i}|\right)}$$

and

$$R_{2} = \max \frac{\left[\left(b_{0} | j^{*n+1} + (j^{*2} + 1) j^{*n-k-1} \gamma_{k} - j^{*n-1} \gamma_{0} - j^{*} \gamma_{n} + (j^{*2} - 1) \sum_{i=1}^{k-1} j^{*n-i-1} \gamma_{j} + (1 - j^{*2}) \sum_{i=k+1}^{n-1} j^{*n-i-1} \gamma_{i} + \sum_{i=1}^{n} \left(|\beta_{i} - 1| + j^{*} |\beta_{i}| j^{*n-i} \right) \right]}{|b_{n}|, \frac{1}{j^{*}}}$$

By making suitable choice of j^* and k in the above theorems, one can also obtain the following corollaries which appear to be interesting and useful. In each of these

$$f(t) = \sum_{\nu=0}^{n} b_{\nu} t^{\nu}$$
, Re $b_{j}^{*} = \gamma_{j^{*}}$ and Im $b_{j^{*}} = \gamma_{j^{*}}$ for $j^{*} = 0, 1, ..., n$ and $b_{n} \neq 0$.

Corollary 1.3 Let $\beta_0 \leq \beta_1 \leq ... \leq \beta_n$ then all the zeros of f(t) lie in $R_1 \leq |t| \leq R_2$ where

$$R_{1} = \frac{|b_{0}|}{\left\{\beta_{n} - \beta_{0} + |\beta_{n}| + |\gamma_{0}| + \gamma_{n} + 2\sum_{i=1}^{n-1} |\gamma_{i}|\right\}}$$
$$R_{2} = \frac{\left[|b_{0}| - \beta_{0} + \beta_{n} + |\gamma_{0}| + |\gamma_{n}| + 2\sum_{i=1}^{n-1} |\gamma_{i}|\right]}{|b_{n}|}$$

and

Corollary 1.4 Let $\beta_0 \ge \beta_1 \ge ... \ge \beta_n$ then all the zeros of f(t) lie in $R_1 \le |t| \le R_2$ where

$$R_{1} = \frac{|b_{0}|}{\left[\beta_{0} - \beta_{n} + |b_{n}| + |\gamma_{0}| + |\gamma_{n}| + 2\sum_{i=1}^{n-1} |\gamma_{i}|\right]}$$
$$R_{2} = \frac{\left(|b_{0}| + \beta_{0} - \beta_{n} + |\gamma_{n}| + 2\sum_{i=1}^{n-1} |\gamma_{i}|\right)}{|b_{n}|}$$

and

Corollary 1.5 Let $\gamma_0 \leq \gamma_1 \leq ... \leq \gamma_n$ then all its zeros of f(t) lie in $R_1 \leq |t| \leq R_2$ where

$$R_{1} = \frac{|b_{0}|}{\left[\gamma_{n} - \gamma_{0} + |b_{n}| + |\beta_{0}| + |\beta_{n}| + 2\sum_{i=1}^{n-1} |\beta_{i}|\right]}$$
$$R_{2} = \frac{\left[\gamma_{n} - \gamma_{0} + |b_{0}| + |\beta_{0}| + |\beta_{n}| + 2\sum_{i=1}^{n-1} |\beta_{i}|\right]}{|b_{n}|}$$

And

Corollary 1.6 Let $\gamma_0 \ge \gamma_1 \ge ... \ge \gamma_n$ then all the zeros of f(t) lie in $R_1 \le |t| \le R_2$

$$R_{1} = \frac{|b_{0}|}{\left[\gamma_{0} - \gamma_{n} + |b_{n}| + |\beta_{0}| + |\beta_{n}| + 2\sum_{i=1}^{n-1} \beta_{i}\right]}$$
$$= \frac{\left[\gamma_{0} - \gamma_{n} + |b_{0}| + |\beta_{0}| + |\beta_{n}| + 2\sum_{i=1}^{n-1} \beta_{i}\right]}{|b_{n}|}$$

and

 R_2

Proof of Theorem 2

Let the polynomial $F(t) = (j^* - t)f(t) = j^*b_0 + \sum_{i=1}^n (j^*b_i - b_i - 1)t^{j^*} - b_n j^{*n+1} = -b_n j^{*n+1} + G_2^*(t)$ We first note that

$$|b_{i-1} - j^* b_i| = |b_{i-1} - j^* \beta_i + i(\gamma_{i-1} - j^* \gamma_i)|$$
(3)

Then

$$\begin{aligned} \left| t^{n} G_{2}^{*} \left(\frac{1}{t}\right) \right| &= \left| j^{*} b_{0} t^{n} + \sum_{i=1}^{n} \left(j^{*} b_{i} - b_{i-1} \right) t^{n-j^{*}} \right| \text{ and on } \left| t \right| = j^{*} \text{ by } (3) \\ &\left| t^{n} G_{2}^{*} \left(\frac{1}{t}\right) \right| \leq \left| j^{*} b_{0} \right| j^{*n} + \sum_{i=1}^{n} \left| j^{*} a_{i} - a_{i-1} \right| j^{*n-i} \\ &\leq \left| b_{0} \right| j^{*n+1} + \sum_{j=1}^{n} \left| j^{*} \beta_{j} - \beta_{j-1} \right| j^{*n-j} + \sum_{j=1}^{n} \left(\left| \gamma_{j-1} \right| + j^{*} \left| \gamma_{j} \right| \right) j^{*n-j} \\ &= \left| b_{0} \right| j^{*n+1} + \sum_{i=1}^{k} \left(j^{*} \beta_{i} - \beta_{i-1} \right) j^{*n-i} + \sum_{i=k+1}^{n} \left(\beta_{i-1} - j^{*} \beta_{i} \right) j^{*n-i} + \sum_{i=1}^{n} \left(\left| \gamma_{i-1} \right| + j^{*} \left| \gamma_{i} \right| \right) j^{*n-i} \\ &= \left| b_{0} \right| j^{*n+1} + \left(j^{*2} + 1 \right) j^{*n-k-1} \beta_{k} - j^{*n-1} \beta_{0} - j^{*} \beta_{n} + \left(j^{*2} - 1 \right) \sum_{i=1}^{k-1} j^{*n-i-1} \beta_{i} \\ &+ \left(1 - j^{*2} \right) \sum_{i=k+1}^{n-1} j^{*n-i-1} \beta_{i} + \sum_{i=1}^{n} \left(\left| \beta_{i-1} \right| + j^{*} \left| \gamma_{i} \right| \right) j^{*n-i} \end{aligned}$$

Hence, by the Maximum Modulus Principal

$$e^n G_2^*\left(\frac{1}{t}\right) \le M_2 \quad for \ |t| \le i$$

Which implies

$$\left|G_{2}^{*}\left(\frac{1}{t}\right)\right| \leq M_{2}\left|t\right|^{n} \quad for \quad \left|t\right| \geq \frac{1}{j^{*}}$$

This follows

$$|F(t)| = |-b_n t^{n+1} + G_2^*(t)|$$

$$\geq |b_n||t|^{n+1} - M_2|t|^n = |t|^n (|b_n|t| - M_2|) \quad \text{for } |t| \geq \frac{1}{j^*}.$$

So if $|t| > \max\left[\frac{M_2}{|b_n|}, \frac{1}{j^*}\right] = R_2$, then $F(t) \neq 0$ and in turn $f(t) \neq 0$, thus establishing the outer radii for

the theorem.

For the inner bound, Let us consider

$$F(t) = (j^* - t)f(t) = j^*b_0 + \sum_{i=1}^n (j^*b_i - b_{i-1})t^{i^*} - b_n t^{n+1} = j^*b_0 + G_1(t)$$

$$|t| = j^* \text{ by } (2)$$

Then for

$$\begin{aligned} \left| G_{1}(t) \right| &\leq \sum_{i=1}^{n} \left| b_{i-1} - j^{*} b_{i} \right| j^{*i} + \left| b_{n} \right| j^{*n+1} \\ &= \sum_{i=1}^{n} \left| \beta_{i-1} - j^{*} \beta_{i} \right| j^{*i} + \sum_{i=1}^{n} \left(\left| \gamma_{i-1} \right| + j^{*} \left| \gamma_{i} \right| \right) j^{*i} + \left| b_{n} \right| j^{*n+1} \end{aligned}$$

1.....

 $= -j^{*}\beta_{0} + 2j^{*k+1}\beta_{k} - j^{*n+1}\beta_{n} + |b_{n}|j^{*n+1} + |\gamma_{0}|j^{*} + |\gamma_{n}|j^{*n+1} + 2\sum_{i=-1}^{n-1}|\gamma_{i}|j^{*i+1} = M_{1}$ Applying Schwartz's

Leema [2] to $G_1(t)$, we get

$$G_1(t) \leq \frac{M_1(t)}{j^*} \text{ for } \left| t \right| \leq j^*$$

So

$$|F(t)| = |j^*b_0 + G_1(t)| \ge j^*|b_0| - |G_1(t)| \ge j^*|b_0| - \frac{M_1(t)}{j^*}$$
$$\frac{j^*|b_0|}{M_1} \le j^*. \text{ So if } |t| < \frac{j^{*2}|b_0|}{M_1} = R_1 \text{ then } F(t) \ne 0 \text{ and in turn } f(t) \ne 0.$$

References

- [1]. A.Joyal, G.Labelle, and Q.I.Rahman, On the location of zeros of polynomials, Canadian Math. Bull., 10(1967), 55-63.
- [2]. E.Titchmarsh, The Theory of Functions, Oxford University Pree (Oxford, 1932).
- [3]. G.Enestrom, Harledning af en allamn formel for antalet pensionarer..., Ofv. Af. Kungl. Vetenskaps-Akademiens Forhandlingen, No.6 (Stockholm,1893)
- [4]. K.K.Dewan and N.K Govil, On the Enestorm-kakeya Theorem, J.Approx. Theory, 42 (1984), 239-244.
- [5]. M.Marden, Gepmetry of polynomials, Amer. Math. Soc. Math. Surveya 3 (1996).
- [6]. M.Kovacevic and I.Milovanovic, On a generalization of the Enestrom-kakeya Theorem, Pure Math. And Applic., Ser.A, 3(1992), 43-47.
- [7]. N.Anderson,E.B.saff and R.S varga, An extension of the Enestrom-kakeya theorem and its sharpnsess, SIAM J.Math. Anal.,12(1981),10-22
- [8]. N.Anderson, E.B.Saff, and R.S varga, On the Enestrom-kakeya theorem and its sharpness, Linerar Algebra and its Application, 2891979), 5-16.
- [9]. R.Gardner and N.K.Govil, On the Enestrom-Kakeya theorem, J.Approx. Theory, 42(1984),239-244.
- [10]. S.kakeya, On the limits of the roots of an algebraic equation with positive coefficients, Tohoku Math.J., 2(1912-13),140-142.

Jahangeer Habibullah Ganai. " Generalization of Enestrom Kakeya Theorem." IOSR Journal of Mathematics (IOSR-JM) 15.3 (2019): 45-50.

DOI: 10.9790/5728-1503034550