Une Preuve Relativiste De La Conjecture De Goldbach Et Des Nombres Premiers Jumeaux

Mohamed Sghiar

9 allée Capitaine Jean Bernard Bossu, 21240, Talant, France

Abstract: Relativistic techniques [3,4] have made it possible to give the conjectures of Goldbach and De Polignac new and hitherto unknown versions. Relativistic techniques have also made it possible to demonstrate them in their new versions. This shows the importance of the theory of mathematical relativity in the theory of numbers and that the mathematical community must finally admit.

Résumé: Les techniques relativistes ont permis de donner aux conjectures de Goldbach et de De Polignec des versions nouvelles et jusqu'à présent inconnues. Les techniques relativistes ont aussi permis de les démontrer dans leurs nouvelles versions. Ce qui montre l'importance de la théorie de la relativité mathématique dans la théorie des nombres et que la communauté mathématique doit finir par admettre.

Keywords: La relativité, conjecture de Goldbach, conjecture de De Polignac, nombres premiers jumeaux

Date of Submission: 27-04-2020 Date of Acceptance: 10-5-2020

I. Introduction, rappels, notations et définitions :

Les nombres premiers jumeaux sont deux nombres premiers dont la différence est égale à 2. Un des deux jumeaux p est dit un jumeau. p est donc un premier avec p+2 ou p-2 est premier.

Dans [3, 4] j'ai utilisé des techniques relativistes pour démontrer de nombreuses conjectures en théorie des nombres, en particulier le problème de l'Hypothèse de Riemann que j'en ai donné auparavant cinq démonstrations dans [2], le théorème des premiers jumeaux qui démontre que les premiers jumeaux sont infinis, le théorème de Goldbach qui démontre que tout nombre pair est la somme de deux nombres premiers, le théorème de De Polignac qui montre que tout nombre pair est la différence de deux nombres premiers. Les même techniques relativistes ont même permis de démontrer le dernier théorème de Fermat [1, 4] à savoir qu'il n'existe pas de nombres entiers non nuls a, b, et c avec $a^n + b^n = c^n$ dès que n est un entier strictement supérieur à 2.

Dans cette article, par les mêmes techniques, je donne une preuve à la conjecture de Goldbach améliorée en démontrant que tout nombre pair $2m \ge 4$ est la somme d'un nombre premier p_i et d'un premier **jumeau** p_j : $2m = p_i + p_j$ (Testé jusqu'au 10^9). Et je donne aussi une preuve à la conjecture de De Polignac améliorée en démontrant que tout nombre pair 2m est la différence d'un premier jumeau p_j et d'un nombre premier p_i : $2m = p_j - p_i$.

Rappelons que l'idée fondamentale dans [3, 4] était de voir un nombre premier P_i comme une particule élémentaire de masse P_i et de niveau d'énergie E_i qu'on note aussi E_{p_i} , et de voir un nombre non premier $\prod_{i=1}^n p_i^{\alpha_i}$ comme une représentation de l'énergie de l' interaction entre les particules de l'ensemble des Q_i particules P_i où $i \in \{1,\dots,n\}$ qui sont à l'état $\sum_{i=1}^n \alpha_i E_i$ où E_i est le niveau d'énergie de P_i .

On a vu dans [3] que si T_{2m} est la translation définie de $\mathbb{Z} \to \mathbb{Z}$ par $x \to x + 2m$, alors T_{2m} se prolonge en une application linéaire T (noté aussi T_{2m}) sur l'espace E des niveaux d'énergie $\mathbf{\Sigma} \alpha_i E_i$.

Nous avons aussi vu dans [3] que $T_{2m}^{-1}(E_{p_i})$ est un état $E_{p'_i}$ avec p'_i un premier, soit $T_{2m}^{-1}(E_{p_i}) = E_{p_i}$.

La preuve de la conjecture de Goldbach (Nouvelle version)

Théorème [Goldbach-Sghiar]: Tout nombre pair $2m \ge 4$ est la somme d'un nombre premier p et d'un premier jumeau p_j : $2m = p + p_j$ si $2m \ge 4$ Preuve :

Par les mêmes techniques utilisées dans [2], la translation T_{2m} : $T_{2m}(n)=2m+n$ agit sur les niveaux d'énergie des particules . Et comme on l'a fait pour la preuve des conjectures de Goldbach et de De Polignac , puisque $T_{2m}[-2m,0]=[0,2m]_{\text{et}} 2m\geqslant 4$, Si P^c est l'ensemble des nombres non premiers de [-2m,0], comme $T_{2m}(E_d)=E_d$ avec $d'\in P^c$ si $d\in P^c$, si p_j est un premier **jumeau** de $[0,2m]-T_{2m}(P^c)$, alors on doit avoir $T_{2m}^{-1}(E_{p_j})=E_{p_j}$ avec $p'_i\in [-2m,0]$, ainsi $2m=p_j+(-p'_i)$.

II. La preuve de la conjecture de De Polignac (Nouvelle version)

Théorème [De Polignac-Sghiar]: Tout nombre pair 2m est la différence d'un premier jumeau p_j et d'un nombre premier p_i : $2m = p_j - p_i$.

Preuve : D'abord, dans [3] j'ai démontré la conjecture de De Polignac. Les nombres premiers jumeaux sont donc infinis.

Comme ci-dessus, $T_{2m}[0,\infty] = [2m,+\infty]$. Si P^c est l'ensemble des nombres non premiers de $[0,+\infty]$, et comme dans $[2m,+\infty] = T_{2m}(P^c)$ il existe des premiers **jumeaux** p_j (car sont infinis et $T_{2m}(E_d) = E_{d'}$ avec $d' \in P^c$ si $d \in P^c$), alors on doit avoir $T_{2m}^{-1}(E_{p_j}) = E_{p'_i}$ avec $p'_i \in [0,+\infty]$, ainsi $2m = p_j = p'_i$

III. Conclusion

Les techniques relativistes ont permis de donner aux conjectures de Goldbach et de De Polignac des versions nouvelles et jusqu'à présent inconnues. Les techniques relativistes ont aussi permis de les démontrer dans leurs nouvelles versions. Ce qui montre l'importance de la théorie de la relativité mathématique dans la théorie des nombres et que la communauté mathématique doit finir par admettre.

Références :

- [1]. Andrew Wiles, Modular elliptic curves and Fermat's last Théorème, Annal of mathematics, 142, 443-551, 1995.
- [2]. M. Sghiar, Des applications génératrices des nombres premiers et cinq preuves de l'hypothèse de Riemann, Pioneer Journal of Algebra, Number Theory and its Application, Volume 10, Numbers1-2, 2015, Pages 1-31. http://www.pspchv.com/content_PJNTA-vol-10-issues-1-2.html
- [3]. M. Sghiar, La relativité et la théorie des nombres (déposé au Hal: 01174146) : https://hal.archives-ouvertes.fr/hal-01174146v4/document
- [4]. M. Sghiar, Une preuve relativiste du Théorème de Fermat-Wiles , IOSR Journal of Mathematics (IOSR-JM) , e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 12, Issue 5 Ver. VI (Sep.-Oct.2016), PP 35-36 .
- [5]. Y. Zhang, « Bounded gaps between primes », Ann. Math., 179, 2014, p. 1121-1174.

Mohamed Sghiar. " Une Preuve Relativiste De La Conjecture De Goldbach Et Des Nombres Premiers Jumeaux." *IOSR Journal of Mathematics (IOSR-JM)*, 16(3), (2020): pp. 01-02.