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Abstract 

Background: Annually, avian influenza causes high morbidity and mortality rate predominately among the 

immunodeficiency persons worldwide. Treatment and vaccination remain the optimal strategies in curbing the 

spread of avian influenza infection. 

Methods: In this paper, a mathematical model of the dynamics of influenza infection is formulated and both 

qualitative and quantitative analyses are carried out extensively. 

Results: The qualitative analysis of the model is given in terms of the basic reproduction number, equilibria 

points and their stability analyses. The disease dies out whenever the basic reproduction number is less than a 

unit. The disease free equilibrium (DFE) is locally asymptotically stable provided R0 <1 and unstable if 

otherwise. The endemic equilibrium only occurs whenever the disease threshold is greater than a unit. The 

endemic equilibrium,  is locally, globally asymptotically stable under certain condition. Numerical solution 

shows that vaccination and treatment of the susceptible and the infected individuals respectively have high 

impact for eradicating the disease. The non-linear incidence as a force of infection with parameter, θ has a 

great impact for reducing the pandemic of influenza disease. 

Conclusion: Vaccination of susceptible individuals and treatment of infected individuals are imperative for 

curbing the spread of an avian influenza infection. Modeling style or structure especially the type of force of 

infection adopt for modeling an avian influenza disease depends on whether the disease can easily be put under 

control. 
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I. Introduction 

Avian influenza is a highly cytopathic, contagious and acute respiratory disease caused by an 
influenza virus infection6,8. The mode of transmission is through direct contact such as hand shake or by 
airborne virus8. The virus has seven internal proteins (nucleoprotein (NP), three polymerase proteins 
(PA, PB1 and PB2), two matrix proteins (M1 and M2) and nonstructural proteins (NS2)) and two external 
glycoproteins, hemagglutimin (HA) and neuraminidase (NA)6. 

During the 20th century, three global pandemics occurred. The ”Spanish flu” of 1918 -1919, 
infected nearly one third of the entire human population12. During the global pandemic, more than 
500,000 people died in the USA and approximately 50 million people died worldwide12. 

Infection of the respiratory tract with an influenza virus has a symptom ranging from mild non-
febrile illness to severe disease and complications, including pneumonia, shock, renal failure, 
encephalopathy and multiorgan dysfunction4,13. However, mortality rates, clinical symptoms and basic 
reproduction numbers (outbreak thresholds) vary greatly between influenza type3. 

Influenza can be prevented by getting vaccination each year. However, given that the virus 
mutates rapidly, a vaccine made for one year may not be useful in the following year. More so, antigenic 
drift in the virus may occur after the year’s vaccine has been formulated rendering the vaccine less 
protective, and hence, out breaks can easily occur2. 

Mathematical modeling has proven to be a valuable tool in the understanding the dynamics of 
influenza infection disease which helps in clarifying and testing hypotheses finding the smallest number 
of factors sufficient to explain the biological phenomena and analyzing experimental results1. 

In order to better understand and explore the dynamics of infectious diseases, various 
mathematical models have been used on their epidemiological behaviours and implemented useful 
control and preventive measure for the disease eradication1,9. Numerous mathematical models are 
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designed for avian influenza virus3,5,7,10,11. Recently, Muhammad et al.9 in 2019 studied the transmission 
dynamics of avian influenza with saturation and psychological effect. 

In the transmission of infectious disease, saturated incidence rate plays an important role. In 
most of the avian influenza models the incidence rate is considered the mass action from bi-linear 
interactions, which is increasing and unbound9. The adoption of the saturated incidence rate present a 
different result entirely. 

 
II. Model Formulation and Analysis 

A dynamical mathematical model of avian influenza virus infection is proposed which put into 
consideration on the vaccination of susceptible individuals and the treatment of the infected individuals. 
Most influenza disease mathematical model follow SEIR model for human disease transmission. On the 
other hand, the carrier (bird) population has SIR model dynamics. It should be noted that influenza model 
sometimes capture human population only without explicitly show the carrier model. In view of this, we 
compartmentalized our model into five state variables of human population namely, susceptible 
individuals (S(t)), vaccinated individuals (V(t)), exposed individuals (E(t)), infected individuals (I(t)) and 
recovered individuals (R(t)). The following assumptions are important for the formulation of our model 
equations. We considered the force of infection to follow non-linear incidence rate, the recruitment rate 
of the population is constant; a non-autonomous model is considered due to the time dependence of each 
state variable, a fraction of recovered individuals loss immunity and re-entered into the susceptible 
population. We define the parameters of the model as given in Table 2.1. 

 
Table 2.1: Description and Interpretation of Parameters of the Model Equations 

ψ

1(t)
 
Vacc
inati

on rate of the susceptible individual 

σ = (1 − ξ)         Degree of protection where ξ is the vaccine efficacy  

ψ2(t) Treatment of the infected individual  

γ  Natural recovery rate of the infected individuals  

k  Progression rate from exposed to infectious 

δ Rate at which recovered individual loss immunity and become susceptible 
 1 + θI(t) Inhibition effect from the behavioural increase 
 λ(t) The force of infection which represent the transmission rate of the disease 

 
Fig. 2.1: Flow diagram of the model equations 

 
Putting into consideration the variables, parameters and the assumptions stated above we arrived at our 
model equations as follow: 
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  (2.1) 
with 

 
and 

N(t) = S(t) + V (t) + E(t) + I(t) + R(t) 
 
2 Analysis of the Model Equations 
In order to gain more insight into the influenza dynamics, we seek to carryout the following qualitative 
analysis of the model equations in this section as analyzed in the order of the following subheadings: 
 
2.1 Positive Invariant of the Model Equations 
In this sub-section, we show the positive invariant of the five state variables in model equations (2.1). To 
accomplish this, we establish the following theorem 
Theorem 2.1 
The closed set 

 
is positively invariant and attract all positive solutions of the model equations. 
Remark 1: In the theorem, we think of the solution space as having five dimensions, so that at any point 
of time t, we have a vector of solutions with five elements (standing for the state variables); real and 

positive solutions, hence the plus sign in  
We therefore prove Theorem (2.1). Generally, it implies thus: 
Proof. 

 
By a standard comparison theorem, we see that 

, 
which yields (by the method of integrating factor) 

, 
To be specific, if N(0) ≤ Λ

µ, then N(t) ≤ Λ
µ. Hence, D is positively invariant and an attractor so that no 

solution path leaves through any boundary of D. 
 
2.2 Disease Free Equilibrium (DFE) Analysis 
Under this sub-section, we carryout the equilibrium state of our model(2.1) when there is no disease in 
the population of interest. To investigate this, we simply substitute E(t) = I(t) = R(t) = 0 and dS

dt = dV
dt = dE

dt 

= = 0 in model (2.1) and obtain 
Λ − (ψ1(t) + µ)S(t) = 0 (2.2) 

ψ1(t)S(t) − µV (t) = 0 (2.3) 

Solving equations (2.2) and (2.3) simultaneously, we have 

 
and 

 
Thus, the DFE of the model (2.1) is given by 
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E1 = (S∗(t),V ∗(t),E∗(t),I∗(t),R∗(t)) 

 
 
2.3 Analysis of Basic Reproduction Number (R0) 
To calculate the basic reproduction number, we divide system (2.1) into appearance of infection and 
transfer of infection as matrix Fi(x) and Vi(x) where Fi(x) be the rate of appearance of new infections in 
compartment i and Vi(x) be the difference between the transfer rate of individuals out of compartment i 
by all other means14. 
Thus, the Fi(x) and Vi(x) of model (2.1) is shown below: 
Let x0 be the DFE of model (2.1). Thus, we have the following partitioned derivatives, 

 
Where F and V are MxN matrices defined by 

and  
1 ≤ 1, j ≤ m 
Here,the partial derivatives of Fi and Vi are with respect to the infected classes only. The basic 
reproduction number is defined as 

Ro = ρ(FV −1) 
Where ρ is the spectral radius of FV −1(by spectral radius we mean the maximum eigenvalue of FV −1) 
Theorem 2.2 
Consider the disease transmission model (2.1) with f(x) satisfying the stability conditions if x0 is a DFE of 
the model,the xo is locally asymptotically stable if R0 <1, but unstable if R0 >1. For the purpose of easy 
access and clarity, we shall rewrite model (2.1) as follows: 

  (2.4) 
with 

 
Thus, F and V are given as 

and  
 
Since we have only two infected classes, E(t) and I(t). It follows that m = 2. 
We should note that at the DFE, E∗(t) = I∗(t) = R∗(t) = 0, X ∈ (S(t),V (t),E(t),I(t),R(t)) 

  (2.5) 
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putting these into consideration, we have 
(2.6) 

and 
(2.7) 

Therefore, 
! 

(2.8) 
Thus, calculating the eigenvalues of equation 
(2.8), we have, 

 
More so, the dominant eigenvalue is the basic 
reproduction number. Therefore, 

 
 
2.4 Local Asymptotic Stability of the Disease Free Equilibrium 
In this sub-section, we investigate the local asymptotic stability (LAS) of our model(2.1) in the case where 
there is no disease in a population of interest. To do this, we linearized our model equations with the 
corresponding equilibrium, E1. We first rewrite model (2.1) as follow: 

f1 = Λ − λ(t)S(t) − (ψ1(t) + µ)S(t) + δR(t) 
f2 = ψ1(t)S(t) − σβI(t)V (t) − µV (t) 

 f3 = σβI(t)V (t) + λ(t)S(t) − kE(t) − µE(t) (2.9) 
f4 = kE(t) − (α + µ + γ + ψ2(t))I(t) f5 = ψ2(t)I(t) + γI(t) − (µ + δ)R(t) 

Differentiating (2.9) with respect to S(t),V (t),E(t),I(t) and R(t), we have 

, 
Using the above linearized system, we obtain the general Jacobian matrix of the model (2.1) and is given 
by 
 
 
 

𝐽 =

 

 
 

−𝜆 −  𝐺3 +  𝐺6 0 0 𝐺4 𝛿
𝜓1 𝜆 −  µ −  𝐼(𝑡)𝛽𝜎 0 𝑉(𝑡)𝛽𝜎 0
𝐺6 𝐼(𝑡)𝛽𝜎 −𝑘 − 𝜆 − 𝜇 𝐺5 0

0 0 𝑘 −𝜆 − G1 0
0 0 0 𝐺2 −𝜆 − µ 

 
 

   

 (2.10) 
 
 
 
with 

, 

 On substituting the equilibrium, E1 of the system (2.1) in (2.10), we get 
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𝐽(𝐸1) =

 

 
 

−𝜆 −  µ −   𝜓1 0 0 𝛽𝑆∗ 𝛿
𝜓1 𝜆 −  µ 0 𝛽𝜎𝑉

∗ 0
0 0 −𝑘 − 𝜆 − 𝜇 𝛽𝑆∗ + 𝛽𝜎𝑉

∗ 0
0 0 𝑘 −𝛼 −  𝛾−𝜆 − µ −  𝜓2 0
0 0 0 𝛾 + 𝜓2 −𝜆 − µ 

 
 

                         

(2.11) 
 
 
Using Mathematica Software to evaluate the eigenvalues of equation (2.11), we have 
 (−λ − µ)2(−λ − µ − ψ1(t))(−k(S∗(t)β + V ∗(t)βσ) + (−k − λ − µ)(−α − γ − λ − ψ2(t))) = 0. (2.12) 
From equation (2.12), we have λ1,2 = −(µ+δ), λ3 = −(µ+ψ2(t)) and λ4,λ5 can be obtain from the remaining 
quadratic equation (2.12) which is given as 

 
Or 
 λ2 + (k + α + γ + ψ2(t))λ + ψ2(t)(k + µ) + (k + µ)(α + γ + µ)(1 − R0) = 0 (2.14) 
Remark 2: The model (2.1) is locally asymptotically stable provided R0 <1 and unstable if otherwise. 
 
2.5 Disease Endemic Equilibrium 
Disease endemic equilibrium (DEE) only occurs when the basic reproduction number R0 is greater than a 
unit. Whenever this occurred, the disease evade a population and persist for a long time. We therefore 
seek to investigate the DEE of model (2.1), E2 = (S∗∗(t),V ∗∗(t),E∗∗(t),I∗∗(t),R∗∗(t)) by equating the left hand 
sides of the model (2.1) to zero and then solve for each state variable as follows: 

Λ − λ(t)S(t) − (ψ1(t) + µ)S(t) + δR(t) = 0 (2.15) 

ψ1(t)S(t) − σβI(t)V (t) − µV (t) = 0 (2.16) 

σβI(t)V (t) + λ(t)S(t) − kE(t) − µE(t) = 0 (2.17) 

kE(t) − (α + µ + γ + ψ2(t))I(t) = 0 (2.18) 

ψ2(t)I(t) + γI(t) − µR(t) = 0 (2.19) 

We solve for each state variable of equations (2.15) − (2.19) and we obtain 

 
Substituting S(t),V (t) and E(t) in equation (2.17), we have 

(2.20) 
Whenever the disease inhibition rate is too low, then θ → 0. Thus, we have λ∗∗(t) → βI∗∗(t) and equation 
(2.20) becomes 

a1I∗∗2(t) + a2I∗∗(t) + a3 = 0 (2.21) 
where 

a1 = β2σµG1(k + µ) 
a2 = kβµσG1G3 + βµ2σG1G2 + kβ2Λµσ + kδβµG2 − µ3βG1 a3 = kµ2G1G3 + µ3G1G3 − 
kΛµ2β 

The roots of equation (2.20) always have either one negative root and one positive root or two positive 
roots. It should be noted that whenever the roots are one positive and one negative, the negative root 
should be ignored, then model (2.1) has only one endemic equilibrium but whenever two positive roots 
occurred, then model (2.1) has two endemic equilibria. 
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Theorem 3.3 
The non-negative equilibrium,  of model (2.1) exists and is unique provided R0 >1. 
2.6 Local Asymptotic Stability of the Disease Endemic Equilibrium 
Here, we seek to analyze the local asymptotic stability of the disease endemic equilibrium (DEE). To do 
this we claim the following result 
Theorem 2.4 
The disease endemic equilibrium,  is locally asymptotically stable provided R0 >1. 
Proof. We shall prove this by linearizing model (2.1) at  equilibrium using Jacobian method. We then 
substitute the  equilibrium into the general Jacobian matrix obtained previously to obtain 
 
 
 

J(E2∗) 

 

 
 

−𝜆 −  𝐺3 +  𝐺6 0 0 𝐺4 𝛿
𝜓1 𝜆 −  µ −  𝐼∗∗(𝑡)𝛽𝜎 0 𝑉∗∗(𝑡)𝛽𝜎 0
𝐺6 𝐼∗∗(𝑡)𝛽𝜎 −𝑘 − 𝜆 − 𝜇 𝐺5 0

0 0 𝑘 −𝜆 − G1 0
0 0 0 𝐺2 −𝜆 − µ 

 
 

             

(2.22) 
 
 
 
with 

 
The characteristic equation of the equation (2.22) can be written as: 

λ5 + b1λ4 + b2λ3 + b3λ2 + b4λ + b5 = 0 (2.23) 
where 
b1 = G1 + G3 − G6 + k + 3µ + βσI∗∗(t) 
b2 = G1k + G3k − G5k − G6k + 3G1µ + 3G3µ − 3G6µ + βG1σI∗∗(t) + βG3σI∗∗(t) − βG6σI∗∗(t) + G1G3 − G1G6 + 2kµ + 
βkσI∗∗(t) + 3µ2 + 2βµσI∗∗(t) 
b3 = 2G1kµ + 2G3kµ − 2G5kµ − 2G6kµ + βG1kσI∗∗(t) + βG3kσI∗∗− βG5kσI∗∗(t) − βG6kσI∗∗(t) + G1G3k − 
G3G5k−G1G6k−G4G6k+G5G6k+3G1µ2+3G3µ2−3G6µ2+3G1G3µ−3G1G6µ+2βG1µσI∗∗(t)+2βG3µσI∗∗(t)− 2βG6µσI∗∗(t) 
+ βG1G3σI∗∗(t) − βG1G6σI∗∗(t) + kµ2 + βkµσI∗∗(t) − β2kσ2I∗∗(t)V ∗∗(t) + µ3 + βµ2σI∗∗(t) 
b4 = G1kµ2−δG2G6k +G3kµ2−G5kµ2−G6kµ2 +2G1G3kµ−2G3G5kµ−2G1G6kµ−2G4G6kµ+2G5G6kµ+ 
βG1kµσI∗∗(t)+βG3kµσI∗∗(t)−βG5kµσI∗∗(t)−βG6kµσI∗∗(t)−βG4kσI∗∗(t)ψ1+βG1G3kσI∗∗(t)−βG3G5kσI∗∗(t)− 
βG1G6kσI∗∗(t)−βG4G6kσI∗∗(t)+βG5G6kσI∗∗(t)−β2G3kσ2I∗∗(t)V ∗∗(t)+β2G6kσ2I∗∗(t)V +G1µ3+G3µ3− 
G6µ3+3G1G3µ2−3G1G6µ2+βG1µ2σI∗∗(t)+βG3µ2σI∗∗(t)−βG6µ2σI∗∗(t)+2βG1G3µσI∗∗(t)−2βG1G6µσI∗∗(t)− 
β2kµσ2I∗∗(t)V ∗∗(t) 
b5 = G1G3kµ2−δG2G6kµ−G3G5kµ2−G1G6kµ2−G4G6kµ2+G5G6kµ2−βδG2G6kσI∗∗(t)+βG1G3kµσI∗∗(t)− 
βG3G5kµσI∗∗(t)−βG1G6kµσI∗∗(t)−βG4G6kµσI∗∗(t)+βG5G6kµσI∗∗(t)−β2G3kµσ2I∗∗(t)V ∗∗(t)+β2G6kµσ2I∗∗(t)V ∗∗(t)+ 
G1G3µ3 − G1G6µ3 + βG1G3µ2σI∗∗(t) − βG1G6µ2σI∗∗(t) 
 
Theorem 2.5 
The equilibrium,  is locally asymptotically stable provided the coefficients of the characteristic equation 
(2.23) satisfies the following Routh Hurwitz stability conditions: 

1. bi(i = 1,2,...,5) >0 
2. b1b2 > b3 
3. b1b2b3 > b23 + b21b4 
4. b1b2b3b4 + b1b2b5 + 2b1b4b5 > b23b4 + b21b24 + b1b22b5 + b25 

 
2.7 Global stability analysis of the disease endemic equilibrium 
In this section, we present the global stability of the model (2.1) at  equilibrium. We assume that the 
drug efficacy ξ → 1 and then σ → 0. We give the following theorem by following: 
Theorem 2.6 
If R0 >1, then, the endemic equilibrium,  of the model (2.1) is globally asymptotically stable on Ω. Proof. 
At a steady state, system (2.1) at  gives 
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  (2.24) 
Thus, we define the Lyapunov function as 

 
Taking the time derivative of equation (2.25) along the solution of the system (2.1), we have 

  (2.26) 
By direct substitution of equation (2.1) in (2.26), we obtain 
 

 (2.27) 

 
 (2.28) 

 
 (2.29) 
It follows from (2.27 − 2.29) that 
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 (2.30) From equation (2.30), we have 

 0 (2.31) 
Thus, the condition (2.31) implies that Y˙ ≤ 0, for (S(t),V (t),E(t),I(t),R(t)) ∈ Ω. Then, the equilibrium, is 
globally asymptotically stable on Ω. 
Remark 2: The occurrence of this condition implies that the influenza disease becomes endemic globally. 
When this happens, it will claim many lives and may also put the world into recession as similar to the 
novel corona virus disease 2019 (COVID 19 Pandemic). 
 

III. Results 
2.8 Solution of the Model Equations 
In this section, we use the inbuilt MATLAB function ode 45 to solve the model equations above. The 
graphical user interface in the MATLAB version 7.5 was used for the solution method, simulation and 
visualization on graphs. We made use of the parameters of the model and their values from related 
literature and we assumed some parameters values that are not found in literature. 

 
Table 3.1: Description and Interpretation of Parameters Values of the Model Equations 

 
 
             Parameter        Symbol 
 Value 

      Recruitment rate of human population      𝛬 
 1534 
      Natural death rate        𝜇                             
0.1917 
      Disease induced death rate       𝛿                            0.03 
Vaccination rate of the susceptible individual                     ψ1(t) 0.9 
Degree of protection where ξ is the vaccine efficacy σ = (1 − ξ) 0.699 
Treatment of the infected individual ψ2(t) 0.8 
Natural recovery rate of the infected individuals γ 0.36 
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Fig. 2.2: Plot of exposed individuals over time 

 
Fig. 2.2 shows the plot of exposed individuals over time at different rate of the saturated parameter, θ. 
From the graph, the exposed individuals population decrease when the saturated parameter, θ increased. 
It is easy to say that the saturated parameter, θ inhibits disease transmission. 

 
Fig. 2.3: Plot of infected individuals over time 

 

Fig. 2.3 describes the infected population over time in the presence of vaccination and treatment and in 
the absence of vaccination and treatment. It can be clearly seen from the graph that administration of 
vaccine and treatment of infected individuals decrease the disease burden in the population. 

Progressionratefromexposedtoinfectious k 0.00015 
Rateatwhichrecoveredindividuallossimmunityandbecomesusceptible δ 0.01 
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Fig. 2.4: Plot of E1 equilibrium 

 
Fig. 2.4 is a plot of the disease free equilibrium (DFE) state over time. From the graph, the susceptible 
population decreased as a result of protection majority of the susceptible individuals received through 
vaccination. The vaccinated individuals population increased and latter decreased a little. The small 
decrease of the vaccinated population is due to loss of immunity by subgroup of the population. 

 
Fig. 2.5: Plot of  equilibrium 

 
Fig. 2.5 shows the plot of the disease endemic equilibrium (DEE) state over time. From the graph, it is 
interesting to see that majority of the population were vaccinated and remain in the class due to the 
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development of immunity to the disease. We also observe that some susceptible population which were 
not given the vaccine and those that loss their immunity became exposed to the disease. IV. Discussion 
We present a mathematical model on avian influenza with detailed analysis. We basically considered 
human population only and ignored the bird population as a result of our interest on the dynamics of 
influenza on human population. Initially, we presented a detailed mathematical results of the model 
equations. The results obtained show that the model is stable both locally and globally under some 
certain conditions. The stability results for disease free equilibrium is obtained when R0 <1 . If R0 >1, we 
proved that the endemic equilibrium of the model is both locally, globally asymptotically stable under 
some certain conditions. 

The numerical results of the model is obtained and is given in Figure 2.2 − 2.5. The numerical 
results validate that the transmission dynamics of the avian influenza which is determined by force of 
infections. It is observed that the parameter θ and β respectively show, the saturation effect and the 
contact between infective humans to susceptible humans do not change the stability of the equilibria and 
so that the outbreaks, as the infected humans do not spread the virus further. 

However, the numerical results show that increasing the vaccination parameter and the 
treatment parameter decrease the exposed humans and the infected humans respectively and can help to 
control the disease. 

 
V. Conclusion 

In this study we have proposed a non-autonomous mathematical model that study the dynamics 
of an avian influenza with saturated incidence rate. The model exhibits two equilibria, namely, the disease 
free equilibrium (DFE) and the disease endemic equilibrium (DEE). The disease threshold that is, the 
basic reproduction number is computed using the next generation method. The DFE is locally 
asymptotically stable when R0 <1 and the endemic equilibrium is both locally and globally stable when R0 

>1. The disease can be eradicated provided the efficacy of the vaccine is high and the administration is up 
to 80% - 90% of the susceptible individuals and the treatment of the infected individuals are seriously 
observed. 
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