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Abstract: In this paper, in a host-parasite system that incorporates functional response and the growth rates 

would regulate the interaction among the species that might be induce the populations to approach steady states 

were investigated. To check the biological feasibility of the system, the positivity and boundedness of solutions 

of the model within deterministic environment are discussed. Moreover, the stability of equilibrium point of 

deterministic model is investigated. Finally, some numerical simulations to illustrate the analytical results were 

conducted. 
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I. Introduction 
It has been the general observation that populations can sometimes undergo drastic changes in their 

abundance that are not only unexpected but often are equally difficult to explain easily either theoretical or 

empirical [1]. The rationale behind modeling population growth is to analyze the reason which causes such 

abrupt and seemingly bizarre changes in the population size. 

Recently, the effects of parasites on host population dynamics has became attract the attention of 

researchers in line with how the parasite induced diminution of host productiveness and survival rates changes 

the host population dynamics and how such dynamics are applied to predict terrorization  to biodiversity in 

general and endangered species in particular [2–4].  

Mathematical model plays an ever more important role in the study of ecology [14], which provides 

understanding of the underlying mechanisms that species interact and in line with the influence that the parasite 

changes the fitness of the interaction which can affects directly or indirectly, and, in the process, it suggests to 

take a measure. It is now widely believed that parasites were responsible for a number of extinctions on large 

land masses .As a result, ecologists acknowledge the importance of parasites in the dynamics of population.  

Mathematical models are increasingly used to guide public health policy decisions and for controlling 

infectious disease. It is based on the specific property of population growth, the spread rules of infectious 

diseases, and the related social factors to construct mathematical models reflecting the dynamic properties of 

infectious diseases, to analyze the dynamical behavior and to do some simulations. Aim of ecological modeling 

is to understand the prevalence and distribution of a species, together with the factors that determine incidence, 

spread, and persistence [2].Understanding disease dynamics across hosts is an essential first step in 

understanding and articulating those conditions under which new diseases can emerge from [3].  

General host-parasite models may be judged on several counts, especially on whether the biological 

assumptions made are valid and whether sufficient assumptions have been made for the outcome to indicate the 

roles of parasitism in natural interactions [7-10]. It is also important that the model is 'useful' which of course 

depends on the objectives in mind. 

Host -parasite interactions have long been the subject of wild interest in the bio mathematical literature. 

In addition to motivating the models of Anderson and May [1], the analogy has been used to develop theory for 

how parasites interact with each other within hosts. Parasites can mediate apparent competition between 

alternative hosts. Additionally, due to tradeoffs between competitive ability and anti-parasite defenses in hosts, 

parasites can act as keystone species, promoting host species diversity by selectively targeting competitively 

superior host species [7,8]. The classical model for a prey/Host population of density N and a parasite/predator 

population of density P be written as; 
𝑑𝑁

𝑑𝑡
= 𝑟𝑁 − 𝑝𝑁𝑁𝑝 , 

                                                      
𝑑𝑁𝑝

𝑑𝑡
= 𝑐𝑝𝑁𝑝𝑁 − 𝑑𝑝𝑁𝑝 ,                                              (1.1) 

Where 𝑟 -host per capita rate of increase, 𝑁 -number of host, p-predation rate, 𝑁𝑝 −number of prey/hosts killed 

by the predator or parasite, c-host to predator conversion rate. 
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Now, incorporating this classical model with response we can write as; 
𝑑𝑁

𝑑𝑡
= 𝑔(𝑁) − 𝛼(𝑁,𝑃)𝛿, 

                                                       
𝑑𝑃

𝑑𝑡
= 휀𝛼(𝑁,𝑃)𝛿 − 𝜎𝑃,                                                  (1.2) 

Where g(N) is the growth rate of the host population in the absence of parasite. The functional response 

𝛼(N, P) represents the instantaneous rate of host reduction per parasite (infection by parasite). The constant 

휀 describes the efficiency of the parasite in infecting host and converting into parasite offspring, while 𝜎 denotes 

the food independent parasite mortality rate. 

Since the famous work of Lotka and Volterra [4], there has been extensively investigation on the 

dynamics of such models.  In these works, the functional response, quantifying the amount of host consumed 

per parasite per unit time, plays an important role in host-parasite dynamics. 

Functional responses are conventionally modeled as host-dependent, where the host consumption rate 

by an average parasite is only a function of host density alone. As noted in [4, 22-24], the derived functional 

response maybe host-dependent under the assumption of spatially homogeneous distributions of both parasite 

and host. However, when the spatial structure of one or both of the interacting populations are involved, it 

would be more plausible to take the parasite-dependent functional form, where both parasite and host densities 

affect the response.  

Recently, parasite or dependent responses, a terminology taken from [16-20], have received increasing 

support from theoretical and empirical study in ecology. Since parasite behavior resembles that of a predator, 

i.e. the interaction ends with the ‘elimination’ of the host. Infective offspring are produced shortly after 

emergence of the vermiform from the host cell. Infection by a single parasite is presumably enough to take life 

of a host. Based on these features, we chose to explore the system dynamics starting with the modification of the 

traditional Lotka–Volterra predation model [4] here named model of host–parasite system in which this model is 

modified in recent paper. 

The paper is structured in the following manner. In the next section, basic assumption of the model was 

considered and the scaled systems which can be used for easier analyze were presented. In section 3 the 

positivity and boundedness solution of the system and stability analysis of equilibrium points are will be 

discussed. Finally, numerical examples are carried out and conclusion of the paper with a brief discussion is 

given in the last section. 

 

II. Basic Assumption And Model Formulation. To 
Mathematical model plays an ever more important role in the study of ecology and epidemiology [5, 

21], which provides understanding of the underlying mechanisms that influence the spread of disease, and, in 

the process, it suggests control strategies. 

Define 𝑌(𝑡) and 𝑍(𝑡) to be the magnitudes of the host and parasite populations, respectively at time t. 

In this paper, the continuous population growth, where generations overlap completely was assumed that can be 

described by differential equations. For instance, protozoan and helminth parasites exhibit continuous time for 

their growth. 

All parasitic species are capable of multiply infecting a proportion of the host population and that the 

per capita rates of infected hosts are altered by the number of parasites they port would be assumed. The precise 

functional relationship between the number of parasites harbored and the host's chances of surviving or 

reproducing varies greatly among different host-parasite associations [20-23]. The rate of parasite induced host 

mortalities may increase linearly with parasite burden or as a logistic or power law function.  

In the majority of host-parasite system it appears to be the death rate rather than the reproductive rate 

of the host which is influenced by parasitic infection. For instance, many parasitic arthropods also decrease the 

reproductive power of their hosts, and in certain cases complete parasitic castration occurs [11-13]. 

Accordingly, the majority of our models assume that the parasite increases the host death rate. 

Attention is given to the population consequences of parasite induced reduction of host reproductive potential. 

The two basic equations, for 𝑑𝑦/𝑑𝑡 and 𝑑𝑧/𝑑𝑡, are constructed from several components, each of 

which represents specific biological assumptions.  

In this paper, the rate of growth of the host population is simply determined by the natural intrinsic rate 

of increase in the absence of parasitic infection minus the rate of parasite induced host mortalities. Both the host 

reproductive rates, and the rate of ‘natural’ mortalities, are represented as constants unaffected by density 

dependent constraints on population growth. The term 'natural' mortalities to encompass all deaths due to causes 

other than parasitic infection, e.g. predation and senescence as described in (1.1). 

Omission of density dependent constraints on host population growth is deliberate. We recognize that 

in the real world host population growth would be limited by, among other factors, intra-specific competition for 

finite resources. Since the aim of this study, however, is to provide qualitative insights into the mechanisms by 
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which parasites regulate host population growth and such simplification clarifies predictions of biological 

interest. 

Moreover, if the parasite fails to control host population growth, exponential increase of the host 

population occurs until resource limitation results in the gradual approach to a carrying capacity.  

The following Lotka-Volterra system with exponential growth (for host) and decay (for parasite) terms, 

as well as  incorporating with carrying capacity to host species and  Holling type I functional response defined 

as;  
dy

dt
= r2y(1 −

y

k2
) – εyz ; 

                                                
 dz

dt
= −∂z + εkyz                                             (1.3) 

This model is structurally unstable but it can be used as a ground work for a more realistic representation. 

To model the parasite induced host-parasite system with Holling type II functional response to the system the 

following assumptions are considered: 

(a) In absence of parasite the host population grows logistically with intrinsic growth rate r2 and environmental 

carrying capacity k2. 

(b) Infected host population is not in a state of reproduction and does not compete for the resource. 

(c)The interaction between parasite and the host is of Holling type-II form. This combination of functional 

forms is taken because the capturing of infected host is easier than the susceptible host. 

(d) The number of encounter parasite with the host availability is proportional to the density of the host. 

(e) The proportionality constant characterizes the ability of the parasite to identify the searching of host. 

With the above assumptions, a system (1.3) was modified and formulates the model as: 

                                                     
𝑑𝑦

𝑑𝑡
= 𝑟2𝑦  1 −

𝑦

𝑘2
 −

𝛽2𝑦𝑧

𝛼2+𝑦
 

                                                               
𝑑𝑧

𝑑𝑡
= −𝜇𝑧 +

𝛽3𝑧𝑦

𝛼3+𝑦
                                                        (1.4) 

Where constants  𝛽𝑖′𝑠 maximal attacking rate of parasite for susceptible host ,i.e., the parasitic utilization 

efficiency (part of the functional response), 𝛼𝑖′𝑠 is the half saturation constant, 𝜇 constant death rate of the 

population of parasite, 𝑟2 basal growth rate of the population of host, 𝑘2-size of the carrying capacity of the 

environment of host populations.  

To determine which combinations of parameters control the behavior of the system, dimensionalzing the system 

(1.4) was carried out, then after manipulation the system (1.4) takes the form; 
𝑑𝑦

𝑑𝑡
= 𝑦 − 𝛿𝑦2 −

𝛽𝑦𝑧

1+𝜃𝑦
; 

                                                   
𝑑𝑧

𝑑𝑡
=  −𝑘𝑧 +

𝛼𝑦𝑧

1+𝜃𝑦
;                                                (1.5) 

 

III. Dynamical Behaviour Of The System 
Since the state variables y and z represent population size, positivity implies that they never become negative. 

The boundedness may be interpreted as a natural restriction to growth as a consequence of limited resources. 

Positivity and boundedness of the solution of the system 

In this section, we first discuss some basic dynamical properties of the deterministic model, which is subjected 

to positive initial conditions; 𝑦 (0) ≡ 𝑦0> 0,   z (0) ≡ z0> 0. The following lemma was stated and verified as 

follows.                         

𝑳𝒆𝒎𝒎𝒂 𝟏 . Let (𝑦 (𝑡), 𝑧(𝑡)) be the solution of system (1.4) with initial condition. Then (y (𝑡), z (𝑡)) is positive 

and ultimately bounded for all 𝑡 ⩾ 0. 

Proof:  First, let us consider z(𝑡) for 𝑡 ⩾ 0. From the equation of system (1.4), such that  
dz

dt
= −μz +

β2yz

α3+y
 , 

By separation of variables, this equation becomes; 

dz

z
=  −μ +

β
2

y

α3 + y
 dt 

Integrating both sides, we can get; 

z (𝑡) ≥ z(0)exp   − 𝜇 +
β2y(s)

α3+y(s)
 𝑑𝑠

𝑡

0
 >0 

Therefore, with the given positive initial condition we have that 𝑍(𝑡) > 0 for all 𝑡 ⩾ 0 

 For    
dy

dt
= r2y(1−

y

k2
)  −

β2yz

α2+y
  , to show y (𝑡)> 0 for t> 0; 

Using theory of differential equation and with similar procedure; the solution of the system (1.4) can be solved 

analytically and becomes; 

𝑌(𝑡) = 𝑦(0) exp  𝑟  1−
𝑦 𝑢 

𝑘2
 −

𝛽2𝑧(𝑢)

𝛼2+𝑦(𝑢)
 

𝑡

0
𝑑𝑢 > 0. 
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Hence, it is non-negative. 

To show that the systems are ultimately bounded, 

The system (1.4) can be written as using system of differential equations Y =F(Y) together with Y(0) =𝑌0 ∈ 𝑅+
2 , 

where 𝑌 = (𝑦, 𝑧), F= 𝐹1,𝐹2 
𝑇,𝐹𝑖 𝑌 = 𝐹𝑖 𝑦, 𝑧 , 𝑖 = 1,2 with 𝑦0 ∈ 𝑅+

2 ,say the solution of (1.4),𝑦(𝑡) = 𝑦(𝑡, 𝑦0),is 

such that  for all t>0. 

 From (1.4), we have 
𝑑𝑦

𝑑𝑡
≤ 𝑟2𝑦 −

𝑟2

𝑘2
𝑦2. By assuming 𝑘2 = 1 we can treat this inequality as; 

𝑑𝑦

𝑑𝑡
≤ 𝑟2𝑦 − 𝑟2𝑦

2 .This become after some algebraic manipulation, 𝑦(𝑡) ≤
1

1+𝑒−(𝑟2𝑡+𝑎1). Since 𝑎1  is arbitrary 

constant and  𝑦(𝑡) =  𝑦0 at 𝑡 = 𝑡0. Hence we can obtain 𝑦(𝑡) ≤
1

1+
1−𝑦0
𝑦0

𝑒−𝑟2(𝑡+𝑡0)
. 

 For 𝑡 → ∞, 𝑦(𝑡) ≤ 1. This indicates that boundedness, because the number 1 is constant. 

Moreover, assuming that k= 𝑦 + 𝑧 and finding the derivative of 𝑘 with respect to t along with the solution of 

the system above, 

We get; 
𝑑𝑘

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
+

𝑑𝑧

𝑑𝑡
 =r2y  1 −

y

k2
 − μz  . 

Let multiply 𝑘 by  μ and add with its derivatives, then we can obtain, 
𝑑𝑘

𝑑𝑡
+ μk ≤(𝑟2 + μ)y(t) ≤ (𝑟2 + μ). 

Now, this leads us to get  𝑘(𝑡) ≤
(𝑟2+𝜇 )

𝜇
+ 𝑎𝑒−𝜇𝑡 , where a is arbitrary constant and taking the limit of this system 

as  𝑡 → ∞ we get that  𝑘(𝑡) = 𝑦(𝑡) + 𝑧(𝑡) ≤  
(𝑟2+𝜇)

𝜇
. Therefore,  𝑧(𝑡) ≤

(𝑟2+𝜇)

𝜇
 . Taking 

(𝑟2+𝜇 )

𝜇
=𝑙, where 𝑙 is 

constant. Thus 𝑧(𝑡) is ultimately bounded. 

 

3.1. Steady states  
The steady states of the system after scaling have the following equilibrium points; 

(i) 𝐸0(0,0)-washed out of the species. 

(ii) 𝐸1(
1

𝛿
, 0)-the host species live up to certain time t, 

(iii) 𝐸3   
𝑘

𝛼−𝜃𝑘
,
𝛼(𝛼−𝑘(𝜃+𝛿)

𝛽 ((𝛼−𝜃𝑘 )2   exists when  𝛼 > 𝑘(𝜃 + 𝛿),this is the coexistence of the populations. 

Community matrix  

To analyze the stability of the model we determine the community matrix called Jacobian matrix as follow; 

Let 𝑓(𝑦, 𝑧) = 
𝑑𝑦

𝑑𝑡
and 𝑔(𝑦, 𝑧) =  

𝑑𝑧

𝑑𝑡
     , then 

J= 

𝜕𝑓

𝜕𝑦
       

𝜕𝑓

𝜕𝑧

𝜕𝑔

𝜕𝑦
       

𝜕𝑔

𝜕𝑧
  
       but 𝑓(𝑦, 𝑧) =   𝑦 − 𝛿𝑦2 −

𝛽𝑦𝑧

1+𝜃𝑦
      and      𝑔(𝑦, 𝑧) = −𝑘𝑧 +

𝛼𝑦𝑧

1+𝜃𝑦
 

Thus, 

 

J= 

𝜕𝑓

𝜕𝑦
       

𝜕𝑓

𝜕𝑧

𝜕𝑔

𝜕𝑦
       

𝜕𝑔

𝜕𝑧
  
  = 

1 − 2𝛿𝑦 −
𝛽𝑧

 1+𝜃𝑦  2

−𝛽𝑦

1+𝜃𝑦
𝛼𝑧

 1+𝜃𝑦 2 −𝑘 +
𝛼𝑦

1+𝜃𝑦

  

 

 

3.2. Qualitative analysis of the model. 

3.2.1. Local stability of steady state 

The system has three non negative steady states. The non –negative equilibriums of the system was listed in 

section 3.1.above. 

The following results can be observed for the system based on the equilibrium points. The vanishing equilibrium 

point always exists. 

𝑳𝒆𝒎𝒎𝒂 𝟐. 
i. The trivial equilibrium point is saddle-node (Unstable).  

Proof:  The characteristic equation at the  𝐸0  0,0  is (1-𝜆) −𝑘 − 𝜆 = 0.  

The eigenvalues are 𝜆 = 1,−𝑘. So, 𝐸0(0,0) is unstable which is saddle in nature . This indicates that there is 

instability for the host and stability for the parasite, since the eigenvalues are 𝜆1 > 0 𝑎𝑛𝑑 𝜆2 < 0. 

ii. 𝐸1(
1

𝛿
, 0) is locally asymptotically stable if 𝛼 < 𝑘(𝛿 + 𝜃) holds otherwise it is unstable. 

Proof:  The characteristic equation at the  𝐸1(
1

𝛿
, 0) is; 

      (-1-𝜆)  
𝛼

𝛿+𝜃
− 𝑘 − 𝜆 = 0.  
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The eigenvalues are  𝜆 = −1,
𝛼

𝛿+𝜃
− 𝑘, 

 So the equilibrium  𝐸1 is locally asymptotically stable if  𝛼 < 𝑘(𝛿 + 𝜃) holds otherwise unstable. 

iii. 𝐸3(𝑦∗, 𝑧∗)  , which is the coexistence is stable if 
𝑘 𝛼−𝑘 𝜃+𝛿  

𝛼
> 0 

 Proof:  The characteristic equation at𝐸3  is: 

              det(𝐽3 − 𝜆𝐼) = 0, in this case we have the following;   

         𝜆2 − 𝜆𝑣 + 𝑢 = 0, where 𝑣 = −  2𝛿𝑦∗ +
𝛽𝑧∗

 1+𝜃𝑦∗ 2 −
𝛼𝑦∗

1+𝜃𝑦∗
+ 𝑘 − 1 ; 

After some algebraic manipulation, we get; 

 

𝑣 =
− 2𝛼𝛿𝑘 − 𝑘 −𝑘𝜃 + 𝛼  𝜃 − 𝛿  

𝛼 𝛼 − 𝑘𝜃 
 

𝑣 =
−𝑘 2𝛼𝛿 −  −𝑘𝜃 + 𝛼  𝜃 − 𝛿  

𝛼 𝛼 − 𝑘𝜃 
 

𝑢 =
𝛼𝛽𝑦∗𝑧∗

 1 + 𝜃𝑦∗ (1 + 𝜃𝑦∗)2
+  

𝛼𝑦∗

1 + 𝜃𝑦∗
  1 − 2𝛿𝑦∗ −  

𝛼𝑦∗

1 + 𝜃𝑦∗
 

𝛽𝑧∗

 1 + 𝜃𝑦∗ 2
+ 2𝛿𝑘𝑦∗  +

𝛽𝑘𝑧∗

 1 + 𝜃𝑦∗ 2
− 𝑘 

 

𝑢 =
𝑘 𝛼 − 𝑘 𝜃 + 𝛿  

𝛼
 

Thus,  

𝜆1 =
𝑣+ 𝑣2−4𝑢

2
   and  𝜆2 =

𝑣− 𝑣2−4𝑢

2
  

 

Using the trace determinant (T-D) criteria, that is T < 0 and 𝑇2− 4D >0, we have two negative eigenvalues 

if 𝐷 > 0, this holds true if𝛼 > 𝑘 𝜃 + 𝛿 . 
Hence, under the set criteria the steady state is stable. 

 

3.2.2. Global stability of the steady state 

Here, the stability analysis of the model (1.4) is conducted using suitable Lyapunov functions method and the 

results are presented in the form of theorems followed by their proofs as follows. 

Theorem 1: The equilibrium point  𝐸1 is globally asymptotically stable. 

Proof:  Consider the Lyapunov function derived from the integral form 

                                          
u−𝑥∗

𝑢

𝑥

𝑥∗
𝑑𝑢 . 

Now, let  𝑣 y, z =  𝑦 − 𝑦∗ − 𝑦∗𝑙𝑛  
𝑦

𝑦∗
  .  

On differentiating 𝑣 with respect to  𝑡 and after substituting expression for  𝑑𝑦/𝑑𝑡 gives  

             
𝑑𝑣

𝑑𝑡
  =   

y−𝑦∗

y
  

dy

dt
  

             
𝑑𝑣

𝑑𝑡
  =   

y−𝑦∗

y
  𝑟2𝑦  1 −

𝑦

𝑘2
 −

𝛽2𝑦𝑧

𝛼2+𝑦
  

                   =  𝑦 − y∗  −
𝑟2

𝑘2
 (y− y∗) 

                   = −
𝑟2

𝑘2
 y − y∗ 2 < 0; 

Thus, 
𝑑𝑣

𝑑𝑡
< 0 i.e., 𝑣 is positive definite and also 𝑣(𝑦∗, 𝑧∗) = 0. Therefore  𝐸1 is globally asymptotically stable. 

Theorem 2: The steady state  𝐸3  is globally asymptotically stable if the condition 𝑠 < 𝛽2/𝛽3is satisfied. 

Proof: Consider the Lyapunov functions as  𝑣(𝑦, 𝑧) = (𝑦 − 𝑦∗ − 𝑦∗𝑙𝑛
𝑦

𝑦∗
) +𝑠(𝑧 − 𝑧∗ − 𝑧∗𝑙𝑛

𝑧

𝑧∗
), where s is 

some positive constant assumed. 

Now, the differential of  𝑣 with respect to t and after some algebraic manipulations reduces to the following 

form: 

         𝑣 =  
y−y∗

y
  

dy

dt
 +𝑠  

z−z∗

z
  

dz

dt
  

             =   
y−y∗

y
  𝑟2𝑦  1 −

𝑦

𝑘2
 −

𝛽2𝑦𝑧

𝛼2+𝑦
 + 𝑠  

z−z∗

z
  −𝜇𝑧 +

𝛽3𝑧𝑦

𝛼3+𝑦
              

             = −   𝑦 − 𝑦∗ 2  
𝑟2

𝑘2
+ d  +  𝑧 − 𝑧∗  𝑦−𝑦∗ 

1

𝛼3+𝑦
(𝑠𝛽3 − 𝛽2), d=

𝛽2𝑧
∗

𝛼2+𝑦
 

 

Observe that in the expression for   𝑣 , the term   −  𝑦 − 𝑦∗ 2   is negative, where as the expression 

   𝑧 − 𝑧∗  𝑦−𝑦∗ 
1

𝛼3+𝑦
 is positive.  

Thus, it is straight forward to conclude that  
𝑑𝑣

𝑑𝑡
< 0 if the condition𝑠𝛽3 − 𝛽2 < 0 holds true.  
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That is,𝑠 < 𝛽2/𝛽3. 

Therefore, the interior equilibrium point is globally asymptotically stable under the set criteria. 

 

IV. Numerical simulations 
For substantiation of our earlier discussed analytical results, we here would like to present some numerical 

replications with the help of some software package.  

 
Figure 1: The long dynamics of the two species in which host dominates over the parasite with positive initial 

conditions. 

The value of the parameter is; 𝛿=0.3720, 𝛽=0.1720, 𝜃 = 0.0560 ,k=0.0280, 𝛼 = 0.0440. 

 

 
Figure 2: The long dynamics of the population dominated by the dependent species. 

The value of the parameter is; 𝛿=0.1000, 𝛽=0.7720, 𝜃 = 0.1250,k=0.0560, 𝛼 = 0.0310 

 

 
Figure 3: the two populations exist together for a long dynamics. 

The value of the parameter is; 𝛿=0.9030, 𝛽=0.9470, 𝜃 = 0.4440,k=0.4280, 𝛼 = 0.0190 

 

 
Figure 4: The parasite dominates over the host population 

The value of the parameter is; 𝛿=0.9030, 𝛽=0.9470, 𝜃 = 0.1780,k=0.0340, 𝛼 = 0.0560 
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Figure 5: The dependent species dominates the host population. 

The value of the parameter is; 𝛿=0.3720, 𝛽=0.9660, 𝜃 = 0.1000,k=0.0280, 𝛼 = 0.0440. 

 

 
Figure 6: The coexistence of the two populations for long dynamics with different initial conditions. 

The value of the parameter is; 𝛿=0.3720, 𝛽=0.1720, 𝜃 = 0.2440,k=0.0280, 𝛼 = 0.0940. 

 

V. Result and Conclusions 
In this paper, a two dimensional host-parasite system consider for investigation. Based on the 

assumptions mathematical model was formulated. The validity of the model was conducted. To have biological 

relevance, we have should ensured that for any finite time, a unique solution to the model exists and that state 

variables should always be non-negative and ultimately bounded.  The steady states are evaluated for the 

purpose of stability analysis. The stability analyses of the steady state were investigated. Simulation study is 

conducted to support the analytical results. Moreover, the following conclusions were drawn. 

Figure 2, 4, 5 shows that when the value of is 𝜃 lies between 0.1 and 0.2 and 𝛽 is relative large, the 

parasite dominates the host population. That is, when the half saturation rate or handling rate of time per unite 

time of the host lies between 0.1 and 0.2 and the parasitic utilization efficiency (part of the functional response) 

is somehow large as shown in the figure.    

Moreover, when the parametric value of is less than 0.1 the host population dominates over the 

dependent species which is shown as in figure 1. 

But when this parameter is greater than 0.2 the populations exist together for a long time as shown in 

figure 3 and 6 

From the figures one can deduce that, with the given parameters chosen when the number of parasite 

population exceeds the number of its host fitness there will be a decline of host species as observed. Moreover, 

the species behave asymptotical behavior which was indicating in the figure as time become large. Beside this, 

the models contain the central assumption that the parasite increases the rate of host mortalities. The parasite 

induced changes in this rate are formulated as functions of the parasite numbers per host. The parameters 

influencing the ability of the parasite to regulate the growth of its host’s population were not completely 

mentioned here, this is our further investigation.  

The population models of host-parasite interactions are all characterized by the central assumption that 

parasites cause host mortalities. In particular, we have assumed that the net rate of such mortalities is related to 

the average parasite burden of the members of a host population. Species which exhibit such characteristics may 

in certain circumstances play an important role in regulating or controlling the growth of their host population.  

In this paper, in conclusion, the researcher has demonstrated that the population processes are of 

particular significance in stabilizing the dynamical behavior of a host parasite interaction and enhancing the 

regulatory influence of the parasite. 
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This study can be extended by considering other functional response curves. That is limit cycle that leads to 

periodic solution and bifurcations condition will be our next investigation. 
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