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Abstract: Malaria remains a major infectious disease that affects millions of people. Once infected with 

Plasmodium parasites, a host can develop a broad range of clinical presentations which result from complex 

interactions between factors derived from the host, the parasite and the environment. Clinical study of malaria 

presents a modeling challenge as patients’ disease status and progress is partially observed and assessed at 

discrete clinic visit times. Since patients initiate visits based on symptoms, intense research has focused on 

identification of reliable prediction for exposure, susceptibility to infection and development of severe malaria 

complications. Despite detailed literature on malaria infection and transmission, very little has been 

documented in the existing literature on malaria symptom data collection and fitting the malaria symptom data 

to a probability distribution and yet these symptoms are common. The symptom data set is then linked to the 

hidden disease states (state of individual) via the ordered probit model where the Akaike Information Criteria 

(AIC) is used to estimate the quality of the model and for model selection. The AIC value of 196.2358 confirmed 

that gamma distribution is best probability distribution to fit malaria symptom data set. 
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I. Introduction 
The term Malaria was first used by Dr. Fransisco Torti, but it was not until 1880 that scientists 

discovered that it was a parasitic disease caused by a unicellular protozoan of the genus Plasmodium which is 

transmitted by the Anopheles mosquito. There are about 120 species of Plasmodium parasites found in the blood 

of mammals, reptiles and birds. Four of these species commonly infect humans i.e. Plasmodium falciparum, 

Plasmodium vivax, Plasmodium ovale and Plasmodium malariae. Of these, Plasmodium falciparum mainly 

found in tropics and sub-tropics is largely responsible for approximately 80% of all malaria cases and 

approximately 90% of malaria deaths [1]. Malaria still remains a huge public health issue regardless of how 

many years of research has been con-ducted on how to combat this disease. According to WHO [80], the latest 

world malaria report released in November 2017 shows that the number of malaria cases reported in the year 

2016 was 216 million up from 211 million cases reported in 2015. The report also shows that malaria death 

estimates in 2016 stood at 445,000 compared to 446,000 deaths in 2015. The high burden of malaria cases in 

2016 was in Africa at 90% with 91% cases of deaths reported in children. According to WHO report on malaria 

cases in Kenya, malaria is one of the leading causes of morbidity and fatality with about 3.5 million children at 

risk of developing severe malaria, out of which an estimated 34,000 children under five years die every year. 

The disease is also responsible for 30% of out-patient visits at health centers, economically, it is estimated that 

170 million working hours are lost each year because of malaria illness [2]. 

Malaria is transmitted from person to person by female mosquito of the genus Anopheles. Inside the 

human host, the parasite undergoes a series of changes. Within half an hour of inoculation of the parasites, the 

sporozoites infect the liver via the blood stream. Here they divide repeatedly into about 30000-40000 merozoites 

over the course of one or two weeks. Merozoites are released into the blood stream where they invade red blood 

cells. Inside these blood cells they grow and divide, eventually causing the rupture of the cell and the release of 

more merozoites which go on to invade new blood cells. A small proportion of merozoites develop into 

gametocytes and can be taken up by a subsequent mosquito bite. Inside the mosquito the parasite undergoes 

sexual reproduction and then invades the salivary gland. The cycle completes when the infected mosquito bites 

another human. [3].  

Following an infective bite, symptoms appear in about 9-14 days [4]. The initial symptoms of malaria 

are non-specific and mimic a flu-like syndrome [5]. The classical malaria paroxysm presents three stages i.e. 

cold stage, hot stage and sweating stage [6]. The cold stage is typically characterized by extreme coldness, 

shivering and dry pale goose-pimpled skin. During this initial stage that usually lasts between 30-90 minutes, 

temperature rises gradually to 39
0
C [6]. The hot stage start immediately after the shiver has ceased, the stage is 
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characterized by the patient feeling hot, vomiting, altered consciousness, convulsion and sometimes diarrhea, in 

this stage temperature rises further to 41
0
C [5]. The second stage lasts between 2-6 hours after which the subject 

enters the sweating stage. In this stage, the patients experience profuse sweating, fall in temperature and 

sometimes tiredness and sleepy. This stage lasts between 2-3 hours [6]. Without prompt treatment and effective 

drugs the illness could progress to severe illness often leading to death.  

In a study by Martins et al [5], there are 19 common symptoms associated with malaria disease which 

were confirmed and assessed by microscopy, namely; fever, chills, sweating, headache, myalgia, arthralgia, 

abdominal pain, nausea, vomiting, dizziness, cough, diarrhea, weakness, inappetence, bitter mouth, pallor, 

coryza, sneezing and score throat. Some of these symptoms are observable symptoms in patients. A healthy 

individual when he/she is infected with malaria, the disease develops to mild, moderate and final severe 

depending on the frequency of symptoms he/she has. 

 

II.  Literature Review 
Several studies have been carried out on malaria for instance Martens et al [7] examined the 

relationship between malaria and environmental and socio-economic variables in Sudan using health production 

modified model. They used regression analysis method to analyze their results, the regression results showed 

significant relationships between malaria, rainfall and water bodies while other variables such as Human 

Development Index, temperature, population density and percent of cultivated areas were not significant while 

Teklehaimanot et al [8] used robust Poisson regression model to model the daily average number of cases in 10 

districts of Ethiopia that was associated with rainfall, minimum temperature and maximum temperature as 

explanatory variable in a polynomial distributed lag model. To improve reliability and generalizability within 

similar climatic conditions, the districts were grouped into two climatic zones, hot and cold. The results showed 

that malaria was associated with rainfall and minimum temperature in Ethiopia. In cold districts, rainfall was 

associated with a delayed increase in malaria cases while the association in the hot districts occurred at 

relatively shorter lags. The results also showed that in cold districts, minimum temperature was associated with 

malaria cases with a delayed effect while in hot districts, the effect of mini-mum temperature was non-

significant at most lags, and much of its contribution was relatively immediate. 

Nkurunziza et al [9] modeled the effects of climate on malaria in Burundi using generalized linear 

models and generalized additive mixed models. The results showed that there was a strong positive association 

between malaria incidence in a given month and minimum temperature of the previous month. In contrast, the 

results also showed that rainfall and maximum temperature in a given month have possible negative effect on 

malaria incidence of the same month. Kakchapati and Ardkaew [10] carried out a study to model the spatial and 

trends of malaria incidence in Nepal. They used Poisson and negative binomial regression models to fit malaria 

incidence rates as a function of year and location. Their study showed a steady decreasing trend in malaria 

incidence, but the numbers of malaria cases were still very high. Sriwattanapongse et al [11] used Spearman’s 

correlation between weekly climatic variables (temperatures, relative humidity and rainfall) and malaria to 

analyze the bivariate relationships between types of malaria parasites and potential climatic factors. A discrete 

Poisson model was used to identify purely spatial clusters of malaria incidence in the high risk areas. A Poisson 

regression model combined with distributed lag non-linear model was also used to examine the effects of 

temperature, relative humidity and rainfall on the number of malaria cases. The residuals were checked to 

evaluate the adequacy of the model. Sensitivity analysis was performed to ensure that the associations between 

climate variables and malaria incidences did not change substantially when the degrees of freedom for climate 

variables were changed while Nkurunziza et al [12] used semi-parametric regression models to model the 

dependence of malaria cases on spatial determinants and climatic covariates including rainfall, temperature and 

humidity in Burundi. The results showed that malaria incidence in a given month is strongly associated with 

minimum temperature of the previous months. 

In a study carried out by Kres et al [13] to investigate temporal associations’ between weekly malaria 

incidences in 1,993 children < 15 years of age and weekly rainfall. A time series analysis was conducted by 

using cross-correlation function and autoregressive modeling. The regression model showed that the level of 

rainfall predicted the malaria incidence after a time lag of 9 weeks (mean = 60 days) and after a time lag 

between one and two weeks. The analyses provided evidence that high-resolution precipitation data can directly 

predict malaria incidence in a highly endemic areas while in Kim et al [14] estimated the effects of climate 

factors on Plasmodium vivax malaria transmission using generalized linear Poisson models and distributed lag 

nonlinear models. Their findings showed that malaria transmission in temperate areas was highly dependent on 

climate factors. Drebel et al [15] carried out a study using logistic regression to estimate and assess malaria 

prevalence and the use of malaria risk reduction measures and their association with selected background 

characteristics in South Sudan. The results showed that educational attainment need not be very advanced to 

affect practices of malaria prevention and treatment. Primary school attendance was a stronger predictor for use 

of malaria risk reduction measures than any other selected background characteristics. Nath and Mwchahary 
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[16] analyzed the temporal correlation between malaria incidence and climatic variables using malaria incidence 

rates in Kokrajhar district of Assam over the period 2001 to 2010. They used linear regressions analysis method 

to obtain linear relationships between climatic factors and malaria incidence. The results showed that 

temperature was negatively correlated with non-forest malaria incidence while relative humidity was positively 

correlated with forest malaria incidence. Wardrop et al [17] studied malaria incidence over time and its 

association with temperature and rainfall in four counties of Yunnan province, China. Seasonal trend 

decomposition was used to examine secular trends and seasonal patterns in malaria incidence, a Poisson 

regression with Distributed lag non-linear models was also used to estimate the weather drivers of malaria 

seasonality. The study showed that there was a declining trend in malaria incidence in all four counties. 

Bayesian analysis of an epidemiological model of Plasmodium falciparum malaria infection in Ndiop, Senegal 

is analyzed by Nicole et al [18]. The model describes the application of Bayesian calibration of malaria 

transmission model using longitudinal data gathered from 176 subjects in Ndiop from 1st July, 1993 to 

1stAugust, 1994. The model was able to adequately predict Plasmodium falciparum parasitaemia prevalence in 

the study population that is, during the dry season, the estimated fraction of non-immune subjects went down to 

20% and increases upto 80%. The model was also able to predict time-weighted average incidence contributed 

by non-immune and immune individuals as 0.2 and 0.47 case/day respectively. 

In many studies of medical treatment, symptoms are measured repeatedly over time in observation 

called longitudinal observation. Though we cannot observe directly latent variables, we learn about it by 

measuring symptom. For the longitudinal models, two latent variables govern disease, one for the probability of 

experiencing a particular symptom and another for the severity of the experienced symptom. Thus the 

probability of a symptom and the severity of it depends on both latent variables and observed variables [19]. 

Latent variables are variables that are not directly observed but are inferred through a mathematical model from 

other variables that are directly observed or measured. A latent variable model is a statistical model that 

contains latent i.e. unobserved variables. These variables can either be discrete or continuous. Sometimes latent 

variables corresponds to aspects of physical reality which could in principle be measured but may not be for 

practical reason thus in this situation the term hidden variable is commonly used. One advantage of using latent 

variables is that they can serve to reduce the dimensionality of data. Latent variable link observable data in the 

real world to symbolic data in the model. Bayesian statistics is often used for inferring latent variables, the 

common method used inferring latent variables in Bayesian statistics are; Hidden Markov Model (HMM), 

factor analysis, principal component analysis and Expectation Maximization (EM) algorithm [19]. 

Zammit et al [20] developed an intra-individual consistency model using a logistic-type latent variable 

model. The latent variable in the model was used to represent the propensity of symptoms and intensity of 

episodes as these could not be observed directly and needed to be estimated through observation of symptoms 

episodes in hypoglycemia. The model results showed that there was individual difference in symptom reporting 

and that adults exhibit distinct intra-individual variability in symptom reporting. Hans et al extended on the 

model developed by Zammit et al by allowing for different forms of symptom experiencing thresholds between 

groups variability when symptoms are classified in groups and performing variable selection to determine a 

predictive model for the effect of patient characteristics and their interactions on symptom consistency. The 

study was conducted in several health centers in the United Kingdom and data collected from 381 participants 

aged between 17-75 years. Bayesian estimation was performed for all coefficients in the developed model 

without grouped symptoms and with grouped symptoms. The analysis shows that a multiplicative form of 

symptom propensity and episode intensity provides the most suitable symptom experiencing threshold and 

groups of symptoms show distinct propensity and that gender subjects had significant impact on the consistency 

of symptom reporting. 

Xing et al [21] developed a Bayesian statistical model using latent semi-Markovian state and state-

transition statistics for analysis of the time-evolving properties of influenza-like illness with a particular focus 

on symptoms. Self-reported data from individual student in a college provided daily over a multiple of months 

was used. The data corresponded to the strength of various infectious-disease-related symptoms reported 

separately by each individual student. The computation was per-formed using Markov Chain Monte Carlo 

(MCMC) and statistical analysis per-formed on the daily self-reported symptom scores. The results showed that 

the weekly pattern (probability of transiting from healthy state to infective state) is typically heightened at either 

Wednesday or Thursday and tends to be smaller around weekend because of the fact that students are more 

likely to report symptom during the school week than they are on the weekend. 

 

III. Methodology 
3.1 The study area 

The research was conducted in Masinde Muliro University of Science and Technology (MMUST) 

located in Kakamega Town, Kakamega County with an altitude of 1561m above the sea level with a student 

population of approximately 15000. The levels of malaria risk and transmission intensity in MMUST exhibit 
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significant spatial and temporal variability related to variations in amount of rainfall, temperature, altitude, 

topography and human settlement pattern. In this study area, malaria situation is typical of Sub-Saharan Africa 

making its transmission an all- year -round affair and seasonal variation. The MMUST Health facility records 

show that between 300-700 cases of malaria are reported each month and this constitutes 75% of all out-patient 

cases. The main malaria vectors in MMUST are Anopheles gambiae sensu stricto, An. Arabiensis and An. 

Funestus. Anopheles gambiae generally increases in density after the start of the long rains, while An. funestus 

density is seen to vary in direct proportion to the proximity of permanent breeding grounds rather than rainfall 

[5]. The pick period of malaria incidence occurs from April to August following the main rain season. The 

malaria cases can either be complicated malaria or un-complicated malaria. For complicated malaria, the 

following symptoms have been displayed by students; dizziness, hallucination, prostration, loss of 

consciousness, hyperparasitaemia, pallor, convulsions, low and high blood pressure, coma, convulsions, low and 

high pulse beat/min, anemia and black quarter fever and dark urine. For uncomplicated malaria, the following 

non-specific symptoms have been displayed by the students; headache, pains (joint, muscle, abdominal), loose 

stool, fever, rigors, nausea and vomiting. For confirmatory test of malaria, blood smear (BS) for malaria parasite 

is carried out [5]. Once a student presents himself/herself to a health officer, the following information are 

recorded in his/her file; patients complain, history of infection, physical examination for signs and symptoms, 

impression, investigation of the disease through laboratory test, diagnostic and management of the disease. 

Depending on the frequency of symptoms a student has, the infection is recorded as mild, moderate and severe 

for data analysis. 

 

3.2 The Probit Model 

Let N = 300 be the number of students who visited the health service with various malaria related symptoms. 

Let tZ  be the Hidden state of an individual student at time t. Hidden state is a state in which the individual 

student is in (disease severity) 

Let 1( , ..., )pO x x  be the number of symptom observed in an individual student. In this study 9p   

Let tY  be the observed and coded symptoms severity of a student at time t i.e. {0,..., }p

tY M  where Yt 

represents the p symptoms scores reported by a student on day t and M the ordinal scale such that 

(0,2,3,4)M   with 0 being no symptoms (healthy) and 3 being maximum symptoms. 

 

Table 1: Summary of disease severity Yt 

Observed symptoms Ordinal scale Disease severity 

0 0 Healthy 

1-3 1 Mild 

4-6 2 Moderate 

6-9 3 Severe 

 
To link the observed symptoms to the hidden state at time t, we use the ordered Probit model. The ordered 

Probit model for tO  is derived from a latent and continuous variable Zt related to a set of explanatory variable 

according to a standard linear model. 

   t tZ O                (1) 

Where 

tZ is the latent variable and continuous measure of symptom severity is the vector of regression coefficient to 

be estimated at time t. 

  is the vector of regression coefficient to be estimated 

 is normally distributed with mean zero and unit variance. 

tO  is the vector of independent variable describing the symptoms at time t. 

Since tO is drawn conditioned on the hidden state Zt i.e.  

  | ~ ( , )
t tt t z zO Z N          (2) 

Let  be the threshold to be estimated along with the parameter vector , then observed and coded symptom 

severity variable Y(t) is determined as 
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Let rO  be the 
thr  component of symptoms of at time t, rY  be the 

thr  component of observed and coded 

symptom severity at time t. Since we cannot observe tZ , instead we observe the categories of Yt according to 

the rule 

 

Assuming that the hidden variable tZ  is linear i.e. 

    t tZ O          (3) 

 

 

 

      (4) 

Equation (4) is used to determine the cumulative density function (cdf) as follows; 

 

                            
Where (.)  is the cdf and if we assume cumulative normal, then we obtain the probit model 

 

IV. Results and Discussion 
Fitting distribution to data is a procedure of selecting a statistical distribution that best fits to a data set 

generated by some random process. It is a task of finding a mathematical function which represents in a 

statistical variable. According to Parzen [22], a statistical data modeling is a field of statistical reasoning that 

seeks to fit probability distribution to data without knowing what the true model is. One therefore needs to learn 

the model by a process called statistical model identification which requires judgment and expertise and 

generally needs an iterative process of distribution choice, parameter estimation and quality of t assessment. R 

software was used in analysis. 

Table 2: Summary statistics for symptom data 

Min Skewness Mean Median SD 1stquartile 3rdquartile Kurtosis Max 

0.00 -0.65 2.09 2.00 0.97 0.75 2.25 2.20 3.00 
         

 

The results of Table 1 shows that the average number of symptom data set (Ordinal scales data) is 2.09 

with a median of 2.00. It is also evident from the results that the minimum value is 0 and the maximum value is 
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3. The results also shows that there is a deviation of 0.97 with the lower value of the data being 0.75 and the 

upper value of the data being 2.25. It is also evident from the results that the data is slightly skewed to the left 

because the computed value is negative or close to zero which implies that the data is platykurtic because of the 

Kurtosis value of 2.20 which is less than 3. The kurtosis value quantifies the weight of the tails in comparison to 

the normal distribution for which the kurtosis equals 3. 

Before we fit the dataset into ordered probit model, we divide the symptom dataset into training data 

(80%) and test data (20%) for analysis then fit the dataset into model so as to produce the deviance statistic to 

assess the model fit. We train and test the data as shown below; 

 
From the train data, we can clearly see that some values of symptom dataset have been left out for testing the 

dataset. 

 
The test dataset has values that were not captured in the train dataset. We use the test dataset to validate the 

model by predicting the values in the test dataset. 

 

 
 

The results shows that the values predicted are the same as the test data value, therefore the model is valid and 

can be fitted. We now fit the ordered probit model using the train dataset using Stata. 

 

                                                                              
       /cut3     5.724882   1.002045                      3.760909    7.688855
       /cut2     3.299554    .957663                      1.422569    5.176539
       /cut1     -.732962   1.001887                     -2.696625    1.230701
                                                                              
numberofsy~s     .9294152   .0634755    14.64   0.000     .8050055    1.053825
         age     -.026457   .0436542    -0.61   0.544    -.1120178    .0591037
                                                                              
ordinalscale        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood = -109.30204                       Pseudo R2       =     0.6644
                                                  Prob > chi2     =     0.0000
                                                  LR chi2(2)      =     432.82
Ordered probit regression                         Number of obs   =        300

Iteration 5:   log likelihood = -109.30204  
Iteration 4:   log likelihood = -109.30205  
Iteration 3:   log likelihood = -109.30572  
Iteration 2:   log likelihood = -110.17843  
Iteration 1:   log likelihood = -123.89726  
Iteration 0:   log likelihood = -325.71232  

. oprobit ordinalscale age    numberofsymptoms
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 The results shows that both number of symptoms and age are statistically significant. The value of R
2
= 

0.6644 implies that 66/% of the variation in the dependent variable has been explained by the independent 

variable. The ordered probit regression coefficient gives the change in the z-score or probit index for one unit 

change in the predictor. For instance, a one unit increase in the number of symptoms, the z-score increases by 

14.64 and for each one unit decrease in the age of the student, the z-score decreases by -0.61. The results also 

shows that the chi-squared test statistic of 432.82 with 2 degrees of freedom is associated with a p-value of less 

than 0.001 indicating that the overall effect of rank is statistically significant and model fits significantly better 

than an empty model. 

 

 
 The Akaike information criteria (AIC) was also used to estimates the quality of the model and as a 

measure of the relative quality of statistical models for a given set of data.  By using AIC values of results, 

Gamma distribution had the lowest AIC value of 196.2358 followed by the Weibull distribution with a value of 

197.8707 and then the Lognormal distribution with a value of 200.1029. This confirmed that Gamma 

distribution to be the best fitting distribution for the symptom dataset. 

 

V. Conclusion 
In this study, we presented methods for developing the model and the fitting of the ordered probit model to 

symptom data in order to determine the appropriate probability distribution for symptom data set The Gamma, 

Weibull and Lognormal distributions were selected since the data was positively skewed. The gamma 

distribution was identified as the best fit for the model because of its small value of AIC. 
 

References 
[1]. Musa MI, SHohaimi S, Hashim NR, Krishnarajah, (2012). A climate based distribution model of malaria transmission in Sudan. 

Geospatial Health 7(1), 27-36. 

[2]. Wang Xiang, David Sontag, and Fei Wang, (2014). Unsupervised learning of disease progression Models. In Proceedings of the 

20th ACM SIGKDD international conference on Knowledge Discovery and data mining, pages 85-94. 

[3]. Ceusters W and Smith B (2009). Malaria Diagnosis and the Plasmodium Life Cycle: the BFO Perspective. Nature Precedings. 

[4]. Gilles H.M and D.A Warrell (1993). Bruce-Chwatts Essential Malariology, Third Edition. Edward Arnold, London. 
[5]. Martins et al.(2015). Clustering symptoms of non-severe malaria in semi-immune Amazonian patients. PeerJ 

[6]. Alessandro Bartoloni and Lorenzo Zammarchi (2012). Clinical Aspect of Un- complicated and Severe Malaria, Mediterranean 

Journal of Hematology and Infectious diseases. 
[7]. Maruotti A. (2013). Modelling longitudinal data with non-ignorable dropouts using hidden Markov models: A conditional 

maximum likelihood approach. Under revision. 

[8]. Li H-M FL-Y, Wang P and Yan J-Z.(2013). Hidden Markvo Models Based Research on Lung Cancer Progress Modeling. Research 
Journal of Applied Sciences, Engineering and Technology. 6(13):2470-3 

[9]. A.Ngwa and W.S.shu (2000). A mathematical model for endemic malaria with variable human and mosquito populations. Math. 

Comput. Mathematical modeling, 32:747-763. 
[10]. Jones G., W. O. Johnson, W. D. Vink, and N. French. (2012). A framework for the joint modeling of longitudinal diagnostic 

outcome data and latent infection status: Application to investigating the temporal relationship between infection and disease. 

Biometrics, 68(2):371-379, June 2012. 
[11]. Lee H-K, Lee J, Kim H, Ha J-Y and Lee KJ.(2013). Snoring detection using apiezo snoring sensor based on hidden Markov models. 

Physiological measurement. 34(5): 41-45. 

[12]. Nicole Cancre (2000). Bayesian analysis of an epidemiological model of Plasmodium falciparum malaria infection in Ndiop, 
Senegal. American Journal of Epidemiology, Oxford University Press, 152(8),pp 760-770. 

[13]. Koella JC (1991). On the use of mathematical models of malaria transmission, Acta Trop. 1991 Apr; 49(1):1-25. 

[14]. Kermack W.O and A. G. McKendrick,(1927). A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. A 115, 700-
721. 

[15]. Dondorp AM and Day NP (2007). The treatment of severe malaria. Trans R Soc Trop Med Hyg, 2007, vol. 101 (pg. 633-634) 

[16]. Nadjm B, Behrens RH (2012). "Malaria: An update for physicians". Infectious Disease Clinics of North America 26 (2): 24359. 
[17]. Tumwine J., Mugisha J.Y.T., and Luboobi L.S., (2008). A mathematical model for the dynamics of malaria in a human host and 

mosquito vector with temporary immunity, Applied Mathematics and Computation, 1953-1965. 
[18]. Nath, D.C. and Mwchahary, D.D. (2013) Association between Climatic Variables and Malaria Incidence: A Study in Kokrajhar 

District of Assam, India: Climatic Variables and Malaria Incidence in Kokrajhar District. Global Journal of Health Science, 5, 90. 

[19]. WHO (2012).World Malaria Report. 
[20]. Nkurunziza, H., Gebhardt, A. and Pilz, J. (2011) Geo-Additive Modeling of Malaria in Burundi. Malaria Journal, 10, 234. 


