IOSR Journal of Mathematics (IOSR-JM)
e-1SSN: 2278-5728, p-ISSN: 2319-765X. Volume 15, Issue 6 Ser. | (Nov — Dec 2019), PP 44-65
www.iosrjournals.org

Modeling and Stability Analysis of the African Swine Fever
Epidemic Model

Michael Byamukama and Julius Tumwiine*
Department of Mathematics, Mbarara University of Science and Technology
P.O. Box 1410, Mbarara, Uganda
Corresponding Author: Michael Byamukama

Abstract: In this paper, a mathematical model for the transmission dynamics
and control of African swine fever with recruitment of susceptible, exposed and
infected domesticpigsintothe populationis studied using asystem of ordinary

differential equations. The basic reproduction numbeR,; for the model was
obtained and its dependence onmodel parametersdiscussed. Without theinflow
of exposed and infected pigs into the pig population, the model exhibits the
disease-free equilibrium E; and the endemic equilibrium E;. The disease-free
equilibrium E; is globally stable if the basic reproduction numbgr ; <1
and the disease will be wiped out of the population. If; = 1, the endemic

equilibrium E,; is asymptotically globally stable and the disease persists in the
pig population. With the influx of exposed and infective domestic pigs, the
model has onlyaunigque endemic equilibrium E. that is globally asyvmptotically

stable and the disease persists.

MNumerical simulation is carried out to verify the analytical results. It is
revealed that with the influx of the exposed and infected pigs, the disease is
maintained at endemic equilibrium.
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I. Introduction

African swine fever is a devastating haemorrhagic fever of domestic pigs that causes up to 100%
mortality of affected pigs [22], and is a major threat to the pig industry worldwide. African swine fever virus is the
causative agent of African swine fever. The organism which causes ASF is a DNA virus classified within the
genus Asfivirus, Asfarviridae family [7] that naturally infects domestic and wild pigs. It is highly contagious and
is transmitted by direct contact between infectious and susceptible domestic pigs or by indirect contact with or
inges- tion of infectious secretions and excretions. It is endemic in most sub-Saharan African countries where
wild pigs hosts and soft ticks vectors of the genus Or- nithodoros act as biological reservoirs for the ASFV [4,
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based on limiting these transports rather than focusing on controlling the virus in the natural disease reservoir
hosts, such as the wild pigs and wart hogs [22]. This means that all actors in the pig value chain (farmers, middle
men, butchers, restaurant owners and consumers) are to some extent responsible and involved in continued spread
of the disease.

Compartmental models to study the spread of infectious diseases consider the population to consist of
different epidemiological classes. The suscepti- ble individuals are assumed to first go through a latent
(exposed) period be- tween being infected and becoming infective (infectious). This results into the Susceptible-
exposed-infective-removed (SEIR) type of epidemic model. Some SEIR epidemic models with influx of
infective individuals for bilinear mass ac- tion or standard incidence for horizontal disease transmission have been
studied (see [16, 17, 18, 25] for example and the references there in).

A simulation model to study the spread of ASF within a pig unit and impact of unit size on the spread of
ASF was proposed by [12]. The model incorporated the effects of residues from dead animals in an exponential
fading out pattern. They found out that emergency vaccination against classical swine fever can be equally
effective and safe as pre-emptive culling. A stochastic individual-based simulation model to estimate the
probability of releasing ASFV-infected pigs via emergency sale was considered in [6]. In Barongo et al. [2] and
Guinat et al. [11], stochastic mathematical models were designed to simulate the transmission dynamics of ASFV
in a free-ranging pig population under various interventions and to estimate quantitative pig-to-pig transmission
parameters for the circu- lating ASFV strain, respectively.

In the present paper a deterministic model is presented. The pig population is divided into four
epidemiological classes based on the disease status. In the SEIR epidemic model a population that consists of
susceptible (S), exposed (E), infective (1) and removed (R) is presented. Susceptible pigs become exposed, that
is, infected but not yet infective. They remain in the exposed stage for a certain period before they become
infective. The infective pigs are infectious and capable of transmitting the ASF to susceptible pigs. The model
is used to describe the transmission dynamics and explore control strategies for the African swine fever
epidemic in domestic pigs.

I1. Model formulation
The model consists of four compartments categorizing domestic pigs based on their status with respect to the
disease. The following are the assumptions and definitions of variables and parameters definitions used in the model
formulation.

Assumptions

@) The model assumes homogeneous mixing of individuals in the population, that is, all domestic pigs have
equal likelihood of getting infected if there are effective contacts with infective individuals.

(i1) Domestic pigs do not recover from the disease.

(iii) Total domestic pig population change through reproduction and immigra- tion.

@iv) Individuals can only be infected through contacts with infectious pigs.

Variables and parameters
The model definitions of variables and parameters are given as follows:
S(t) : susceptible population size of domestic pigs at time t
E(t) : latent (exposed) population size of domestic pigs at time t I(t) : infective population size of domestic pigs
attime t
R(t) :removed population size of domestic pigs at time t
M : per capita natural mortality rate
v . disease related mortality rate
A : per capita recruitment rate of domestic pig population
1 —p -k : proportion of domestic pigs that enter the susceptible class
p : proportion of domestic pigs that enter the exposed class k : proportion of domestic pigs that enter the
infectiveclass p : removal rate of infective domestic pigs
o. . disease transmission rate
c : the average contact rate
S transfer rate between the exposed and the infective
Equations of the model
Using descriptions of variables, parameters and assumptions, the following cou- pled system of ordinary
differential equations which describe the progress of the disease is obtained.
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ds I
da =A(1—p—k]—acSE—pS,
dE I
- = pA+ acS V- (B+ u)E, (1)
% = kA+ BE — (p + v+ W),
dE —
-t - p“r_ UR,
where N (t) = S(f)+ E(t)+ It)+ R(t) together with
dN
i A— uN— vl

System (1), can be studied in the closed set

Q={SELR €R}:0=S+E+I+R=N=<A/ul,

where R? denotes the non negative cone of R* including its lower dimensional
faces.
It can be shown that  is positively invariant with respect to the system (1).

We denote the boundary and the interior of Q2 by 62 and ) respectively.
I11.  Analysis of the Model

We consider the equations of the normalized quantities. For convenience, we
rewrite system (1) in terms of proportions of the individual pigs in each class.
We makgq the transfnnnatinlgl fﬁﬁ%,e :ﬁgl,i = #P andprg:E as the pro-
portions for the epidemiological classes S(f), E(t), I[f) and R(f) respectively.
Differentiating with respect to time f, it is clear that s, e, i and r satisfy the

following system of differential equations

ds _ 4 acsi — |s sm—ﬁ I LrED

dt — N - B B !

de , B;A H

—=acsi— (B+ue—e— — u— v ,

dt o 0

di . A .
E:.ﬁﬁ’—(p"‘”"‘ﬁ]l—l E_ﬂ_m . (2)
dr_ i — r—rDﬁ— —uiD

5 Pt H N M ;
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together with
dv HA H
= N M- N. (2)
AN _ ¢ A, . dN_ s .
From Eq. (3), = ( el vi) NV, setting _d_rn,fnr N f= o implies that

A _ -
&= M+ UL
Substituting fo rﬁ, into system (2) and simplifyingyields;

%ﬁ =(1—p— K)(u+ vi) — acsi— us,

iﬁ = plu +vi)+ acsi_ (B + e, (4)
dt -

di . :

== k(u +vi)+ Be _(p + v+ )i,

ar _ i r,
dt_p _HJ
s+e+i+r=1.

In the absence of influx of infected pigs into the population, (p = k = 0).
Substituting for r of s, e and ¢ thatis, r=1_s e i we reduce system (4)
to the following 3-dimension system

ds_ + 11 _ acsi 5
gt _H - _}JJ

%€ - acsi _(B+upe, (5)
dt

di .
Et=ﬁ£—(ﬁ + U+ )i
System (5), can be studied in the closed set

T={(s,e, )eERI:0=<s+e+i=<1}

where R2 denotes the non negative cone of R? including its lower dimensional
faces.
It can be shown that T is positively invariant with respect to the system (5).

We denote the boundary and the interior of T by ¢T and T respectively. Thus,
system (5) is bounded.
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Equilibria of the model
To compute the equilibrium points of the system (5), we set the right-hand side of system (5) equal to zero and
obtain the disease-free and endemic equilibrium Ey(1, 0,0) and

i x
E, B+mp+u+v) up+u+ ) B+ o+ p+v)—acBt B +mlp+u+v) — acBu

Bac ©aB Bu—(B+mp+u+v)  acBv — acB+u)(p + u + v)
respectively.

Local and global stability of the disease free equilib- rium E,
The Jacobian matrix for the system (5) is given by

D—(aci+,u] (8] v — acs
J=0 aci —(B+ u) acs 0. (6)
0 B —(p+pu+v)

The local stability of the disease free equilibrinm Eo(1, 0, 0) is obtained by eval-
uating the Jacobian matrix (6) at E¢(1, 0, 0) to give

D—,u 0 v — ac
Je,=00 —(8+u) ac 0. (7)
0 B —(p+u+v)

It is clear from the first column that the Jacobian matrix (7) has a negative
eigenvalue —u. The other two eigenvalues can be obtained by reducing the
Jacobian matrix (7) into a 2 x 2 matrix given by

¥ z

Ji — —(B +u) ac . (8)

B —(p+pu+v)

Using the trace-determinant method for stability analysis, we need to show that

tr{Jg,) < 0 and det(Jg,) > o if the equilibrium point Eo(1, 0, 0) is stable.
Thus, from the Jacobian matrix (8), it is clearly seen that

tHde,)=—(B +v+p+ 24 <o0.
Thus, for stability we seek det(Jg, ) > 0.
This gives the expression
det(Jez,)=(p + u + B +yu) — acB > o,
= (p+ u+v)B+ 1) >ach,

ac3 -
(CCRETIET)T(:2ET) B

R ach
T o ur B+

which is the same as

where

It should be noted that the expression for the basic reproduction Ro iscom-
prised of combinations of parameters that can be interpreted as follows:

ais the transmission rate between susceptible domestic pigs and infective ones
and c is the contact rate.

L__ is the effective infectious period.
Pty
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v+ 1s the number of exposed domestic pigs produced by one infectious do-
mestic pig during the effective infectious period.
fsﬁ_ is the exposed stage into the infective stage.

m
JIThu.'-z the endemic equilibrium Ei(s, e, i) expressed in terms of the basic

reproduction number Ry is given by
E g u(p+ pu+ v)(Ro — 1) Bu(Rg — 1)
1 —» 2
Ro Ro[Blp + )+ u(p + u + v)] Ro[Blp + m)+ ulp + u + v)]

The following lemma is used to establish stability of Eo. it is easy to see that
t{Js ) < 0 and det(Jg, ) = 0 if R < 1. Therefore, we have established the
following lemma.

Lemma 3.1. The disease free equilibrium Ep(1, 0, 0) is locally stable if Ro < 1
and unstable if R> 1. Ris called the basic reproduction number [1], defined
as the number of secondary infective cases produced by one primary case intro-
duced into an entirely susceptible population at the disease-free equilibrium. It
is an important parameter that plays a big role in the control of the disease.
The effort to eliminate the disease from the population targets the parameters
that will bring its value to less than one. When the basic reproduction number
is less than unity, the disease-free equilibrium is locally asymptotically stable,
and there is a possibility that the disease will be wiped out of the population.

The global stability of the disease free equilibrium Ej is established fromthe
following theorem below:

O

Theorem 3.2. Suppose all the pigs that enter into the pig population are sus-
ceptible, that is, p + k = 0, then;

(a) thedisease free equilibrium Eo(1,0,0) € T exists for all non-negative values
of its parameters and it is globally asymptotically stable when Ro = 1 and
unstable when Rg > L

(b) if R> 1, solutions to the system (5] starting sufficiently close to disease-
[free equilibrium Eo(1, 0, 0)e T move away from the disease-free equilibrium

Eq except those starting close to the invariant s—axis which approach Eq
along this axis.

(c) if Rg > 1, then system (5) has a unique endemic equilibrium E,(s, e, i).

Proof. We note that, when all new recruits into the pig population are suscepti-
ble, that is, p=k=0, we obtain s = 1 for i = 0 from the first equation of system
(5) . From the second and third equations of system (5), we get e = 0 fori = 0.

Thus, we have the disease free equilibrium Eo(1, 0, 0) € T.
When Ro = 1, Consider the Lyapunov function L = fBe + (8 + u)i Its
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derivative along the solutions of system (5) is

de di
D=B8_+(B+u)_,
dt dt

= (Bacsi — (B + u)(p + u + V)D)+ 28(B + ue,
= (Bacs — (B + u)(p + u + V)i,

Bacs -
B+ u)p+u+v)
=(Ros— 1)(B+uwp+u+v)ifors=1,
= (Ro — DB + u)(p + u + v)i,
= 0ifRo < 1.

—1 (B+up)p + u+ v)i,

I &

O

It is shown that ) <o, if Ro < 1 and the equality, I! = 0 holds when Ro =1
and e = i = 0. For Ro > 1, then I > 0 when s is sufficiently close to 1
except when e = i = 0. The maximum invariant set in {(s,e, i) e T: I = 0}

is the singleton E;. The global stability of Eo when Ry= 1 follows from
the Lyapunov-Lassalle theorem [13]. Thus all solutions paths in T approach

the disease-free equilibrium E; as t — co. This proves that the disease free
equilibrinm Ep is globally asymptotically stable.

Local and global stability of the endemic equilibrium E;

Fy

From the endemic equilibrium E;(s, e, i) expressed in terms of the basic repro-
duction number Rg given by

E,DL ulp+u+ 1)(Ro — 1) Bu(Ry — 1)

Ro Ro[B(p + i)+ ulp + p + V)] RolBlp + )+ u(p + u + v)]
it 1s evident that when R < 1, e and i assume negative values which is not
biologically realistic. This implies that the system has no positive endemic
equilibrium wheng < 1. The positive endemic equilibrium E; is only possible
when R > 1. In order to establish the local stability of the endemic equilibrium
E;, the Jacobian matrix (6) is evaluated at the endemic equilibrium E; to give

oo O

O

_ ach ~1) + U 0 U _ g5
Je, =1 IR o ~(B+ 1) & SO
0 B —(p+u+v)
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The Jacobian matrix (9) has the tr{Jg, ) and det(Jg,) given by

. acBu(Ro —1) -
“e) = R mprar AP
det(Js) = achi(Ro — 1 + 1B+ Wip + u + v)

Ro[B(p + )+ u(p + u + v)]
a2c2B2(Rg — 1) a2e2B2u(Ro — 1)(v — #y U
RSB0+ )+ ulp+ u+ 0] achu (RDLB[p+ W+ plp+u+v)]

From the above expressions, it can be noted thatR o > 1 implies that tr{Jg, ) <
o and det(Jg, ) > 0. Thus, conditions for trace and determinant hold for the
endemic equilibrium Ei to be locally asymptotically stable.

The global stability of the endemic equilibrium E; can be established by
applying the theory of competitive systems [14, 23] , and additive compound
matrices and differential equations [20] for the analysis of the system.

The Jacobian matrix system (5) can be written as

O . O g O
—(aci + y) 0 v —acs an az a3
J=0 ad —(B+ ) acs O=0Oay a2z axsl, (10)
0 B —(p+ p +v) as) asz as3

where g is the corresponding entry of the matrix J.

The second additive compound matrix of the Jacobian matrix (10) is calculated
as follows:

O
J2 = na P
E, = UGnagfzz  a)Gexss afrs H. (11)
—a3n az] Cpz + Cizz
°_(a ) -
—(aci+ B+ 2u acs —U + acs
”iEEl]:D ﬂﬂ —(aci + v+ p + 24) 0 0. (12)
0 act —(B+v+p+2u)

Deftnition: Competitive system. Let x — f(x) be a smooth vector field
defined for x in an open set D C R". The differential equation

® = flx), xe D, (13)

is said to be competitive in Dif, forsome diagonal matrix H = diag(w , uz, ..., un),
where each w; is either 1 or -1, H %=H has non- positive off-diagonal elements
for all x &. If Dis convex, the flow of a competitive system (5) preserves,
for t < o0,the partial ordering in R" defined by the orthant K = (f1, ...,xn) €
R™: uaxi 0=

Let the matrix H be chosen as

1 0 O
H=m =1 o . (14)
0o 0 1
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Then from the matrix H and the Jacobian matrix (6), the following matrix is
obtained

D—(aci+,u] 0 v — acs -
H(Je)H=0 —ac —(B+u) —aes 0. (15)
0 -8 —(p+u+v)

It is observed that the system is competitive in @ with respect to the partial
ordering defined by the orthant K£ (s, e, 8 R? : s ze =,i =¢ .In
Hirsch [14] and Smith [23], it is proved that the three-dimensional competitive
systems that live in convex sets have the Poincarée-Bendixson Property. That
is to say, any non-empty compact omega set that contains no equilibrium must
be a closed orbit. Following [23], the following theorem is stated to help in
establishing the global stability of the endemic equilibrium E;.
Let p(t) with minimal period @ and orbit T'= p(#j: 0 t @ becthe<  }

periodic solution of the competitive system. The definitions stated in [13] are
used to establish the stability of the orbit.

Theorem 3.3. Assume n = 3 and D is convex. Suppose that Eq.(13) is com-
petitive in . Then it satisfies the Poincaré-Bendixson Property.

The endemic equilibrium point E; is globally as totically stable in the inte-
rior of T'so thgtqthe diseasgﬂrem ains e%denﬁg Tl")l,‘lIEI.']E‘ est ahh:t;hed by proving
the Theorem (3.4) below.

Theorem 3.4. Ifp + k = 0, and Ro > 1, then the endemic equilibrium point
E, of the system (5) is locally asymptotically stable in Ti‘“ All solutions with
initial data (1, 0, 0) approach the disease free equilibrium Eq.

Proof It can easily be seen that all trajectories starting from the boundary
8T of T enter T except those on the s-axis which converge to E; along this
invariant axis. Therefore, Eo is the only T limit point in the boundary of T . It

is sufficient to show that E) is globally asymptotically stable in T. Since

gstemt{?] is competitive, as long ade > 1 and E; is locally asymptotically
stable, the result follows from Theorem (3.3) that system (5) has the property
of stability of periodic orbits. This can be obtained from [20] for the asymptotic

orbital stability of a periodic stability of a periodic orbit in a general autonomous
system. Thus, it suffices to prove that the linear non-autonomous system

w'(t) = (JE(p(1))a(t), (16)

is asymptotically stable where Ji] is the second additive compound matrix (12).
From Eq.(16), a linear system with respect to the solution p(#) = (s(1), e(1), it))
is obtained and is given by

wi () = —(acit) + B+ 2u)wn (1) + acs(Dur(t) + (acs(t) — v) wi(t),
wh(t) = Bun(t) — (aci(t) + B+ v) +p + 2u)un(l), (17)
ub(t) = aci(Dwt) — (B +p+ v+ 2p)un(t).
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To prove the asymptotic stability of the system (17), we consider the following
Lyapunov function: 5

Viw (0, w (8),w (0); s(D, e(t), d1)) = sup |w (D), Fﬂ(lw (O + lw (DI

1 2 3 ! , 3
i) (18)

Let the left hand derivative of V (f) be denoted by D, V (t), then the following
inequalities are obtained:

Dilun()| = —(aci(®)+ B+2u) [un(t)] + acs(t) we(t)| + (acs(t) —v) |us(Dls
—(aci(t)+ B+ 2u) [ ()] + 2L2HO D, )4 e 101)

I

e(f) i(t)
Di|un(t)] = Blun(t)|— (aci{t)+ B+ v+ p +2u)|ue()] (20)
Di|ws(t)l = aci() |lw2(t)|— (B + v+ p +2u)| wa(t)l. (21)

Adding Egs. (20) and (21) gives

Di(lun(d] + lus(t))
= Blun(— (B+v+p+2wlwAt)l— (B +v+p +2u)|us(dl,
< Blun (- B+ v+ p+2)(lwe(D] + [ ws(D]), (22)

We also have the following expression
e(i)
D, m(lwzfﬂl + lws(D)),

_ e 2mTen e(t)
= oo o 1o (e @+ lu 0D+ Dl ()] +lw @), (23)

Substituting Eq. (22) into Eq. (23) gives

el
D, ﬁél wu(t)] + lws(O]) (24)
e(t) Te 2 O e(n)
gaﬁlwl[ﬂ|+ o ﬁ—[ﬁ+v+p+2y] E{lwz[m.|.|wj:t]|]é |
25

From Egs. (19) and (25), we have
D V(1) = sup{hi (8, ha(O}V (1).
acs( )il 1)
hilt) = — (aci()+ B + 2u)+ e (26)

e Je 20 -

h(t) = 'B{t] + = D —(B+v+p+2u) (27)
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From the second and third equations of system (5), we have

acs(t)i(t) _ &(1)
o0 e +B+u, (28)
(1)

.}'3%= %+p+v+,u.

Substituting into Egs. (26) and (27) gives

e(1)
= g~ aci(t)— u (29)
e(1)
ha(f) = =T B—u (30)
Let & = min{aci + u, B + u} so that
e (1)
sup{(h(1), h2(0)} = O (31)
Taking @ as a:[ limit, the integral of Eq. (31) is evaluated as follows:
@ z b2

sup{hi (9, ha(O}dt< Ine(t) 0 f6 = — e <0.
1]

This shows that the periodic solution (s(f), e(t), i) is asymptotically stable.
This establishes the fact that the endemic equilibrium is globally asymptotically
stable. |

If there is influx of infected pigs into the population, that is, p + k = 0, we
analyze system (4) and investigate the existence of equilibrium points. System
(4) is reduced to a 3-dimensional system of equations by eliminating r since

r=1— s — e — L This gives

?:(1—3:— K)(u + vi) — acsi — us,

b plu +vi)+ acsi _ (B + ue, (32)
dt

di

5= k(u +vi)+ Be — (p + v+ u)i

System (32) can be studied in the closed set T ={(s,[, 1) € F|L3r t0=s+e+i=
1}where R? denotes the non negativecone of R? including its lower dimensional
faces. It can be verified that D is positively invariant with respect to system
(32). We denote the boundary and the interior of T by éT and T respectively.
Thus, system (32) is bounded. The equilibrium of system (32) is obtained as
follows:

(1—p— K)(u+ vi — acsi — us =0,
plu + vi)+ acsi— (B + e =0, (33)
k(u + vi)+ Be — (p+ v+ p)i=o0.
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From the last equation of system (33), we have

Be=(p+v+ui— ku+ v,
_ (p+ v+ p)i— k(u+ v
5 :

Substituting for e in Eq. (34) into the second equation of system (33) gives

(34)

[ﬂ+p][p+ v+p];— k(u + vi)

pu+ pri+ acsi = 0. (35)

Simplifying Eq. (35) gives

acsi=[((B+ w(p+ v+ u)— pBv — (B +wkv)i— (pBu + (B + ukul /B,
_ [B+mp+v+w)— pBv — (B+wkvli— (pBu+ (B +wku)

6
= apci (36)
Substituting for s in Eg. (36) into the first equation of system (33) gives
[1_ — (u + v — IMJ&M&MM_
I:I

[§ o+ v o) — plu— E.E+f]kg|1—[g§g+;§+gzkgz
CLCT - D!‘

H(i) = ad (B +mp + v+ u) — (B + uk)v]i
+u[(B+ u)p+ v+ pu) — aBe+ (pB + (B + wk)v — acuk)] i— 12[pB + (B + 1)k] 7)
It is noted for p = k = 0, one root is { = 0, and a second root

_#laBe— (B+u)p +v+u)]
ac[(B + w(p + v+ u) — Bv]

(38)

which is positive if and only if

o=afc— (B+u)p+v+u) >0

For 0 < p + k <1, the quadratic Eq. H(i) = o, that is Eq. (37) gives two

values. The negative value that is biologically meaningless and the positiveso-

lution given by J

p[u—tpﬁ+(,ﬁ+p}k}v—aquk}]+p ([o—(pB+(B+w Kv—acuk)]? +4ad B+ p+v+u)— LE+#k'JvI[pﬁ+Lﬁ+mkl
2ac(B+u)p+ v+ —(B+pkiu]

For p, k sufficiently small, we use the binomial approximation (1 + x)'/? e 1+ *

(see Brauer and van den Driessche [3]). From the equation above, we note that

as p — 0,k — 0, the positive root { becomes

i=

lim i= po +ulol
pk=0  2ad(B +u)(p + v+ u) — B

O
0 o, foro<o

= L G9)

Ha
aAB T oT =g T 0 >0
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From the expression above, we have

2ad(B+u)p+v+p) _ (B+ uk)v]i s
2ad{(B+ W(p+v+u) - (B + ukullpB + (B + pk]
0‘{ 1Y

= uo+ ulo| 1+

From Eq.(40), it is clear that
if Ry < 1, so that o < 0, we have

P .H[.Pﬁ + [ﬂ"‘ .u]k]’ (41]
ol
while if Ry = 1, so that o > 0, then
k
- Ho . ulpB + (B + ) ]. (42)
ad(B + w)(p + v+ u) — Bv] |of

We note that the model has a threshold value Rp = 1 for the values of p and k
close to zero. In addition to that, for 0 < p + k < 1, system (32) has exactlyone
endemic equilibrium for all parameter values for which the disease will always
persist in the population. There is no disease free-equilibrium and thus the

model has no basic reproduction numbeiR, for 0 <p + k < 1. However, from
Eqs. (41) and (42) there is a threshold-like behavior in the sense as the values

of pand k go to zero. If Ro <1, endemic equilibrium approaches a disease-free
equilibrium as the p and k go to zero, otherwise if Ry > 1, then for p = 0 and

k = 0, the model has a unique endemic equilibrium Ee.

Local stability of the endemic equilibrium E,
The Jacobian matrix of system (32) evaluated at endemic equilibrium Eg(s,e,i) is given by

D—[aci + 1) 0 (1-p-— kK —HCSD
Jg=0 ai —(g+ ) pv +acs o, (43)
0 B —(p+v+u—kv)

The characteristic equation for the Jacobian matrix (43) is

ABral2+awld+az=0
where
ar =p+B+3u+aci+(1—- Kv

a; = (aci+y)[(B+p+2pu+ (1 —Kv]+ [(B+u)p+up+(1—-Kv— B(pv+acs)]
az = (aci+)[(B+u)p+u+ (1— Kv) —B(pv+ acs)] — aBil(1 — k- p)v— acs]
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It is clear that the constants ai, a2 and a3 are positive. Now, we compute

az — ds
=(aci+ Wp+B+3u+aci+(1— K[(B+p+2u+(1—- K]
+lo+B+3u+aci+ (1 — KB+ wp+u+(1— Kv— Blpr+ acs)]

—{(aci+ (B + wW)(p+ p+ (1 — K)v) — B(pv + acs)] — aBil(1 — k- p)v — acs]}
= 0.

The Routh-Hurwitz conditions (a1 >0, az >0, az >0, amaz > az) for a poly-
nomial of degree three are satisfied and hence the unique endemic equilibrium
Ec(s, e, i) foro <p + k < 1for system (32) is locally asymptotically stable.

3.5 Global stability of the endemic equilibrium E,

In the following, the geometrical approach of Li and Muldowney [18] is used to obtain the necessary and
sufficient conditions that the endemic equilibrium E, is globally asymptotically stable. We first give a brief
outline of this geometrical approach.

Let flx) — x< R" be a C function for xin an open set Dc R Consider
the differential equation

¥ = flx). (44)

Denote by x{t, xp) the solution to 44 such that x(0, x¢) = x. The following
three assumptions are made

(H;) D issimplyconnected;
(H:z) There exists a compact absorbing set K C D.

(H3:) Eq. (44) has a unique equilibrium X in D.

The equilibrium X is said to be globally stable in D if it is locally stable and all
trajectories in D converge to X. For n = 2, by a Bendixson criterion we mean a
condition satisfied by f which precludes the existence of non-constant periodic
solutions of (44). The classical Bendixson’s condition, divf{x) <o for n=2is

robust under C' local perturbations of f. For higher dimensional systems, the
C' robust properties are discussed in Li and Muldowney [18].
A point xp €D is wandering for (44) if there exists a neighborhood of U of

X% and T > o such that Unx(t, 0 is empty for all ¢t > T. Thus, for example,
all the equilibrium and limit points are non-wandering. The following global-

stability principle is established in Li and Muldowney [18] for finite systems in
any finite dimension.
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Theorem 3.5. . Suppose that assumptions (H),(H:) and (H3) hold. Assume

that (44) satisfies a Bendixson criterion that is robust under O local perturba-
tions of f at non-equilibrium non-wandering points for (44). Then X is globally

stable in D provided it is stable.

The following Bendixson criterion is given in Li and Muldowney [18] and
shown to have the robustness required by Theorem (3.6). Let x ,_. P[x]bean[ 7 )«
( ¢ ) matrix-valued function that is & for x £ D. Assume that P-1(x) exists

and is continuousfor xe K, the compact absorbing set. A quantity gzis defined
as

It

g 2=limsup sup 1 u(B(As, x0)))ds (45)

where t—oo ekl 0

B = PrP-' + PJRIP-1, (46)

the matrix Pris obtained by replacing each entry py; of Pby its derivative in
the direction of f, py, and the quantity u(B) is the Lozinski imeasure of Bwith

respect of a vector norm |.| in RV, N= (z"), and is defined by

u(B) = inf U*+hBI—1
h—0+ h

For a simply connected, D, the condition §z < o rules out the presence of any
orbit that gives rise to a simple closed rectifiable curve that is invariant for
(44), such as closed orbits, homoclinic orbits, and heteroclinic cycles as shown

in Li and Muldowney [18]. Moreover, it is robust under C' local perturbations
of fnear any non-equilibrium point that is non-wandering. The global stabil-
ity analysis follows from the following global-stability result proved in Li and
Muldowney [18].

Theorem 3.6. . Assume that the assumptions (H), (H2) and (H3) hold. Then
the unique endemic equilibrium X of system (44) is globally stable in Dif §; =< o0.

Let x = (s, e, i) and let f(x) denote the vector field of system (32). The
Jacobian matrix J =&f/fx associated with a general solution x(f) of system
(32) is given by

O O
—(aci + u) 0 (1— p—K)v— acs
J=10 ai —(B+ ) pv + acs o, (47)
] B —(p+v+u— kv

and its second compound matrix J [2] as follows (see Muldoarney, 1990)

Ja o prv+aecs —(1 — p- Klv + acs O

Jl=0 g Jaz o (48)
(] ai J33
where
Ju = —(aci+ 5 + 2u)
Jrz = —(aci+ p+ 2u + (1 — K)v)
Jiz = —(Brp+r2p+ (11— Buv)
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The proof of the theorem consists of choosing a suitable vector norm | in R3

and a 38 matrix-valued function P (x), such that the quantity g z < 0. We set
P as the following diagonal matrix
H e &

P(s,e i) =diag 1, T

O O
Then PfP-' =diag o7 —F.,7- %

and the matrix B = Py P-! + PJIZIP -1 is given by
|

u;-] 1 [+ ce sl [aes—(1 —p—khui
_H s :L e i a
B=p0 Jo+ T — 0 O [49)
0 ai Jaz +%— 7
This can be written in the following block form
z B B Z
B= 11 12 o
Bay Bz (50)
where
B :-&ac-:+ﬁ+25u] 5 5 el
(pv+acs)i (aes —(1— p— k)i —
B,; = P Bn=
O € O
o — 54 Jas 0
L T
Bz =0 o.
ai é — &+ Ja3

used. We let( 0 vectors in R norm in

. . . r .
The following methn? tst %eer? c}t% E gnd Muldnwng}; E&]; EH%F?:EEH al. [8]is
w, v, w ~ 2 |.]

R? chosen as

|(, v, w)| = max{|ul, |v] +|wl},
and let 4 denote the Lozinskil measure with respect to this norm. The method
is used to estimate the Lozinskil measure u(B) with respect to |.| as follows

u(B) < supi{gi, g2},
where

g1 = m(Bn)+ |Bizl,
g2 = |Bal + m(B:2).

Note that Bi2 hnd By 4re operator norms of Bi2 and Bz with respect to
the I, vector norm when they are regarded as mappings from R? to R, and R?
to R, respectively. u1(B) denotes the Lozinski i measure of the 2 matrix B>
with respect to the I, norm in R2. To compute u1,(B:;), we add the absolute
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value of the off-diagonal elements to the diagonal one in each column of B:2,
and then take the maximum of two sums. The resulting expression is as follows

d 7
pm&ﬂ:—mﬂ+ﬁ+ﬂmpﬂ&ﬂ:£ri-ﬂmhﬂ+2p+h—kmL

B, | = max (pv + acs]:l (acs — (1 — p— k)v)i _ (pv + acs]:l B,] = £¢
e e e i
Therefore, for t>t ,
(pv + acs)i
g1 =—(aci + B+ 2u)+ — (51)
@7 Be
g2 = ST (aci+ p+2u + (1 — k_‘]u]+T, (52)
Rewriting the last two equations of system (32), we obtain
e pu _ (pv+acsi
e ¥ B+u—"] > (53)
g kpy . Be
=+ (p+v+p) -~ —kv = 5 (54)
Substituting Eq.(53) into Eq.(51) and Eq.(54) into Eq.(52) gives
- z
p(B}:E—l—p+sup :EE—aci,—}—cg— aci =i—ﬂ'{,
e e i e
Substituting Eq.(53) into Eq.(51) and Eq.(54) into Eq.(52) gives
- 2
p[B}:E—J—p+5up :Eg—act—}—cg— aci =i—l’ﬁ,
e e i e
for t = £, where M = min,p+ﬂg'+ aci, i + =+ c:;_rci, = U+ P*+ qci.

Since the epidemic persists in the community when Ry > 1, then the solu-
tion (s(t), e(?), i(t)) to (32) with (s(0), e(0), {0¥ D, where D is a compact
absorbing set, we have

t i
1) u(B) dt =" Wy at+ Y uBde< Yog O —
7 i G P
0 0 i

Eﬂ.’uc]h implies that § < — M/2 < o, which completes the proof of Theorem
3.6
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I'V.Numerical simulation
In this section, numerical simulations are used to verify the analytical results for the parameter values
using Matlab computer software program. Some of the parameter values have been gleaned from
epidemiological literature while other parameters have been allowed to vary within the possible intervals of time.
Estimate of the relevant model parameters are given in Table 1 below.

Table 1: Parameter estimates for ASF model (per day)

Symbol Biological meaning Value  Source

M Per capita natural mortality rate of domestic pigs 0.0035 [2]

v Disease related mortality rate 0.25 [7]

A Per capita recruitment rate into susceptible population 9.275  [Estimated]
p Rate of progress from infective to the removed class 0.2 Estimated
a Disease transmission rate 0.5 [5]

c Contact rate 10 Estimated
B Transfer rate between the exposed and the infective 0.35 [2]

p Proportion of exposed pigs that enter into the population 0.3 [Estimated]
k Proportion of infective pigs that enter into the population 0.02 [Estimated]

With influx of infective pigs into the population, the results in Figure 1 show that the number of
susceptible pigs decreases rapidly while the number of exposed and infective pigs decreases. However, the
exposed and infective populations never go to zero and thus its not possible to attain the disease-free
equilibrium. Thus there is an endemic equilibrium as shown in Figure 2 when there is influx of infected pigs.

A graph of population change with time t

T T T T T T
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2003

b

F7)
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Figure 1: Population size against time with influx of infected population.

Without influx of infected pigs, the model results shown in Figure 3 indicate a sharp decrease in
susceptible population in the early stages of the epidemic but later increase gradually. There is a decline in both
the exposed and infec- tive population classes since all the recruits are susceptible. There is an increase in the
removed population but later attains a disease-free equilibrium as pre-
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Figure 2: Population size against time for ASF with influx of infected pigs.

sented in Figure 4. In this case, it is possible to contain the disease within the population.

A graph of population change with time
1000 T T T T T T
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Figure 3: Population size against time for ASF with influx of only susceptible pigs.
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Figure 4: Population size against time for ASF with influx of only susceptible pigs.

V. Discussion of results

The model is first studied without the influx of exposed and infective domestic
pigs, that is, p = k = 0. The model results reveal that the threshold value
for which the disease can be eliminated from the community is attainable. The

Equilibria of the model (E; and E;) are obtained and their stability estab-
lished. The global stability for the disease-free equilibrium is established by
constructing a suitable Lyapunovfunction. It is found out that the disease-free
%uilihrium is globally asymptotically stable # o< 1 and unstable ifRo > 1.

is means that on average if an infectious pig produces less than one new
infectious individual in its entire life time as an infectious, then the infection
cannot grow. The endemic equilibrium E, is found to be locally asymptotically
stable if R > 1. Using the theory of compound matrices, competitive systems

and periodic orbits, it is established that ifRy > 1, the endemic equilibrium E,
is globally stable and the disease persists in the community.

The model is then considered with the influx of exposed and infective indi-
viduals. It is revealed that there is no disease-free equilibrium for p + k-= 0 and
only the endemic equilibrium E. exists, indicating that the disease persists in
the community. The model results show that the disease cannot be eliminated
because of the constant influx ofthe exposed and infective pigs. In this case, the
basicreproduction number is not a good basis for the discussion for elimination
of the disease unless the fraction of domestic pigs that enter into the population
when exposed and infective becomes zero.
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In order to reduce the disease, it is imperative that the basic reproduction

number B should be less than unity. Public health interventions should be
focused on the epidemiological parameters that constitute the basic reproduc-

tion number. There is need for early detection of any epidemic outbreak and
isolation of the exposed and infective pigs. Isolation of the exposed and infec-
tive domestic pigs from the rest of the herd will lower the contact rate ¢ and
transmission rate a,and also increase the value of the removal rate of infective

pigs p. This will reduce the value of the basic reproduction numbeR, to less
than unity, a necessary condition for disease control.

Numerical simulation reveal that with influx of exposed and infective pigs,
the disease is maintained at an endemic equilibrium. The susceptible, exposed
and infective populations reduce sharply as the number of the removed grows.
In the absence of the influx of exposed and infective pigs into the population,
the susceptible population reduces in the early stages of the epidemic but later
gradually grows. The number of the exposed and infective pigs continuously
reduces to zero and thus a disease-free equilibrium can be attained.

V1.Conclusion

In conclusion, the significance of influx of exposed and infective domestic pigs, and their products from
one region to another needs to be recognized in the spread and control of ASF, and should be given special
attention by veterinary service providers to ensure that the disease is reduced and eventually eradicated in the
community. Despite the efforts to control the spread of ASF, there are still challenges for vaccine development
and ASF has remained a threat worldwide. The control and prevention of the disease needs a combination of
strategies. It is established that if a population has an influx of exposed and infective pigs, the population can
never have a disease-free equilibrium.

The disease can be controlled based on the appropriate model parameters that make the value of the
basic reproduction number R, less than unity. Thus, policies on preventive measures should be strengthened in
such a way that influx of pigs within and across regional boundaries is restricted and ASF tests should be carried
out.

Furthermore, since ASF eradication remains a challenge to most communi- ties, there is need to
strengthen control strategies at hand as well as looking for more new ones since currently the incidence rate of
ASF is at a high increase. Thus, from the results of the study, we recommend that:

(a) Efforts to reduce close contacts among the exposed and infective and the susceptible pigs in the population
should be put in place as this would reduce the transmission and contact rates.

(b) Restrictions on the inflow of pigs and their products from affected ASF areas to non-affected ASF areas
should be emphasized by policy makers.

(c) Good disease awareness and campaigns in communities should be empha- sized for early detection and
management of the disease so that early im- plementation of effective control measures is put in place.

(d) Properly constructed pig pens should be encouraged to ensure that there are no contacts between exposed
and infective scavenging or free-roaming pigs coming into contact with healthy domestic pigs.
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