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Abstract 
Singular two-point boundary value problems arise in different areas of applied sciences such as engineering, 

physics and thermal management. Numerous methods like DTM, HAM and MVIM have been applied to determine 

solutions of these problems that require additional computational work since all boundary conditions are not 

included in the canonical form. This research investigated solutions for the problems in a direct way both 

numerically and analytically using the modifications of the decomposition method. 

Symbolic programming was employed to handle linear and nonlinear STPBVPs both analytically and 

numerically. Examples were solved and analyzed using tables and figures for better elaborations where 

appreciable agreement between the approximate and exact solutions was observed. All the computations were 

performed using MATHEMATICA and MATLAB. 
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I. Introduction 
Background of the study 

A boundary value problem specifies values or equations for solution components at more than one point in the 

range of the independent variable 𝑥.  

The commonly existing problems in various fields of studies mentioned earlier lead to singular BVPs of the form: 

𝑢′′(𝑥) + 𝑝(𝑥)𝑢′(𝑥) + 𝑞(𝑥)𝑓(𝑢(𝑥)) = 𝑟(𝑥), 𝑥 ∈ (𝑎, 𝑏)                                     (1.1) 

subject to a boundary condition with at least one of the functions 𝑝(𝑥), 𝑞(𝑥) and 𝑟(𝑥) have a singular point. For 

example, when  𝑝(𝑥) = 𝑟(𝑥) = 0, 𝑞(𝑥) = −𝑥−1/2 and 𝑓(𝑢(𝑥)) = [𝑢(𝑥)]3/2 , (1.1)  is known as the Thomas-

Fermi equation given by the singular equation 𝑢′′ = 𝑥−1/2𝑢3/2 which arises in the study of electrical potential in 

an atom.  

The Adomian decomposition method (ADM)is a well-known systematic method for practical solution 

of linear or nonlinear and deterministic or stochastic operator equations, including ODEs. The method is a 

powerful technique, which provides efficient algorithms for analytic approximate solutions and numeric 

simulations for real-world applications in the applied sciences and engineering. It permits to solve both nonlinear 

IVPs and BVPs without restrictive assumptions such as required by linearization, perturbation, discretization, 

guessing the initial term or a set of basis functions, and so forth. The accuracy of the analytic approximate solutions 

obtained can be verified by direct substitution. A key notion is the Adomian polynomials, which are tailored to 

the particular nonlinearity to solve nonlinear operator equations. The decomposition method has been used 

extensively to solve effectively a class of linear and nonlinear ordinary and partial differential equations. However, 

a little attention was devoted for its application in solving the singular two-point boundary value problems 

(STPBVPs). This research treated some classes of singular second-order two-point boundary value problems both 

analytically and numerically using the ADM and the modifications Improved Adomian Decomposition Method 

(IADM) and MADM focusing on the Dirchlet and mixed boundary conditions; and applied the symbolic softwares 

MATLAB and MATHEMATICA to facilitate computing. 

 

II. Materials and Methods 
Sources in the web and libraries were used to collect all the pieces of information about the singular two-point 

boundary value problems together with the methods and recorded subsequently. Specifically, 

➢ relevant journals and books were addressed to gather information about STPBVPs and the methods to 

treat the problems. 

➢ Identifying the second order singular linear and nonlinear two-point BVPs the collected information was 

arranged keeping coherence for analysis.  
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➢ symbolic softwares, MATLAB and MATHEMATICA were applied suitably to ease the computations 

by the methods and graphs were plotted using the programs. 

➢ It was studied from October, 2017 to July, 2018.  

 

III. Singular Two-Point BVPs using the Stated Methods 
3.1 General Description of the Adomian Decomposition Method 

In reviewing the basic methodology involved, consider a general differential equation in an operator form: 

𝐿𝑢 + 𝑅𝑢 + 𝑁𝑢 = 𝑟      (3.1) 

where 𝐿 is an operator representing the linear portion which is easily invertible,  𝑁 is the nonlinear operator 

representing the nonlinear term and𝑅 is a linear operator for the remainder of the linear portion. 

The Adomian decomposition method introduces the solution 𝑢(𝑥) and the nonlinear function 𝑁𝑢 by the infinite 

series as: 

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)

∞

𝑖=0

                                                                                                                                 (3.2) 

and 

𝑁𝑢 = ∑ 𝐴𝑛(𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑛)

∞

𝑖=0

                                                                                                      (3.3) 

where, 𝐴𝑛are the Adomian polynomials thatcan bedetermined byAdomian formula: 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
[𝑁 (∑ 𝜆𝑖

𝑛

𝑖=0

𝑢𝑖)]

𝜆=0

, 𝑛 = 0,1,2, …                                                                           (3.4) 

So for 𝑛 = 0, (3.4) reduces to 

𝐴0 = 𝑁(𝑢0) 

          For 𝑛 = 1, it reduces to 

𝐴1 =
𝑑

𝑑𝜆
[𝑁(𝑢0 + 𝜆𝑢1)]𝜆=0 

                          ⟹ 𝐴1 = 𝑢1𝑁′(𝑢0) 

. 

. 

. 

It can be observed that 𝐴0depends only on 𝑢0, 𝐴1depends only on 𝑢0 and 𝑢1, 𝐴2 depends only on 𝑢0, 𝑢1 and 𝑢2 

and so on. 

Optionally, a simple way of computing Adomian polynomials of any type of nonlinearity is presented by applying 

the decomposition of positive integers 𝑛 as a subscript of the variable 𝑢 for nonlinear terms through the use of 

MATHEMATICA. MATHEMATICA exploits general symbolic programming for generating Adomian 

polynomials. 

Now, substituting (3.2) and (3.3) into (3.1), one can get: 

∑ 𝑢𝑛(𝑥)

∞

𝑖=0

= 𝑔(𝑥) − 𝐿−1 ∑ 𝑅𝑢𝑛 −

∞

𝑖=0

𝐿−1 ∑ 𝐴𝑛

∞

𝑖=0

                                                                            (3.5) 

The recursive relationship is found to be 

𝑢0 = 𝑔(𝑥) 

𝑢1 = − 𝐿−1𝑅𝑢0 − 𝐿−1𝐴0 

𝑢2 = − 𝐿−1𝑅𝑢1 − 𝐿−1𝐴1 

. 

. 

. 

𝑢𝑖 = − 𝐿−1𝑅𝑢𝑖−1 − 𝐿−1𝐴𝑖−1 

for 𝑖 = 1,2,3, … . So, having determined the components 𝑢𝑛, 𝑛 ≥ 0  the solution 𝑢 in a series form follows 

immediately by (3.2). 

So, 𝑢1 will be a polynomial. The same procedure holds to obtain 𝑢𝑘  as a polynomial. 

The classical ADM is very powerful in treating nonlinear BVPs, though this is one of the qualities of the method 

over some other methods it has its own short comings like its failure to treat some nonlinear singular boundary 

value problems. The following subsection addresses some merits and demerits of the method. 
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3.1.1 Advantages and disadvantages of the ADM 

Many authors found that the ADM requires less computational work than traditional approaches. In 

addition, it includes the ability to solve nonlinear problems without linearization, the wide applicability to several 

types of problems and scientific fields, and the development of a reliable, analytic solution. This method does not 

linearize the problem nor use assumptions of weak nonlinearity and therefore can handle nonlinearities which are 

quite general and generates solutions that may be more realistic than those achieved by simplifying the model to 

achieve conditions required for other techniques. Moreover, the ADM is analytic, requiring neither linearization 

nor perturbation, and continuous with no resort to discretization. 

The ADM does have some disadvantages, however. To begin with, the method gives a 

series solution which must be truncated for practical applications. ADM requires the use of Adomian polynomials 

for nonlinear terms, and this needs more work. In addition, the rate and 

region of convergence are potential shortcomings. Although the series can be rapidly convergent in a very small 

region, it has very slow convergence rate in wider region and the truncated series solution is an inaccurate solution 

in that region, which will restrict the application area of the method. 

 

3.1.2 MADM 

Since the introduction of the method in early 1980’s, ADM has led to several modifications made by 

various researchers in an attempt to improve the accuracy and expand the application of the original method. As 

pointed out above, the rate of convergence of the series solutions is one of the potential shortcomings of the 

decomposition method. To improve on this, the authors tried to introduce different modifications of the method. 

To begin with, based on Wazwaz (1999) the standard ADM is modified in such a way that the function 𝑔 in (3.5) 

can bedivided into two parts as follows to increase rate of convergence of the series solution and minimize the 

size of computations. This modification is applicable irrespective of the types of the BVPs under consideration. 

𝑔 = 𝑔0 + 𝑔1       (3.6 ) 

Accordingly, a slight variation was proposed only on the components 𝑢0 and 𝑢1. The suggestion was that only the 

parts 𝑔0be assigned to the component 𝑢0 , whereas the remaining part 𝑔1 be combined with other terms in the 

recursive relation to define 𝑢1 to get the recursive relation: 

𝑢0 = 𝑔0 

𝑢1 = 𝑔1− 𝐿−1𝑅𝑢0 − 𝐿−1𝐴0 

𝑢𝑛+1 = − 𝐿−1(𝑅𝑢𝑛) − 𝐿−1(𝐴𝑛), 𝑛 ≥ 1                                                              (3.7 ) 

Although this variation in the formation of 𝑢0  and 𝑢1  is slight, however it plays a major role in 

accelerating the convergence of the solution and in minimizing the size of calculations. In many cases the modified 

scheme avoids unnecessary computations, especially in calculation of the Adomian polynomials. In other words, 

sometimes there is no need to evaluate the so-called Adomian polynomials required for nonlinear operators or if 

needed to evaluate these polynomials the computation will be reduced very considerably by using the modified 

recursive scheme. There are two important remarks related to the modified method. First, by proper selection of 

the functions 𝑔0 and 𝑔1, the exact solution 𝑢 may be obtained by using very few iterations, and sometimes by 

evaluating only two components. The success of this modification depends only on the choice of 𝑔0 and 𝑔1, and 

this can be made through trials, that are the only criteria which can be applied so far. Second, if 𝑔 consists of one 

term only, the scheme (3.7) should be employed in this case. 

Another modification of the standard ADM which alleviates the deficiency of treating some singular 

boundary value problems like, BVPs subjected to a mixed boundary conditions is MADM presented by Hasan 

and Zhu (2009). In fact, it is a slight refinement to the original ADM; it only modifies the involved differential 

operator. Generally, MADM by the authors mentioned proposes the differential and inverse operators: 

𝐿 = 𝑥−1
𝑑𝑛−1

𝑑𝑥𝑛−1
𝑥𝑛−𝑘

𝑑

𝑑𝑥
𝑥𝑘−𝑛+1

𝑑

𝑑𝑥
(. )                                                                      (3.8) 

and 

𝐿−1(. ) = ∫ 𝑥𝑛−𝑘−1 ∫ 𝑥𝑘−𝑛 ∫ …

𝑥

0

∫ 𝑥(. )𝑑𝑥 … 𝑑𝑥

𝑥

0

𝑥

0

𝑥

𝑏

                                                          (3.9) 

    𝑛 − 1 times 

for treatment of 𝑛 + 1order boundary value problem of the form: 

𝑢(𝑛+1) +
𝑘

𝑥
𝑢(𝑛) + 𝑁𝑢 = 𝑓                              𝑛 = 0,1,2, … ; 𝑘 = 0,1, 𝑜𝑟 2             (3.10) 

Kim and Chun (2010) came up with another modification of the standard ADM to solve singular 𝑛 + 1order 

boundary value problems. This scheme is designed in such a way that BVPs with singular nature can easily be 

treated. In this research the operators are used to treat singular second-order BVPs with mixed boundary 
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conditions. Generally, to see what MADM by the authors mentioned look like, consider the singular boundary 

value problem of 𝑛 + 1 order ordinary differential equation (3.10) given the following way: 

𝑢(𝑛+1) +
𝑘

𝑥
𝑢(𝑛) + 𝑁𝑢 = 𝑓(𝑥)                                                                                       ( 3.11) 

𝑢(0) = 𝑎0, 𝑢′(0) = 𝑎1, … , 𝑢𝑟−1(0) = 𝑎𝑟−1,                                              
𝑢(𝑏) = 𝑐0, 𝑢′(𝑏) = 𝑐1, … , 𝑢𝑛−𝑟(𝑏) = 𝑐𝑛−𝑟                                                 ( 3.12) 

Where 𝑁  is nonlinear differential operator of order less than 𝑛 , 𝑓(𝑥)  is a given function, 

𝑎0, 𝑎1, … , 𝑎𝑟−1, 𝑐0, 𝑐1, … , 𝑐𝑛−𝑟 , 𝑏 are given constants, where 𝑘 ≤ 𝑟 ≤ 𝑛, 𝑟 ≥ 1. 
Now (3.11) can be re written in the form 

𝑥−2
𝑑𝑛−1

𝑑𝑥𝑛−1
[𝑥2𝑢′′ + (𝑘 − 2𝑛 + 2)𝑥𝑢′] + 𝑁𝑢 = 𝑓                                            (3.13) 

Or equivalently, 

𝑥−2
𝑑𝑛−1

𝑑𝑥𝑛−1
[𝑥2𝑛−𝑘

𝑑

𝑑𝑥
(𝑥𝑘−2𝑛+2

𝑑𝑢

𝑑𝑥
)] + 𝑁𝑢 = 𝑓                                          (3.14) 

(3.13) can be written in the operator form 

𝐿2𝐿1𝑢 = 𝑓(𝑥) − 𝑁𝑢                                                                                              (3.15) 

Where, the differential operator 𝐿 employs the first two derivatives 

𝐿1 = 𝑥2𝑛−𝑘
𝑑

𝑑𝑥
(𝑥𝑘−2𝑛+2

𝑑

𝑑𝑥
)                                                                            (3.16) 

𝐿2 = 𝑥−2
𝑑𝑛−1

𝑑𝑥𝑛−1
                                                                                                     (3.17) 

in order to overcome the singularity behavior at 𝑥 = 0. 

In view of (3.16) and (3.17), the inverse operators 𝐿1
−1 and 𝐿2

−1 are the integral operators defined by 

𝐿1
−1 = ∫ 𝑥2𝑛−𝑘−2

𝑥

0

∫ 𝑥𝑘−2𝑛

𝑥

𝑏

(. )𝑑𝑥𝑑𝑥,                                                                     (3.18) 

𝐿2
−1 = ∫ … ∫ 𝑥2

𝑥

0

𝑥

0

(. )𝑑𝑥 … 𝑑𝑥,                                                                                   (3.19) 

𝑛 − 1 time 

By applying 𝐿2
−1 on (3.15), one can have 

𝐿1𝑢 = Ψ1(𝑥) + 𝐿2
−1𝑓(𝑥) − 𝐿2

−1𝑁𝑢                                                                    (3.20) 

such that 

𝐿2Ψ
1

(𝑥) = 0                                                                                                             (3.21) 

By applying 𝐿1
−1 on (3.20), one can have 

𝑢(𝑥) = Ψ2(𝑥) + 𝐿1
−1Ψ1(𝑥) + 𝐿1

−1𝐿2
−1𝑓(𝑥) − 𝐿1

−1𝐿2
−1𝑁𝑢                                (3.22) 

such that 

𝐿1Ψ
2

(𝑥) = 0                                                                                                            (3.23) 

The standard ADM introduces the solution 𝑢(𝑥)  and the nonlinear function 𝑁𝑢  by infinite series given by 

(3.2)and (3.3) where the Adomian polynomials are determined by the formula at (3.5). Substituting (3.2) and 

(3.3) in to (3.22) gives 

∑ 𝑢𝑛

∞

𝑛=0

= Ψ2(𝑥) + 𝐿1
−1Ψ1(𝑥) + 𝐿1

−1𝐿2
−1𝑓(𝑥) − 𝐿1

−1𝐿2
−1 ∑ 𝐴𝑛

∞

𝑛=0

                     (3.24) 

Identifying 𝑢0 = Ψ2(𝑥) + 𝐿1
−1Ψ1(𝑥) + 𝐿1

−1𝐿2
−1𝑓(𝑥), the Adomian method admits the use of the recursive relation 

𝑢0 = Ψ
2

(𝑥) + 𝐿1
−1Ψ1(𝑥) + 𝐿1

−1𝐿2
−1𝑓(𝑥) 

𝑢𝑛+1 = −𝐿−1𝐴𝑛                                                                                                                (3.25) 

which gives 

𝑢0 = Ψ(𝑥) + 𝐿−1𝑓(𝑥) 

𝑢1 = −𝐿−1𝐴0 

𝑢2 = −𝐿−1𝐴1                                                                                                                      (3.26) 

𝑢3 = −𝐿−1𝐴2 

. 

. 

. 

This leads to the complete determination of the components 𝑢𝑛 of 𝑢(𝑥). The series solution 𝑢(𝑥) defined by (3.2) 

follows immediately.  
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3.1.3 IADM 

Ebaid (2010) made improvements of operators developed earlier by Lesnic (2001) for the purpose of 

treating the heat equation with Dirchlet boundary condition. In this work the IADM is used to deal with linear and 

nonlinear STPBVPs with Dirchlet boundary conditions. The improvement is based on the ADM and Lesnic’s 

work later developed by Ebaid (2010). Lesnic (2001) proposed the inverse operators: 

𝐿−1
𝑥𝑥(. ) = ∫ ∫(. )𝑑𝑥𝑑𝑥 −

𝑥 − 𝑥0

1 − 𝑥0

∫ ∫(. )𝑑𝑥𝑑𝑥

𝑥

𝑥0

1

𝑥0

𝑥

𝑥0

𝑥

𝑥0

 , 𝐿𝑡
−1 = ∫(. )𝑑𝑡

𝑡

0

(3.27) 

 to solve the Dirchlet BVP for the heat equation 

𝑢𝑡 = 𝑢𝑥𝑥, 𝑥0 < 𝑥 < 1, 𝑡 > 0 (3.28) 

under the boundary conditions 𝑢(𝑥0, 𝑡) = 𝑓0(𝑡), 𝑢(1, 𝑡) = 𝑓1(𝑡) and the initial condition 𝑢(𝑥, 0) = 𝑝(𝑥). 

Using the definition in (3.27) it is observed that 

𝐿−1
𝑥𝑥(𝑢𝑥𝑥) = 𝑢(𝑥, 𝑡) − 𝑢(𝑥0, 𝑡) −

𝑥 − 𝑥0

1 − 𝑥0

[𝑢(1, 𝑡) − 𝑢(𝑥0, 𝑡)]               (3.29) 

i.e., the boundary conditions can be used directly. However, from (3.27) again one can see that the lower bound 

of all integrations is restricted to the initial point 𝑥0. 

In fact, this restriction can be avoided by using a new definition of 𝐿−1
𝑥𝑥 which gives the same result as in (3.29) 

and given by: 

𝐿−1
𝑥𝑥(. ) = ∫ ∫(. )𝑑𝑥𝑑𝑥 −

𝑥 − 𝑥0

1 − 𝑥0

∫ ∫(. )𝑑𝑥𝑑𝑥

𝑥

𝑐

1

𝑥0

𝑥

𝑐

𝑥

𝑥0

                                             (3.30) 

where, 𝑐 is free lower point. This free lower point plays an important role if the equation being solved has a 

singular point.So the desired operator originally designed by the author mentioned earlieris derived as follows. 

𝐿−1
𝑥𝑥(. ) is defined as: 

𝐿−1
𝑥𝑥(. ) = ∫ ∫(. )𝑑𝑥𝑑𝑥 − 𝑧(𝑥) ∫ ∫(. )𝑑𝑥𝑑𝑥

𝑥

𝑒

𝑏

𝑑

𝑥

𝑐

𝑥

𝑎

                                                (3.31) 

where 𝑧(𝑥) is to be determined such that 𝐿−1
𝑥𝑥(𝑢′′(𝑥)) can be expressed only in terms of the boundary conditions 

given inequation፡ 

𝑢′′(𝑥) + 𝑝(𝑥)𝑢′(𝑥) + 𝑞(𝑥)𝑓(𝑢(𝑥)) = 𝑟(𝑥), 𝑥 ∈ (𝑎, 𝑏)with the respective boundary conditions. 

Using this definition, thus: 

𝐿−1
𝑥𝑥(𝑢′′(𝑥)) = 𝑢(𝑥) − 𝑢(𝑎) − (𝑥 − 𝑎)𝑢′(𝑐) − 𝑧(𝑥)[𝑢(𝑏) − 𝑢(𝑑) − (𝑏 − 𝑑)𝑢′(𝑒)]. 

= 𝑢(𝑥) − 𝑢(𝑎) −  𝑧(𝑥)[𝑢(𝑏) − 𝑢(𝑑)] − (𝑥 − 𝑎)𝑢′(𝑐) + 𝑧(𝑥)[(𝑏 − 𝑑)]𝑢′(𝑒). 

Setting 𝑑 = 𝑎 and 𝑒 = 𝑐, 

𝐿−1
𝑥𝑥(𝑢′′(𝑥)) = 𝑢(𝑥) − 𝑢(𝑎) − 𝑧(𝑥)[𝑢(𝑏) − 𝑢(𝑎)] − (𝑥 − 𝑎)𝑢′(𝑐)+𝑧(𝑥)(𝑏 − 𝑎)𝑢′(𝑐).                               (3.32) 

In order to express 𝐿−1
𝑥𝑥(𝑢′′(𝑥)) in terms of the two boundary conditions only, the coefficient 𝑢′(𝑐) has to be 

eliminated by setting 

−(𝑥 − 𝑎)𝑢′(𝑐) + 𝑧(𝑥)[(𝑏 − 𝑎)𝑢′(𝑐)] = 0 assuming 𝑢′(𝑐) ≠ 0. 

⇒  𝑧(𝑥) =
𝑥 − 𝑎

𝑏 − 𝑎
                                                                                                                                  (3.33) 

Using (3.33) in (3.31), the operator below proposed by Ebaid (2010) is obtained to solve the singular two-point 

Dirchlet BVPs. 

𝐿−1
𝑥𝑥(. ) = ∫ ∫(. )𝑑𝑥𝑑𝑥 −

𝑥 − 𝑎

𝑏 − 𝑎
∫ ∫(. )𝑑𝑥𝑑𝑥

𝑥

𝑐

𝑏

𝑎

𝑥

𝑐

,

𝑥

𝑎

𝑎 ≠ 𝑏, 𝑐 − constant         (3.34) 

Thus (3.32) is reduced to: 

𝐿−1
𝑥𝑥(𝑢′′(𝑥)) = 𝑢(𝑥) − 𝑢(𝑎) −

𝑥 − 𝑎

𝑏 − 𝑎
[𝑢(𝑏) − 𝑢(𝑎)]                                     (3.35) 

From (3.34) it is noted that 𝐿−1
𝑥𝑥(𝑢′′(𝑥))is already expressed in terms of the given boundary conditions without 

any restrictions on 𝑐. So, the choice of the value that 𝑐 can take depend properly on the singular point of the 

equation under consideration. For example, if the equation has a singular point say at 𝑥 =  𝑥0, 𝑐 will be chosento 

be any real value except the value of 𝑥0. Moreover, if the equation has two singular points at 𝑥 = 𝑥1and 𝑥 = 𝑥2, 

then 𝑐 willbeconsidered any real value except these values of 𝑥1and 𝑥2. In general, if the equation has 𝑛singular 

points 𝑥1, 𝑥2,...,𝑥𝑛, then 𝑐 takes any real value except the values of these singular points. 

For solving linear and non-linear singular two-point boundary value problems under the Dirchlet boundary 

condition, IADM is established using (3.34) together with the standard ADM. 

Consider 𝑢′′(𝑥) + 𝑝(𝑥)𝑢′(𝑥) + 𝑞(𝑥)𝑓(𝑢(𝑥)) = 𝑟(𝑥), 𝑥 ∈ (𝑎, 𝑏) in the form: 
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𝑢′′(𝑥) = 𝑟(𝑥) − 𝑝(𝑥)𝑢′(𝑥) − 𝑞(𝑥)𝑓(𝑢(𝑥)) 

Applying the operator 𝐿−1
𝑥𝑥(. ) given by (3. 34) on both sides of this it is observed that: 

𝑢(𝑥) = 𝑢(𝑎) +
𝑥 − 𝑎

𝑏 − 𝑎
[𝑢(𝑏) − 𝑢(𝑎)] + 𝐿−1

𝑥𝑥[𝑟(𝑥)]−𝐿−1
𝑥𝑥[𝑝(𝑥)𝑢′(𝑥)] − 

𝐿−1
𝑥𝑥[𝑞(𝑥)𝑓(𝑢(𝑥))].                                                                                           (3.36) 

The Adomian decomposition method introduces the solution 𝑢(𝑥) and the nonlinear function 𝑓(𝑢) by infinite 

series as in (3.2) and (3.4), respectively. 

Substituting the results into (3.36) and according to the ADM, the solution 𝑢(𝑥) can be smartly computed by 

using the recurrence relations constructed based on the following cases. 

Case 1:-If 𝑓(𝑢)  =  𝑢 , i.e., linear function, then the solution 𝑢(𝑥)can be computed by using the recurrence 

relation: 

𝑢0(𝑥) = 𝑢(𝑎) +
𝑥 − 𝑎

𝑏 − 𝑎
[𝑢(𝑏) − 𝑢(𝑎)] + 𝐿−1

𝑥𝑥[𝑟(𝑥)]                                             

𝑢𝑛+1(𝑥) = −𝐿−1
𝑥𝑥

[𝑝(𝑥)𝑢𝑛
′ (𝑥) + 𝑞(𝑥)𝑢𝑛(𝑥)], 𝑛 ≥ 0                                  (3.37) 

Case 2:- If 𝑓(𝑢) is nonlinear function, then the recurrence relation required to compute the solution 𝑢(𝑥) is: 

𝑢0(𝑥) = 𝑢(𝑎) +
𝑥 − 𝑎

𝑏 − 𝑎
[𝑢(𝑏) − 𝑢(𝑎)] + 𝐿−1

𝑥𝑥[𝑟(𝑥)] 

𝑢𝑛+1(𝑥) = −𝐿−1
𝑥𝑥

[𝑝(𝑥)𝑢𝑛
′ (𝑥) + 𝑞(𝑥)𝐴𝑛(𝑥)], 𝑛 ≥ 0                                (3.38) 

where (3.37) and (3.34), (3.38) and (3.34) improve the standard ADM, (IADM) and can be used to solve linear 

and nonlinear singular two-point boundary value problems subject toDirchlet boundary conditions.Hence, using 

the recurrence relation (3.37) or(3.38) depending on linearity behavior of the boundary value problem, the 𝑛 −
termtruncated approximate solution can be computed easily. 

 

3.2 Numerical and Analytical Illustrations 

Example 3.1. Consider the inhomogeneous singular Bessel equation 

𝑢′′(x) +
1

𝑥
𝑢′(x) + 𝑢(x) = 4 − 9x + 𝑥2 − 𝑥3                                               (3.39) 

subject to the boundary conditions 𝑢(0) = 0 and 𝑢(1) = 0. 

 

I. IADM solution 

The equation considered has a singular point at 𝑥 = 0. So, by IADM the free lower point 𝑐can be chosen to be 

any real value except zero. The appropriate recurrence relation to determine solution of the inhomogeneous 

singular BVP would be: 

𝑢0(𝑥) = 𝑢(𝑎) +
𝑥 − 𝑎

𝑏 − 𝑎
[𝑢(𝑏) − 𝑢(𝑎)] + 𝐿−1

𝑥𝑥[𝑟(𝑥)] 

𝑢𝑛+1(𝑥) = −𝐿−1
𝑥𝑥

[𝑝(𝑥)𝑢𝑛
′ (𝑥) + 𝑞(𝑥)𝑢𝑛(𝑥)], 𝑛 ≥ 0                                           (3.40) 

where 𝑎 = 0, 𝑏 = 1, 𝑢(𝑎) = 0 = 𝑢(𝑏) and 𝑟(𝑥) = 4 − 9x + 𝑥2 − 𝑥3, 𝑝(𝑥) =
1

𝑥
, 𝑞(𝑥) = 1. 

Putting the given information above, the simplified 𝑢0 looks like: 

𝑢0 = 𝐿−1
𝑥𝑥[𝑟(𝑥)] 

But the operator 𝐿−1
𝑥𝑥which is designed so as to treat the singularity at 𝑥 = 0is defined as: 

𝐿−1
𝑥𝑥(. ) = ∫ ∫(. )𝑑𝑥𝑑𝑥 −

𝑥 − 𝑎

𝑏 − 𝑎
∫ ∫(. )𝑑𝑥𝑑𝑥

𝑥

𝑐

𝑏

𝑎

𝑥

𝑐

𝑥

𝑎

                                                                             (3.41) 

where 𝑎 and 𝑏 are the two-points of the BVP, 𝑐 is the free constant which plays a great role in treating the problem 

with singularity feature.Hence using𝑟(𝑥) in (3.41)results in: 

𝑢0 = −
8𝑥

15
+ 2𝑥2 −

3𝑥3

2
+

𝑥4

12
−

𝑥5

20
 

which is the first term of the decomposition. 

For 𝑛 = 0in the second equation of the recurrence relation(3.41), 𝑢1can be determined to be:  

𝑢1 =
711𝑥

560
− 2𝑥2 +

151𝑥3

180
−

7𝑥4

80
+

7𝑥5

80
−

𝑥6

360
+

𝑥7

840
+

8

15
𝑥 ln 𝑥 

This way MATHEMATICA is used to determine the rest of the required components of the solution to get better 

result. To demonstrate, the next four approximate solutions are found to be the following: 

𝑢2 = −
488519𝑥

302400
+ 2𝑥2 −

16843𝑥3

30240
+

25𝑥4

108
−

919𝑥5

14400
+

19𝑥6

2700
−

23𝑥7

10080
+

𝑥8

20160
−

𝑥9

60480
−

711

560
𝑥 ln 𝑥

−
4

45
𝑥3 ln 𝑥 −

4

15
𝑥(ln 𝑥)2 
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𝑢3 = −
943433𝑥

67060224
+

194849𝑥2

604800
−

117037𝑥3

604800
−

9041𝑥4

72576
+

14389𝑥5

1008000
−

7243𝑥6

1296000
+

2453𝑥7

1814400
−

719𝑥8

8467200

+
𝑥9

32256
−

𝑥10

2721600
+

𝑥11

6652800
+

263𝑥2 ln 𝑥

1120
+

4159𝑥3 ln 𝑥

30240
+

1

135
𝑥4 ln 𝑥 +

1

225
𝑥5 ln 𝑥

+
2

15
𝑥2(ln 𝑥)2 +

2

45
𝑥3(ln 𝑥)2 

𝑢4 =
54021054343189𝑥

274611617280000
−

30587𝑥2

86400
+

1230960917𝑥3

10059033600
+

19237𝑥4

907200
+

532313𝑥5

60480000
+

1458971𝑥6

272160000

−
50719𝑥7

95256000
+

398047𝑥8

3556224000
−

1691𝑥9

74649600
+

6751𝑥10

6858432000
−

79𝑥11

266112000
+

𝑥12

359251200

−
𝑥13

1037836800
+

943433𝑥 ln 𝑥

67060224
+

107𝑥2 ln 𝑥

3360
−

563𝑥3 ln 𝑥

12096
−

3293𝑥4 ln 𝑥

362880
−

18107𝑥5 ln 𝑥

3024000

−
𝑥6 ln 𝑥

4050
−

𝑥7 ln 𝑥

9450
−

2

15
𝑥2(ln 𝑥)2 −

1

45
𝑥3(ln 𝑥)2 −

1

90
𝑥4(ln 𝑥)2 −

1

450
𝑥5(ln 𝑥)2 

𝑢5 = −
4358100181606400153𝑥

7612234031001600000
+

394649𝑥2

604800
−

161635981016989𝑥3

1647669703680000
+

68831𝑥4

2332800
−

9387291997𝑥5

1005903360000

−
14899621𝑥6

8164800000
−

25647329𝑥7

160030080000
−

84312989𝑥8

746807040000
+

1445527𝑥9

146313216000

−
11692409𝑥10

8641624320000
+

67717𝑥11

287400960000
−

76781𝑥12

9958443264000
+

19𝑥13

9580032000

−
𝑥14

65383718400
+

𝑥15

217945728000
−

54021054343189𝑥 ln 𝑥

274611617280000
−

1003𝑥2 ln 𝑥

3360

+
19748507𝑥3 ln 𝑥

2011806720
−

4099𝑥4 ln 𝑥

272160
+

10267𝑥5 ln 𝑥

4032000
+

4369𝑥6 ln 𝑥

54432000
+

16187𝑥7 ln 𝑥

127008000

+
𝑥8 ln 𝑥

226800
+

𝑥9 ln 𝑥

680400
−

943433𝑥(ln 𝑥)2

134120448
+

2

15
𝑥2(ln 𝑥)2 +

1

90
𝑥3(ln 𝑥)2 +

2

135
𝑥4(ln 𝑥)2

+
1

600
𝑥5(ln 𝑥)2 +

𝑥6(ln 𝑥)2

2700
+

𝑥7(ln 𝑥)2

18900
 

The first ten terms of the decomposition were used to get the IADM solution of the problem as: 

Φ10 = ∑ 𝑢𝑖

9

𝑖=0

 

II. MADM solution 

Based on MADM by Wazwaz (1999) the singular BVP can be treated as follows. 

(𝑥𝛼𝑢′)′ = 𝐹(𝑥, 𝑢) 

𝑢′′ +
1

𝑥
𝑢′ + 𝑢 = 4 − 9x + 𝑥2 − 𝑥3 

Multiplying both sides by 𝑥the above equation becomes 

𝑥𝑢′′ + 𝑢′ = −x𝑢 + 4x − 9𝑥2 + 𝑥3 − 𝑥4 

Writing the left-hand side in its compact form becomes: 

(𝑥𝑢′)′ = −𝑥𝑢 + 4𝑥 − 9𝑥2 + 𝑥3 − 𝑥4 

Now use the standard ADM recursive relation. In addition, using MADM by Wazwaz (1999) minimizes the size 

of computations and results in the exact solution the following way. 

𝑢0 = ∫ (𝑥−1 ∫[4𝑥 − 9𝑥2 + 𝑥3 − 𝑥4]𝑑𝑥

𝑥

0

) 𝑑𝑥

𝑥

0

 

                    ⟹ 𝑢0 = 𝑥2 − 𝑥3 

𝑢1 =
𝑥4

16
−

𝑥5

25
− ∫ (𝑥−1 ∫[𝑥𝑢0]𝑑𝑥

𝑥

0

) 𝑑𝑥   ⟹ 𝑢1 = 0

𝑥

0

  ⟹ 𝑢𝑛+1 = 0, 𝑛 ≥ 1. 

The exact solution becomes: 

                      𝑢(𝑥) = 𝑥2 − 𝑥3. 

MATLAB is used to plot the graphs of the IADM and MADM solutions togetherin figure below considering 

numerical results of the first ten components of the solutions as follows. 

𝑥 =[0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1]; 
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Φ𝐼𝐴𝐷𝑀 =[0 0.004511209 0.009022418 0.020523838 0.032025259 0.047528057 0.063030855  0.079527513 

0.096024171 0.110520476 0.125016781 0.134513954 0.144011127  0.145509085 0.147007044 0.13850554 

0.128004037 0.104502898 0.081001759  0.04500879 0]; 

𝑢 = [0 0.002375000 0.009000000 0.019125000 0.032000000 0.046875000 0.063000000

 0.0796250000.096000000  0.111375000  0.125000000  0.136125000  0.144000000 0.147875000  

0.147000000  0.140625000  0.128000000  0.108375000  0.081000000 0.045125000  0]; 

 
Figure 3.1. Comparison of IADM and MADM solutions of example 3.1. 

 

Numerical illustrations of the problem by the methods used in this research and other related methods are shown 

in table 3.1. 

Table 3.1. Numerical results for example 3.1. 

x Approximate Solution Exact Solution 𝑢(𝑥) − 𝑢26
∗  

Error 

/𝑢(𝑥) − Φ𝐼𝐴𝐷𝑀/ 

0 0 0 0 0 

0.1 0.009022418 0.009000000 2.3E−05 2.2418E−05 

0.2 0.032025259 0.032000000 1.1E−05 2.5259E−05 

0.3 0.063030855 0.063000000 5.5E−05 3.0855E−05 
0.4 0.096024171 0.096000000 2.3E−04 2.4171E−05 

0.5 0.125016781 0.125000000 1.1E−04 1.6781E−05 

0.6 0.144011127 0.144000000 1.2E−04 1.1127E−05 
0.7 0.147007044 0.147000000 1.6E−04 7.0442E−06 

0.8 0.128004037 0.128000000 1.5E−04 4.0377E−06 

0.9 0.081001759 0.081000000 4.1E−05 1.7590E−06 

1 0 0 0 0 

𝑢26
∗  is the approximate solution obtained at the 26th iteration by Cui and Geng (2007). 

In order to verify numerically whether the approach IADM leads to accurate solutions, the symbolic programs, 

MATLAB and MATHEMATICA are used to evaluate the decomposition series solutions using the n-terms 

approximation. The approximate solution Φ10 is compared with the exact solution𝑢(𝑥) = 𝑥2 − 𝑥3obtained by 

MADM both in figure3.1 and table3.1. The numerical results showthat a very good approximation is achieved 

using small values of n-terms of the decomposition series solution. It is also important to note that the approach 

by Lesnic (2001) fails to overcome the singularity at 𝑥 = 0 for this singular problem. Moreover, a comparison of 

the numerical results for the absolute errors/𝑢(𝑥) − Φ𝐼𝐴𝐷𝑀/with thatof Reproducing Kernel method byCui and 

Geng (2007) are shown in table 3.1.In addition, almost the same result as the result at the 26th iteration is obtained 

by the method mentioned after 51 iterations. This shows that the approaches used in this project are not only easier 

and confidential but also by far more accurate. 

 

Example 3.2. Consider the nonlinear singular BVP 

𝑢′′(𝑥) +
1

2𝑥
𝑢′(𝑥) = 𝑒𝑢 (

1

2
− 𝑒𝑢) , 𝑥 ∈ (0,1) 
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subject to the boundary conditions 𝑢(0) = 𝑙𝑛(2) and 𝑢(1) = 0. 
 

I. IADM solution 

As can be expected, it is necessary to represent the nonlinear part by the Adomian polynomials. Here the nonlinear 

term is  

                 𝑝(𝑢) = 𝑒𝑢(0.5 − 𝑒𝑢) 

The required recurrence relation is (5.61) which is given by: 

𝑢0(𝑥) = 𝑢(𝑎) +
𝑥 − 𝑎

𝑏 − 𝑎
[𝑢(𝑏) − 𝑢(𝑎)] + 𝐿−1

𝑥𝑥[𝑟(𝑥)] 

𝑢𝑛+1(𝑥) = −𝐿−1
𝑥𝑥

[𝑝(𝑥)𝑢𝑛
′ (𝑥) + 𝑞(𝑥)𝐴𝑛(𝑥)],  𝑛 ≥ 0 

                                        ⟹ 𝑢0 = 𝑙𝑛2 + 𝑥(−𝑙𝑛2) = (1 − 𝑥)𝑙𝑛2 

But for fast convergence to the exact solution, MADM by Wazwaz (1999) helps to rearrange the result obtained 

above so that𝑢0 assumes to be zero and all the existing terms obtained to be added to 𝑢1 the following way: 

For 𝑛 = 0,   𝑢1 = −𝐿−1
𝑥𝑥

[
1

2𝑥
𝑢𝑛
′ + 𝐴0] 

The Adomian polynomial 𝐴0 can be determined either using the Adomian formula (3.4) or the results provided 

by MATHEMATICA at appendix C to be: 

                                   𝐴0 = 𝑝(𝑢0) = 𝑒𝑢0(0.5 − 𝑒𝑢0) 

⟹ 𝐿−1
𝑥𝑥[−0.5] =

1

4
𝑥 −

1

4
𝑥2                                                                                                         (3.42) 

Adding the previous result of 𝑢0 i.e. (1 − 𝑥)𝑙𝑛2 to (3.42) one can get 𝑢1 as: 

                     𝑢1 = (1 − 𝑥) ln 2 +
1

4
𝑥 −

1

4
𝑥2 

Recall that 𝐴1 = 𝑢1𝑝′(𝑢0) 

 𝐴2 = 𝑢2𝑝′(𝑢0) +
1

2
𝑢1

2𝑝′′(𝑢0) 

                   𝐴3 = 𝑢3𝑝′(𝑢0) + 𝑢1𝑢2𝑝′′(𝑢0) +
1

6
𝑢1

3𝑝′′′(𝑢0) 

          i. e. , 𝐴1 =
1

2
(1 − 4𝑒𝑢0)𝑢1 

                  𝐴2 =
1

4
𝑒𝑢0[𝑢1

2 + 2𝑢2 − 8𝑒𝑢0(𝑢1
2 + 𝑢2)] 

𝐴3 =
1

12
𝑒𝑢0[𝑢1

3 + 6𝑢1𝑢2 + 6𝑢3 − 8𝑒𝑢0(2𝑢1
3 + 6𝑢1𝑢2 + 3𝑢3)] 

For 𝑛 = 1, 

𝑢2 from the second equation of the recurrence relation would be: 

𝑢2 = −𝐿−1
𝑥𝑥

[
1

2𝑥
(

1

4
𝑙𝑛2 −

1

2
𝑥) +

3

2
((1 − 𝑥)𝑙𝑛2 +

1

4
𝑥 −

1

4
𝑥2)] 

           ⟹ 𝑢2 =
𝑥

8
+

𝑥2

8
−

𝑥3

16
+

𝑥4

32
−

3

4
𝑥2 ln 2 + 𝑥 (−

7

32
+

3 ln 2

4
+

ln 16

16
) −

1

8
𝑥 ln 16 + 

1

16
𝑥3 ln 16 −

1

8
𝑥 ln 𝑥 +

1

8
𝑥 ln 16 ln 𝑥 

The terms of the decomposition components are getting too vast to solve by hand but MATHEMATICA facilitates 

computing. So it can be used to list as many decomposition terms as desired. Though more than ten terms of the 

decomposition are used in the IADM solution, it is believed not economical to write the next iterative results, it 

is found important to list only up to the fifth iteration below. 

𝑢3 = −
3𝑥

64
−

𝑥2

16
+

5𝑥3

384
−

23𝑥4

768
+

𝑥5

64
−

𝑥6

192
+

3

8
𝑥 ln 2 +

3

8
𝑥2 ln 2 −

1

3
𝑥3 ln 2 +

23

96
𝑥4 ln 2 −

7

160
𝑥5 ln 2

−
7

8
𝑥2(ln 2)2 +

7

12
𝑥3(ln 2)2 −

7

48
𝑥4(ln 2)2 −

1

16
𝑥 ln 16 +

5

192
𝑥3 ln 16 −

3

640
𝑥5 ln 16

+ 𝑥(
89

768
−

49 ln 2

80
+

7(ln 2)2

16
+

79 ln 16

1920
−

ln 256

64
) +

1

64
𝑥 ln 256 +

3

64
𝑥 ln 𝑥 +

1

32
𝑥3 ln 𝑥

−
3

8
𝑥 ln 2 ln 𝑥 +

1

16
𝑥 ln 16 ln 𝑥 −

1

32
𝑥3 ln 16 ln 𝑥 −

1

64
𝑥 ln 256 ln 𝑥 +

1

32
𝑥(ln 𝑥)2

−
1

32
𝑥 ln 16 (ln 𝑥)2 
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𝑢4 =
1

7680
𝑥(−345 + 912 ln 2 − 1976(ln 2)2 +

1

7
(210 − 524 ln 2 − 79 ln 16) −

3

2
(−51 − 1616(ln 2)2

+ 320(ln 2)3 − 56 ln 2 (−15 + ln 16) − 39 ln 16) + 96 ln 16 − ln 2 (−524 + 56 ln 16)

+
1

6
(695 + 39120(ln 2)2 − 28800(ln 2)3 − 446 ln 16 − 8 ln 2 (337 + 560 ln 16))

+ 240(−1 − 14(ln 2)2 + 20(ln 2)3 + ln 64) +
5

6
(−132 − 7424(ln 2)2 + 2880(ln 2)3

− 140 ln 16 + 49(ln 16)2 + 56 ln 2 (37 + ln 4096))) +
1

7680
(
15𝑥8

2
+ 𝑥(265 − 912 ln 2

+ 1680(ln 2)2 − 82 ln 16) +
3

2
𝑥5(−51 − 1616(ln 2)2 + 320(ln 2)3 − 56 ln 2 (−15

+ ln 16) − 39 ln 16) +
1

7
𝑥7(−210 + 524ln 2 + 79 ln 16) + 𝑥6(

145

2
+ 296(ln 2)2

− 14 ln 16 + ln 2 (−524 + 56 ln 16)) +
1

6
𝑥3(−695 − 39120(ln 2)2 + 28800(ln 2)3

+ 446 ln 16 + 8 ln 2 (337 + 560 ln 16)) − 240𝑥2(−1 − 14(ln 2)2 + 20(ln 2)3 + ln 64)

−
5

6
𝑥4(−132 − 7424(ln 2)2 + 2880(ln 2)3 − 140 ln 16 + 49(ln 16)2 + 56 ln 2 (37

+ ln 4096)) + 𝑥(−265 + 912 ln 2 − 1680(ln 2)2 + 60𝑥4(−1 + ln 16)
+ 70𝑥3(−1 + ln 16)2 + 82 ln 16 − 10𝑥2(5 + 10 ln 16 + 8 ln 2 (−16 + 7 ln 16))) ln 𝑥
+ 30𝑥(−3 + 𝑥2(−2 + ln 256) + ln 65536)(ln 𝑥)2 + 40𝑥(−1 + ln 16)(ln 𝑥)3) 

Hence, the result obtained is used to show the numerical illustrations in table 3.1. 

 

II. Exact solution 

Consider the given equation 

𝑢′′(𝑥) +
1

2𝑥
𝑢′(𝑥) = 𝑒𝑢 (

1

2
− 𝑒𝑢) , 𝑥 ∈ (0,1) 

Re writing, one can get: 

(𝑥1 2⁄ 𝑢′)
′

= 𝑥1 2⁄ 𝑒𝑢 (
1

2
− 𝑒𝑢). 

By the recursive for ADM, 

𝑢0 = 𝑢(0) 

𝑢𝑛+1 = ∫ (𝑥−𝛼 ∫[𝑟(𝑥)𝐴𝑛]𝑑𝑥

𝑥

0

) 𝑑𝑥

𝑥

0

, 𝑛 ≥ 0                                                        (3.43) 

Here 𝛼 =
1

2
 and 𝑟(𝑥) = 𝑥1 2⁄  but the Adomian polynomials are already determined in IADM solution above. 

From the recursive relation above it can be obtained that 

𝑢0 = 𝑙𝑛(2) 

For 𝑛 = 0, (3.43)reduces to  

𝑢1 = ∫ (𝑥−1 2⁄ ∫[𝑥1 2⁄ 𝐴0]𝑑𝑥

𝑥

0

) 𝑑𝑥

𝑥

0

 

    = ∫ (𝑥−1 2⁄ ∫[𝑥1 2⁄ 𝑒𝑢0(0.5 − 𝑒𝑢0)]𝑑𝑥

𝑥

0

) 𝑑𝑥

𝑥

0

 

   = −𝑥2 

Similarlyusing (3.43)one can easily observe that 

𝑢2 =
𝑥4

2
     

𝑢3 = −
𝑥6

3
     

𝑢4 =
𝑥8

4
     

𝑢5 = −
𝑥10

5
 

. 

. 

. 
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𝑢𝑛 = (−1)𝑛
𝑥2𝑛

𝑛
, 𝑛 ≥ 1. 

Now these results by the ADM can be used to get the series expansion of ln (1 + 𝑥2). The solution is then given 

by 

𝑢 = ∑ 𝑢𝑛

∞

𝑛=0

 

= 𝑙𝑛(2) + ∑
(−1)𝑛𝑥2𝑛

𝑛

∞

𝑛=1

 

= 𝑙𝑛(2) − ∑
(−1)𝑛+1(𝑥2)𝑛

𝑛

∞

𝑛=1

 

= 𝑙𝑛(2) − ln (1 + 𝑥2) 

⟹ 𝑢(𝑥) = 𝑙𝑛 (
2

1 + 𝑥2
) 

which is the exact solution. 

MATLAB is used to plot the IADM and exact solutions in the figure 3.2. 

 
Figure 3.2. Comparison of the IADM and exact solutions for example 3.2. 

The numerical illustrations of the problem considered are shown in table below. 

 

Table 3.2. Numerical results for example 3.2. 

x 
Approximate 

solutionΦ𝐼𝐴𝐷𝑀 
Exact solution𝑢(𝑥) 

Error 

/𝑢(𝑥) − Φ𝐼𝐴𝐷𝑀/ 

0 0.693147181 0.693147181 0 

0.1 0.683195177 0.683196850 1.67E-06 

0.2 0.653924627 0.653926467 1.84E-06 

0.3 0.606967226 0.606969484 2.26E-06 

0.4 0.544725404 0.544727175 1.77E-06 

0.5 0.470002399 0.470003629 1.23E-06 

0.6 0.385661666 0.385662481 8.15E-07 

0.7 0.294370545 0.294371061 5.16E-07 

0.8 0.198450643 0.198450939 2.96E-07 

0.9 0.099820206 0.099820335 1.29E-07 
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1 0 0 0 

In the overlapping plots shown above, one can easily observe that the IADM and the exact solutions are 

nearly identical.Furthermore, numerical results are shown in table 3.1 in which an absolute error ≤ 10−6  is 

obtained. This shows that the IADM converges faster to the exact solution.Unlike that of the DTM, in this example 

it can easily be observed that it is not difficult to obtain exact solutionsfor nonlinear inhomogeneous BVPs using 

the standrad ADM. 

 

IV. Conclusion and Recommendations 
4.1. Conclusion 

Classes of linear and nonlinear singular boundary value problems can be treated through the standard 

Adomian decomposition method and its modifications analytically and numerically. All the ADM and the 

modifications require no perturbation, discretization and linearization to treat two-point BVPs both numerically 

and analytically.  

Although the classical ADM is very powerful, it fails to treat some singular boundary value problems 

due to the existence of singular point at 𝑥 =  0.So this difficulty is alleviated by the modifications MADM and 

IADM; and shown by treating STPBVPs with Dirchlet and mixed boundary conditions holding singular feature 

both numerically and analytically. 

It is demonstrated that the modifications can be well suited to attain an accurate solution to the second-

order singular boundary value problems, linear and nonlinear as well. The difficulty of those singular problems, 

due to the existence of the singular point at x = 0, is overcome in these contributions. The illustrative examples 

show that the standard ADM and its modifications are very effective in providing promising results. 

But the standard ADM has drawbacks in that it fails to provide the self-cancelling noise terms for 

homogeneous cases where sum of the noise terms vanishes in the limit for inhomogeneous case which makes it 

inconsistent in the area. In addition, the operators of the standard Adomian decomposition method support 

intervals of only the form (0, 𝑐) in which the independent variable is defined where 𝑐 is positive real number.To 

the contrary, it was noted that in addition to their consistency, the improved decomposition methods IADM and 

MADM are effective in solving both linear and nonlinear two-point boundary value problems with singular 

feature. 

Though the methods are very convenient for software treatments, it is noted that the modified 

decomposition methods (especially IADM) may encounter difficulties only in obtaining each component for some 

complex nonlinear problems even if symbolic packages are used since each component is obtained by 

cumbersome definite integrals. 

 

4.2. Recommendations 

It would be worthwhile to expand application of the operators so that the method could be used to treat 

two-point BVPs with multiple singularities. 

Though series of solutions found by ADM can rapidly be convergent in a very small region, it has very 

slow convergence rate in wider regions and the truncated series solution is an inaccurate solution in that region 

which will seriously restrict the application area of the method. An investigation into this claim would greatly 

benefit the scientific community.  
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