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Abstract:The frequency of appearance of the Golden Ratio (Φ) in nature implies its importance as a 

cosmological constantand sign of beingfundamental characteristic of the Universe.Except than Leonardo Da 

Vinci’s ‘Monalisa’ it appears on the sunflower seed head, flower petals, pinecones, pineapple, tree branches, 

shell, hurricane, tornado, ocean wave, and animal flight patterns. It is also very prominent on human body as it 

appears on human face, legs, arms, fingers, shoulder, height, eye-nose-lips, and all over DNA molecules and 

human brain as well. It is inevitable in ancient Egyptian pyramids and many of the proportions of the 

Parthenon. But very few of us are aware of the fact that it is part and parcel for constituting black hole’s 

entropy equations,black hole’s specific heat change equation,also it appears atKomar Mass equation ofblack 

holes and Schwarzschild–Kottler metric - for null-geodesics with maximal radial acceleration at the turning 

point of orbits [1, 2, 3, 4].But here in this paper the discussion is limited to the exhibition of mathematical 

aptitude of Golden Ratio a.k.a. the  Devine Proportion. 
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I. Introduction 
 By definition, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to 

the larger of the two quantities. Let‟s say, straight line A is divided into two segments, into B and C in such 

manner that: 

 
A/B = B/C = Φ; or, B.B = A.C; But we know that A = B + C. So, B.B = [B + C].C; that is, B.B = B.C + C.C. 

Now if we divide this equation by C.C, [ie, C-Square], we will find that, B.B/C.C = B.C/C.C + C.C/C.C. Which 

means that, (B/C)-Square = B/C + 1; ie, Φ^2 = Φ + 1 or, [Φ^2 – Φ – 1] = 0. Solving this quadratic equation will 

give us Φ = 1.618033988749895... the most irrational number which we denote by the Greek alphabet Phi. 

 

Golden Ratio can be expressed in so many different ways. One of the most common expression is given below: 

Φ = 1 +  
1

1 +  
1

1+ 
1

1+ 
1

1+⋯

 

 

From this expression it can be formulated into Φ = (1 + 
1

Φ
), that is Φ^2 = (Φ + 1) or, [Φ^2 – Φ – 1] = 0. 

 

Also another most common expression of Golden Ratio is: Φ =  1 +   1 +  1 +  1 +   1 + ⋯ From this 

expression it can be formulated into Φ =  1 +  Φ ; that is, Φ^2 = (Φ + 1) or, [Φ^2 – Φ – 1] = 0. 
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II. Golden Ratio Φ in Arithmetic Numerals 
As we can see the quadratic equation [Φ^2 – Φ – 1] = 0 gives the root value equal to the golden ratio, it 

can be written as Φ = [Φ^2 – 1]. Hence, Φ = (Φ + 1).(Φ – 1). ie, 1.618034 = 2.618034 X 0.618034. Another 

interesting fact about that equation is, (Φ + 1) = 2.618034 = Φ^2 & (Φ – 1) = 0.618034 = 
1

Φ
 . So, [Φ^2.

1

Φ
 ] = Φ. 

 

So, [Φ^2 –Φ– 1] = 0 

Or, 2Φ^2 –2Φ –2 = 0 

Or, 2Φ^2 –(+1)Φ + (–1)Φ –2 = 0 

Or, 2Φ^2 –( 5 + 1)Φ + ( 5 – 1)Φ –2 = 0 

Or, Φ[2Φ – ( 5 + 1)] + [( 5 – 1)/2].[2Φ –
4

( 5 – 1)
] = 0 

Or, Φ[2Φ – ( 5 + 1)] + [( 5 – 1)/2].[2Φ –
4( 5 + 1)

( 5 + 1).( 5 – 1)
] = 0 

Or, Φ[2Φ – ( 5 + 1)] +[( 5 – 1)/2].[2Φ –
4( 5 + 1)

{( 5)^2 – (1)^2}
]= 0 

Or, Φ[2Φ – ( 5 + 1)] + [( 5 – 1)/2].[2Φ –
4( 5 + 1)

(5 – 1)
] = 0 

Or, Φ[2Φ – ( 5 + 1)] + [( 5 – 1)/2].[2Φ –4( 5 + 1)/(4)] = 0 

Or, Φ[2Φ – ( 5 + 1)] + [( 5 – 1)/2].[2Φ –( 5 + 1)] = 0 

Or, [2Φ – ( 5 + 1)] × [Φ + {( 5 – 1)/2}]= 0 

Or, 2[Φ – {( 5 + 1)/2}] × [Φ + {( 5 – 1)/2}]= 0 

Or, [Φ – {( 5 + 1)/2}] × [Φ + {( 5 – 1)/2}]= 0 

So, either [Φ – {( 5 + 1)/2}] = 0 or else, [Φ + {( 5 – 1)/2}]= 0 

Which means, Φ = 
1 ±  5

2
 ; that is, +1.618034 or, –0.618034. 

 

Alternate Solution - 1: 

 

Given, [Φ^2 – Φ – 1] = 0 

Or, [Φ^2 –1.618Φ + 0.618Φ – 1] = 0 

Or, Φ(Φ – 1.618) + 0.618(Φ - 
1

0.618
) = 0 

Or, Φ(Φ – 1.618) + 0.618(Φ – 1.618)= 0 

Or, (Φ – 1.618).(Φ + 0.618) = 0 

ie, (Φ–1.618) = 0 or, (Φ+0.618) = 0 

So, Φ = 1.618034 or, Φ = – 0.618034. 

 

Alternate Solution - 2: 

 

Given, [Φ^2 – Φ – 1] = 0 

Or, [ax^2 + bx + c] = 0 

Or, x = 
−𝑏± 𝑏2−4𝑎𝑐

2𝑎
 ,a = 1, b = – 1, c = – 1 

So, we can say that, Φ = 
1 ±  5

2
 ; 

that is, +1.618034 or, –0.618034. 

 

The reason of getting two values are, by definition if we take the ratio of larger to shorter, then it will 

give us the +ve value, [ie, (Larger/Shorter) = 1.618034 = {( 5 + 1)/2}]. But if we take the ratio of shorter to 

larger, then it will give us the –ve value, [ie, (Shorter/Larger) = 0.618034 = {( 5 – 1)/2}]. Now, we can see that, 

(Larger/Shorter) × (Shorter/Larger) = 1. So, 1.618034 × 0.618034 = 1. Or in other way we can also prove that, 

[( 5 + 1)/2] × [( 5 – 1)/2] = [{( 5)^2 – 1^2)}/(2 × 2)] = [(5 – 1)/4] = 1 

 

III. Golden Ratio Φ in Algebra 
It has been observed that Golden Ratio appears at Fibonacci Sequence as well. The Fibonacci 

sequenceFn is such that each number is the sum of the two preceding ones, starting from 0 & 1; that is, Fn = F(n–1) 

+ F(n+2). So, Fn= 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, … Fn, F(n+1), F(n+2), … (up to infinity). One of the most 

frequently rediscovered facts about the Fibonacci Sequence is if we tabulate these numbers in a column, shifting 

the decimal point one place to the right for each successive number, the sum equals 1/F12, 1/89, as indicated 

below: 

 

Sum of: 

0.0 

0.01 

0.001 

0.0002 

0.00003 

0.000005 

0.0000008 

0.00000013 

0.000000021 

0.0000000034 

0.00000000055 

0.000000000089 

… …ETC… … 

0.01123595505618… = 1/89 

 

Another fun fact of Fibonacci Sequence is (Last digit of F60), (Last digit of F61), (Last digit of F62), … 

(up to infinity) = Fibonacci Sequence itself. So, the reason for bringing up this mysterious sequence is it has an 

uncanny relationship with the Golden ratio Φ. 
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It has been observed that, the golden ratio can be approximated by a process of successive dividing of 

each term in the Fibonacci Sequence by the previous term. And with each successive division, the result comes 

closer and closer to Φ. ie, F(n+1)/Fn = Φ. For example. 89/55 = 1.6181818181... very close to Φ; as shown in the 

graph above. Because, let, Fn = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,... A, B, C... (up to infinity). Say, B/A = X. 

So, C/B ≈ X, as well. Hence, B/A = C/B. But, C = (A + B). That is, B/A = (A + B)/B.Or, B/A = (A/B + 1). 

Which means, X = (1/X + 1). Or, X^2 = X + 1; ie [X^2 – X – 1] = 0. Hence, X = Φ. 

Again, by forming matrix, we can say that, [𝐶
𝐵
] = [(𝐴 + 𝐵)

𝐵
] = [1 1

1 0
].[𝐴

𝐵
]. Here say, Æ = [1 1

1 0
]. 

So, the characteristic equation will be, |Æ – λ.I| = 0; where λ is eigenvalue of Æ, & I is a (2×2) identity matrix. 

So,|1 1
1 0

| – λ.|1 0
0 1

|=0; » |1 1
1 0

| + |– λ 0

0 – λ

|=0; » |(1 –  λ) 1

1 – λ
|=0 ; »[–λ.(1 – λ) – (1×1)] = 0. So, 

[λ^2 – λ – 1] = 0. And here Æ is a (2×2) binary matrix. And similar to this matrix, the highest probability of any 

non-trivial eigenvalues that show up in binary matrixes is (like this one), Φ.Furthermore the quadratic equation, 

[Φ^2 – Φ – 1] = 0; can be represented as, |1 Φ
Φ (Φ + 1)

| = 0. And again, |Φ 1
Φ (Φ − 1)

| = 0. [2] 

 

IV. Golden Ratio Φ in Trigonometry 
From the inception of the idea of Golden Ratio, mathematicians all across the globe attempted to come 

up with equations corelating pi and phi. Personally, I figured two pi-phi relations: (i) 6Φ
2≈ 5π & (ii) Φ≈

7𝜋

5𝑒
; by 

myself. But nothing beats the pi-phi relation cos(π/5) = Φ/2. Here beneath goes the mathematical evidence of 

the claim. 

Let‟s say, a = cos(π/5) and b = cos(2π/5). Hence, b = cos(2π/5) = cos(π/5 +π/5). Which means, term „b‟ 

can be expressed as; b = cos(π/5).cos(π/5) – sin(π/5).sin(π/5) = cos
2
(π/5) – sin

2
(π/5) = cos

2
(π/5) – [1 – cos

2
(π/5)]. 

That is, b = 2cos
2
(π/5) – 1 = 2[cos(π/5)]

2
 – 1. ie,  b = 2a

2
 – 1… [equation (i)]. 

Again, cos(4π/5) = cos[(5π – π)/5] = cos(π – π/5) = cos(π).cos(π/5) – sin(π).sin(π/5) = – cos(π/5) = – a. 

As we know that, sin(π) = 0 and cos(π) = – 1. Hence, – a = cos(4π/5) = cos(2π/5 +2π/5). Hence, we can say that, 

– a = cos(2π/5).cos(2π/5) – sin(2π/5).sin(2π/5) = cos
2
(2π/5) – sin

2
(2π/5) = cos

2
(2π/5) – [1 – cos

2
(2π/5)]. That is, 

– a = 2cos
2
(2π/5) – 1 = 2[cos(2π/5)]

2
 – 1. ie,  – a = 2b

2
 – 1… [equation (ii)]. 

Now if we deduct eqn. (ii) from eqn. (i), we get that; (b + a) = (2a
2
 – 1) – (2b

2
 – 1) = 2a

2
–1–2b

2
+1. That 

is (a + b) = 2a
2
 – 2b

2
 = 2(a

2
 – b

2
) = 2(a + b).(a – b). Which means, (a – b) = (a + b)/[2(a + b)] = ½ or, b = a – 

½.Putting this value in equation (i) gives us a – ½ = 2a
2
 – 1, or, 2a

2
 – a – 1 + ½ = 0, that is 2a

2
 – a –½ = 0. So, 

that is, 4a
2
 – 2a – 1 = 0. If we would put the value of b in equation (ii), we would‟ve got, –a = 2(a – ½)

2
 – 1. 

That is to say, 2(a
2
 – a + ¼) – 1 + a = 0.Which means, 4a

2
 – 2a – 1 = 0, the same. So, a = cos(π/5) = 

1 ±  5

4
 = Φ/2. 

 Based on the concept of Pythagoras a right-angle triangle was made known as the Kepler Triangle, 

which is named after the German mathematician and astronomer Johannes Kepler (1571–1630). The edge 

lengths in a precise geometric progression in which the common ratio is  Φ; and the geometric progression 

goes like 1:  Φ ∶ Φ. Here, length of the hypotenuse of the right-angle 

triangle is Φ and so the other two arms have lengths of 1 and  Φ.So, 

Pythagoras (Φ)
2
 = ( Φ)

2
 + 1; or, Φ

2
 = Φ + 1 ie,[Φ^2 – Φ – 1] = 0 [5]. 

The picture shown beside is a Kepler triangle. If ϴ is the angle between 

hypotenuseΦ & base 1, then following relations can be drawn as well: 

(i) sinϴ =   Φ/Φ = 1/ Φ (ii) cosϴ = 1/Φ (iii) tanϴ =  Φ. Hence, we 

can say that, ϴ = sin
-1

(1/ Φ) = cos
-1

(1/Φ) = tan
-1
 Φ = 0.9 rad = 51.83

o
. 

So, the other angle is (180 – 90
o
 – 51.83

o
) = 38.17

o
 = 2/3 rad (roughly). 

Another interesting fact of this diagram is, here we have a circle with a 

diameter of Φ and we have a square with sides of  Φ. Though it is not 

possible to square a circle, we can see Sketch of the “Vitruvian Man” 

by Leonardo Vinci shows these two geometric figures have perimeter 

very close to each other. So, the circle and the square have closely 

equal perimeter. Now, perimeter of the square is four times its arms, viz. 4 Φ. And perimeter of the circle is 

2π.radius = π.Diameter = π.Φ. Hence, we can say,π.Φ≈4 Φ, ie, π = 4/ Φ. It fit for an error that‟s less than 

0.1%. Which brings us to another pi-phi relationship. 
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V. Golden Ratio Φ in Geometry 

Now here in this final segment of discussion we will get to know how we can draw the golden ratio as 

well as the geometric interpretation of it. 

Here is one way to draw a rectangle with the Golden Ratio [6]: 

First draw a square of unit length, that is the length is one. Place a dot at half 

way along one side& draw a line from that point to an opposite corner. So, 

the line will have a length of  (1)2 +  (½)2 =  [1 +  ¼] =  5/4 =  5/2 ; 

Now either we add this value with ½ or we deduct this value from ½ to get 

the golden ratio. So, we turn that line so that it runs along the square's side 

and then we extend the square to be a rectangle with the Golden Ratio as 

shown in diagram. Notice that the arm of the rectangle is (½ +  5/2) while 

the additional extended portion is (½ –  5/2). So, we get both Φ and – 1/Φ 

from this diagram. 

Another interesting geometrical expression of the golden ratio can be obtain 

at perfect pentagon shown below. Here in this diagram a/b = b/c = c/d = Φ. 

Then to prove the claim we need to change 

the diagram a little bit. We need to draw a 

polygon inscribed inside a circle consisting 

five arms. Besides, the assumptions will be 

all the five arms of the „polygon‟ will have 

equal length. Let‟s suppose ABCDE is the 

polygon; then AB = BC = CD = DE = AE. 

Hence, <A = <B = <C = <D = <E. And all 

the angles of the pentagon are equal to be: ϴ = [{(n – 2)×180
o
}/n]. That is to 

say, [{(5 – 2)×180
o
}/5] = [(3×180

o
)/5] = (3×36

o
) = 108

o
. Having said that, it 

is noticeable that a perfect pentagon will inscribe inside a circle, and the five 

points will divide the circle into 360
o
/5 = 72

o
. Noticeably, (72

o
 + 108

o
) = 180

o
, 

also 72
o
 = (36

o×2), 108
o
 = (36

o×3) & 180
o
 = (36

o×5). Also from trigonometric 

expression we derived cos(π/5) = cos(36
o
) = Φ/2. AB = BC = CD = DE = AE 

&<A = <B = <C = <D = <E = 108
o
. As well as, AO = BO = CO = DO = EO, 

where O is the center of the circle. Join B & E. Line BE intersects line AO at point N. So, AN┴BE, as well as 

NE = NB = ½BE. Join A & C. Line AC intersects line BE at point P and line BO at point Q. Also, BQ┴AC; 

which means, AQ = CQ = ½AC. We need to prove that, 
𝑎

𝑏
=
𝑏

𝑐
=

𝑐

𝑑
= Φ. 

Now at triangle AEB; AE = BE. As, <BAE = 108
o
, so other 

two angles; <AEB = <ABE = (180
o
 – 108

o
)/2 = 72

o
/2 = 36

o
. In 

ΔAEN; <ANE = 90
o
,<NAE = 108

o
/2 = 54

o
. So <AEN will be 

equal to (180
o
 – 90

o
 – 54

o
) = 36

o
. As, <AEN = <AEB. So, in 

ΔAEN; cos<AEN = NE/AE, viz, 2cos<AEN = 2NE/AE. So, 

2cos(36
o
) = (NE+NE)/AE viz, 2cos(π/5) = (NE+BN)/AE. That 

is, 2×Φ/2 = BE/AE; viz, BE/AE = Φ. So, now all we will need 

to prove is AE = PE to prove the pentagon relation stated 

before. If we can prove AE = PE, then BE/PE will be equal Φ. 

Now at triangle ABC; AB = BC. As, <ABC = 108
o
, so other 

two angles; <BAC = <BCA = (180
o
 – 108

o
)/2 = 72

o
/2 = 36

o
. In 

ΔAPB; <BAP = <BAC = 36
o
&<ABP = <ABE = 36

o
. Which 

means, AP = BP &<APB = (180
o
 – 36

o
 – 36

o
) = (180

o
 – 72

o
). 

So, <APE = (180
o
 – <APB) = [180

o
 – (180

o
 – 72

o
)] = 72

o
. 

Now in ΔAEP; <APE = 72
o
&<AEP = <AEB = 36

o
; Hence, 

<PAE = [180
o
 – <APE – <AEP] = [180

o
 – 72

o
 – 36

o
] = 72

o
. So 

in ΔAEP; <PAE = <APE = 72
o
. So we can say, AE = PE. So 

we can say [BE]/[AE] = [BE]/[PE] = Φ. That is,
𝑎

𝑏
=
𝑏

𝑐
=

𝑐

𝑑
= Φ. 

Hence, we can conclude by saying that the line BE is divided at golden ratio at point P. 
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Golden ratio can be expressed geometrically via an equilateral triangle inscribed inside a circle as well. In the 

figure below ΔABC is an equilateral triangle inscribed in a circle with center G and radius of AG = BG = CG. 

Now extend AG, that intersects BC at point X, & extend BG, that intersects AC at point Y, and extend CG, that 

intersects AB at point Z. Join Z & Y and extend in both directions to intersect the circle at point B‟ & C‟. From 

this construction we will see that, ZY/B‟Z = ZY/C‟Y = B‟Y/ZY = C‟Z/ZY = Φ. 

Let us assume, ZY = a, & YC‟ = b. We need to prove that a/b = (a + b)/a. 

Now here, AB = BC = CA & AG = BG = CG = 2GX = 2GY = 2GZ as 

well as AX = BY = CZ. So, AX┴BC, BY┴AC & CZ┴AB. Also we know 

that, points X, Y, and Z are midpoints of BC, CA,and AB respectively viz, 

AZ = BZ = BX = CX = CY = AY = ½AB = ½BC = ½CA. Now BC||B‟C‟. 

So, ΔAZY;<AZY = <ABY &<AYZ = <ACB &<ZAY = <BAC. So, 

ΔAZY is also equilateral as all these angles are 60
o
 viz AZ = ZY = AY = a. 

Now, as product of segments of two intersecting cords of a circle are equal. 

So, at point Y, [B‟Y.YC‟ = AY.YC]. ie, (B‟Z + ZY).YC‟ = AY.YC. As 

B‟Z = YC‟ so, (YC‟ + ZY).YC‟ = AY.YC = AY.AY = ZY.ZY; [as ΔAZY 

is equilateral]. Assume that, YC‟ = b & ZY = a; Hence, (b + a).b = a.a; or, 

a/b = (b + a)/a = b/a + a/a = b/a + 1. This expression it can be formulated 

into Φ = (1 + 
1

Φ
), that is Φ^2 = (Φ + 1) or, [Φ^2 – Φ – 1] = 0 (proved). 

There are other ways to prove it as well like in ΔABP; <BAP = 30
o
, <ABP = 90

o
, hence, <APB = 60

o
. 

Now sin<APB = AB/AP. Say the arms of the equilateral triangles are of length a and radius of circle is R. 

Hence, sin<APB = sin60
o
 = a/2R; viz, R = a/(2sin60

o
). Now as sin60

o
 =  3/2, so, R = a/ 3. Also in ΔABX, we 

see, sin<ABX = sin60
o
 =  3/2 = AX/AB = (AG + GX)/AB = (R + ½R)/a = (2R + R)/2a = 3R/2a; viz, R = a/ 3. 

Now, PX‟ = (AP – AX‟) = (AP – AZ.sin<AZX) = (2R – ½AB.sin60
o
) = (2a/ 3 – ½a. 3/2) = (2a/ 3 – a. 3/4); 

ie, PX‟ = a(2/ 3 –  3/4) = a[(8 – 3)/4 3] = 5a/4 3. That is, GX‟ = PX‟–PG = PX‟–R = 5a/4 3 – a/ 3 = a/4 3 

Now in ΔB‟X‟G; (B‟X‟)
2
 = (B‟G)

2
– (GX‟)

2
= R

2
 – (a/4 3)

2
 = (a/ 3)

2
 – (a/4 3)

2
 = [a

2
/3 – a

2
/48] = 

5a
2
/16.Hence,B‟X‟ = ( 5a/4)

. 
But, X‟Y = YC‟ = ½a. So, B‟Y/YC‟ = (B‟X‟ + X‟Y)/YC‟ = [

 5𝑎

4
 + 

𝑎

2
]/(

𝑎

2
). So the 

ratio becomes equal to (1 +  5)/2 = 1.618034 =Φ. 

The golden ratio is available in numerous other images, another example can be the diagram shown 

below. Here we can see that, two equal circles with center C & D are tangent to each other. AB is the diameter 

of the circle with center C. CD┴AB. Join B & D. BD crosses the circle with center D in two points, let E be 

further one from B. 

Let the radius of both circles r. In ΔBCD, (BD)
2
 = (CD)

2
 + (BC)

2
. 

But, AC = BC = ½AB = DE = ½CD = r. So, (BD)
2
 = (2r)

2
 + (r)

2
. 

Viz, (BD)
2
 = 4(r)

2
 + (r)

2
 = 5(r)

2
. Suggests, BD =  5r. Now in here, 

BE = BD + DE. So, BE = ( 5r + r). Again AB = 2r. So, the ratio 

BE/AB = ( 5r + r)/2r = (1 +  5)/2 = 1.618034 =Φ. Not only this 

but also this concept can be nicely modified into a construction 

with four circle which is shown in the diagram below (left). As 

well as another most straightforward construction of the golden 

ratio with this concept has been devised by Nguyen Thanh Dung 

shown in the diagram below (right) [7]. 
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Tran Quang Hung [7] has devised another configuration of a 1×3 rectangle with a circle that 

producesgolden ratio. But There is a not immediately obvious relation between the case of 1×2 and 1×3 

rectangles. If we consider the arms of the square of the diagram to be a, then the red plus blue line becomes 

equal to  (3𝑎)2 +  (𝑎)2 = 𝑎 10; while the blue one becomes equals to the diameter  (𝑎)2 +  (𝑎)2 = 𝑎 2 

(1
st
-bottom-left). So, the ratio becomes equal to  5. 

 

 

In all these three diagrams the above-mentioned 

relationship can be observed. And as we know that the 

value of Φ = 
1 ±  5

2
; therefore, golden ratio is found in all 

these three diagrams as well. Golden ratio has also 

observed in the constructions that involves a rhombus and 

a regular hexagon. Before going into that discussion it 

will be better to converse about another very elegant way 

of obtaining the golden ratio, offered in a (2002) article 

byK.Hofstetter [7]. It‟s shown in the diagram provided 

below. Here, it will be convenient to denote S(R) the 

circle with center S through point R. For the construction, let A and B be two points. Circles A(B) and B(A) 

intersect in C and D and cross the line AB in points E and F. Circles B(E) and A(F) intersect in X and Y, as in 

the diagram. Because of the symmetry, points X, D, C, Y are collinear. The fact is CX/CD = Φ. 

 Assume for simplicity that AB = 2. Then CD = 2 3, &CX =  15 +  3. Hence,the ratio of CX & CD: 

(CX)/(CD) = ( 15 +  3)/2 3 

= ( 5 + 1)/2 

   = Φ. 

Notice that the whole construction can be accomplished with 

compass only. This much simplicity as well as diversity has 

made golden ratio this much widespread and this is the reason 

of calling it in different other names like the golden mean or 

golden section (Latin: section aurea). Similarly some other 

names includeextreme mean ratio, medial section, divine cut 

proportion, divine section (Latin: section divina), golden cut, 

golden proportionand golden number [5].Hence, now we will 

discuss how this ratio has also observed in constructions 

involvinga rhombus and a regular hexagon. 
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Let, ABCD is a rhombus with 2AC=BD.The inscribed circle has a 

center O.Also, E and F are the points of intersection of the circle 

with BD. Then, the point F divides DE in the golden ratio. 

Now, let M be the point of tangency of (O) with AD. So, OM┴AD. 

Hence, ΔMOD & ΔAOD are similar as <ADO = <MDO 

Therefore, (MD)/(MO) = (OD)/(OA) =2;viz, MD=2(OM) =EF. 

From the property of a tangent, DM
2
 = DF⋅DE. 

Or, EF
2
 = DF⋅DE; 

Or, (FD)/(FE) = (EF)/(ED), as required. 

Tran Quang Hung [7] has devised another configuration of golden ratio Φ in a hexagon. Square ABHG is 

constructed outside the hexagon ABCDEF. A circle with center at A, radius AH cuts EF at I in golden ratio as 

shown in the diagram below. 

Say AB = BC = CD = DE = EF = AF = GA = BH = a 

Therefore, AH = AI =  2a.Set α=<FAI, β=<AIF. 

Now by applying the Law of Sines in ΔAIF: 

AF/sinβ=FI/sinα=AI/sin120o. Now as AF = a and AI = 

 2a, so, this can be rewritten as: 

a/sinβ= ( 2a)/( 3/2) = (2 2)a/ 3 = (2 6)a/3 

Thus we can say: sinβ= 3/(2 6) = 6/(4 6)=  6/4. 

Hence, cosβ= 1 −  (𝑠𝑖𝑛β)2 =  1 − 6/16=  10/4. 

Now, observe that (α+β) =60o, so we can imply that 

sinα=sin(60o−β)=sin60o⋅cosβ−cos60∘⋅sinβ. Thus 

sinα= [
 3

2
.
 10

4
 – 

1

2
.
 6

4
] = [

 30

8
 – 

 6

8
] = 

 6

8
.( 5 – 1) Now 

AF/sinβ=FI/sinα; or, (2 6)a/3 = FI/[
 6

8
.( 5 – 1)] or, 

FI/a = ( 5 – 1)/2 viz, a/FI = FE/FI = ( 5 + 1)/2 = Φ. 

Not only these there are several other numerous geometrical figures where golden ratio is observed. The 

following is a new invention of Bui Quang Tuan [7]. In the diagram given below the cross consists of five equal 

square. Here, let S be the side of the inscribed square, C the side of any of the five squares that compose the 

cross, then S
2
=5C

2
. From this expression the following relationship can be obtained as mentioned in the image. 

In 2015 Tran Quang Hung has found once more the golden ratio in a 

combination of a semicircle, a square, & a right isosceles triangle [7]. 

Given a right isosceles triangle ABC and its circumcircle, inscribed a 

square DEFG with a side FG along the hypotenuse AB. Let the side DE 

extended beyond E intersect the circumcircle at P.Then the point E 

divides DP in the golden ratio. 

 
From the similarity of the isosceles right triangles DEC and AEF, we have (DE)/(CE) = (AE)/(EF).It thus 

follows; DE
2
 = DE⋅EF=AE⋅EC.If the line DE intersects the semicircle again at Q, then EQ=DP. By the 

intersecting chords theorem,AE⋅CE=EP⋅EQ=EP⋅DP.Therefore, DE
2
 = EP⋅DP, meaning that E divides DP in the 

golden ratio. 

We are going to conclude our discussion for this segment with an example of Tran Quang Hung [7]. 

Let ABC be an equilateral triangle inscribed in circle (O). D is reflection of A through BC. MN is diameter of 

(O) parallel to BC.&AD meets (O) again at P.Then, circle (D)and passing through B,C divides PM,PN in golden 

ratio. 
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Here, OB=OC = OA = ON = OM = OP = PD = PC = PB = R (say). So, 

BC=CD=BD = AB = AC = DL = DK = 3R and,NP=MP =  𝑅2 +  𝑅2 = 

 2R.In ΔDLP, <DPL=135oSay, PL=x. 

For a triangle with sides a,b,c & angle µ opposite to c, as per law of cosine 

c
2
 = a

2
 + b

2
– 2ab·cos(µ); viz, DL

2
 = PD

2
 + PL

2
–2.PD.PL.cos135

o
; 

so, ( 3R)
2
 = (R)

2
 + (x)

2
 – 2.R.x.cos(180

o
 – 45

o
). Now, as cos45

o
 =

1

 2
; 

so, (x)
2
 +  2.R(x) – 2(R)

2
 = 0; or 2x = – 2.R ± 2𝑅2 +  8𝑅2 

With positive value, x = 
 10− 2

2
.R = 

 5−1

 2
.R = PL. 

Now, NL = NP – PL =  2R – 
 5−1

 2
.R = 

3− 5

 2
.R. 

Now by taking ratio, PL/NL = [
 5−1

 2
.R]/[

3− 5

 2
.R] = 

 5−1

3− 5
. 

viz, PL/NL = 
 5−1

3− 5
.
 5+1

 5+1
.
 5+1

 5+1
 = 

 5−1 .( 5+1)

 3− 5 .(5+2 5+1)
 =  

 4 .( 5+1)

2 3− 5 .(3+ 5)
. 

Thus we can prove that, PL/NL = 
( 5+1)

2
 = Φ. 

 

The following (right) construction of the golden ratio 

Φ has appeared in the Mathematical Gazette, volume 

101,number 551, July 2017, page 303 constructed by 

John Molkach [7].There are two unit circles (A) & 

(B).The circle (O) has a 2R diameter of AB and 

tangent to both circles. Vertical segments AC & BF 

are tangent to circle B&circle A, respectively. So, AB 

= AC = BF = 1. CF crosses (O) in D and E, as shown 

in the diagram below. John proves that CE = Φ. 

To prove that let us consider, CE=x. 

Then, by Intersecting Secants rules 

CA
2
 = CD×CE. Or, (1)

2
=(x−1).x Viz x

2
 – x – 1=0 

 

 

VI. Golden ratio in Fractals 

It is not so much that the golden ratio is “related to a fractal,” 

as fractal patternsare based on anynumber. Fractal patterns 

created using golden ratio, however, are optimized in a way 

that does not occur with any other number. As an example, in 

the image below the fractal pattern expands using the golden 

ratio.According to Mario Livia [8]: some of the greatest 

mathematical minds of all ages, from Pythagoras and Euclid 

in ancient Greece, through the medieval Italian mathematician 

Leonardo of Pisa & the Renaissance astronomer Johannes 

Kepler, to the present-day scientific figures such as Oxford 

physicist Roger Penrose, have spent endless hours over this 

simple ratio and its properties. The Biologists, musicians, 

historians, architects,psychologists, artist and even mystics 

have pondered debated the basis of its ubiquity and appeal. In 

fact, it is fair to say that golden ratio has inspired thinkers of 

all disciplines like no other number in mathematics. 

VII. Conclusion 

Mathematicians since Euclid have studied the properties of the golden ratio, including its appearance in 

dimensions of a regular pentagon and in a golden rectangle, which may be cut into a square and a smaller 

rectangle with that of the same aspect ratio. The golden ratio has also been used to analyze the proportions of 

natural objects as well as man-made systems such as financial markets, in some cases based on dubious fits to 

data. The golden ratio appears in some patterns in nature, including the spiral arrangement of leaves and other 

plant parts.Some twentieth-century artists and architects, including Le Corbusier and Salvador Dalí, have 

proportioned their works to approximate the golden ratioespecially in the form of the golden rectangle, in which 

the ratio of the longer side to the shorter is the golden ratiobelieving this proportion to be aesthetically pleasing. 
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A Fibonacci spiral which approximates the golden spiral, using Fibonacci sequence square sizes up to 

55. The spiral is drawn starting from the inner 1×1 square and continues outwards to successively larger squares. 

 

 
Figure: Fibonacci Spiral Drawn by Nafish Sarwar Islam using MATLAB 
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