# The closest vector problem in some lattices of type $A$ 

Arnaud GirèsFobasso Tchinda ${ }^{1}$, EmmanuelFouotsa ${ }^{2}$<br>${ }^{1}$ (Department of Mathematics, Faculty of Science, University of Yaoundé I, Cameroon)<br>${ }^{2}$ (Department of Mathematics,Higher Teacher Training College, University of Bamenda, Cameroon)


#### Abstract

Lattice-based cryptographic constructions hold a great promise for postquantum cryptography, as they enjoy very strong security proofs based on worst-case hardness relatively efficient implementations, as well as great simplicity. LéoDucas and Wessel van Woerden in [5] proposed a polynomial algorithm allowing solving the Closest Vector Problem (CVP) in the tensor product of two lattices of type A. And as anopen problem, theses authors asked to extend this resolution in the case of three lattices and in the general case of $k$ lattices of type A. Our goal is therefore to propose a solution of this problem. We use the associativity of the lattice of type $A$ and the same techniques to solve this problem in the tensor product of three lattices of type $A$ and even in the tensor product of a finite number of lattices of type $A$. So we will determine a polynomial algorithm to solve $C V P$ in $A_{n+1} \otimes A_{m+l} \otimes A_{p+l}$.


Key Word: Lattice based cryptography, root lattice, closest vector problem, tensored root lattices, graph, completed graph, cycle.
AMS Subject Classification 2010: 11H71-11T71-94B75-94B35.

## I. Introduction

Searching for the nearest vector in a lattice is a difficult mathematical problem [6], used in cryptography to build robust and secure cryptosystems [9] resistant to quantum computers [12]. The fact of determining a basis whose vectors are relatively closed and almost orthogonal makes it possible to easily find the nearest vector in a lattice of integers [13]. The polynomial LLL reduction algorithm has been generalized by Napias on the Euclidean rings of integers [11]. As a result, Conway and Sloane [3] set up polynomial algorithms to solve the problem of the nearest vector in root lattices of type A. In order to improve the tolerance of the error of the cryptosystem, LéoDucas and Wessel van Woerden used the isomorphisms of root lattice defined in [5] to build a polynomial algorithm to solve the problem of the nearest vector in the tensor product of two root lattices and in the direct sum of a finite number of root lattices of type A [14].

In this work, we propose a polynomial algorithm to solve the problem of the nearest vector in the tensor product $A_{n+1} \otimes A_{m+1} \otimes A_{p+1}$. Indeed, there is already an algorithm to solve this problem in $A_{n}$ [5]. A motivation could be to use the full characterization of the Voronoi relevant vector in this case in term of simple cycle in the complete directed tripartite graph $\mathrm{K}_{\mathrm{n}+1, \mathrm{~m}+1, \mathrm{p}+1}$. So we need to establish the relationship between the Voronoi relevant vectors in the tensor product $A_{n+1} \otimes A_{m+1} \otimes A_{p+1}$ and the complete directed tripartite graphs $\mathrm{K}_{\mathrm{n}+1, \mathrm{~m}+1, \mathrm{p}+1}$. Subsequently, we will modify some parameters of the polynomial algorithm in [3] to solve this problem in $A_{n+1} \otimes A_{m+1} \otimes A_{p+1}$.

This work is organized as follows: In Section II, we review the definitions of lattices, graphs, tensor product and basic properties of the root lattices of type A and simple graph to understand the results of further sections. In Section III, we present the characterization of the Voronoi relevant vector in the tensor product of three root lattices of type A and give the polynomial algorithm to solve the problem of the nearest vector in $A_{n+1} \otimes A_{m+1} \otimes A_{p+1}$. In Section IV, we willgeneralize this result in the case of the tensor product of $k$ root lattices of type A.

## II. LatticeandgraphBackground

Throughout this paper, for some positive integer $d$, we use the Euclidean product on $\mathbb{R}^{d}$ that is defined by:

$$
\langle\mathrm{x}, \mathrm{y}\rangle=\mathrm{x}_{1} \mathrm{y}_{1}+\mathrm{x}_{2} \mathrm{y}_{2}+\ldots+\mathrm{x}_{\mathrm{d}} \mathrm{y}_{\mathrm{d}}
$$

for $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{d}}\right)$ and $\mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{d}}\right)$ in $\mathbb{R}^{\mathrm{d}}$. The Euclidean norm on $\mathbb{R}^{\mathrm{d}}$ is defined as follows: $\|\mathrm{x}\|=\sqrt{\langle\mathrm{x}, \mathrm{y}\rangle}$. All definitions in this section are taken form [5, 13].
Definition 1.A lattice is a discrete additive subgroup of $\mathbb{R}^{d}$, for some positive integer d. We deal exclusively with any lattice $\Lambda$ of rank $r$, which is generated as the set of all integer linear combinations of $r$ linearly
independent vectors $b_{1}, b_{2}, \ldots b_{r} i n \mathbb{R}^{d}$ as follows:

$$
\begin{equation*}
\Lambda=\left\{\sum_{\mathrm{i}=1}^{\mathrm{r}} \mathrm{z}_{\mathrm{i}} \cdot \mathrm{~b}_{\mathrm{i}}:\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{r}}\right) \in \mathbb{Z}^{\mathrm{r}}\right\} \tag{1}
\end{equation*}
$$

Obviously, $\mathrm{r} \leq \mathrm{n}$. Another lattice $\Lambda^{\prime}$ in $\mathbb{R}^{\mathrm{d}}$ of the same rank r such that $\Lambda^{\prime} \subset \Lambda$ is called a full rank sublattice of $\Lambda$. A generator matrix of $\Lambda$ is a matrix whose rows form a base of $\Lambda$. The linear subspace of $\mathbb{R}^{d}$ spanned by the elements of $\Lambda$ is denoted $\operatorname{span}(\Lambda)$. The dual lattice of $\Lambda$ is defined as $\Lambda^{*}=\left\{x \in \mathbb{R}^{d}:\langle\Lambda, x\rangle \subset Z\right\}$, where $\langle\Lambda, x\rangle=\{$ $\langle y, x\rangle: y \in \Lambda\}$. It is easy to see that $\left(\Lambda^{*}\right)^{*}=\Lambda$. The minimum distance of a lattice $\Lambda$ w.r.t Euclidian norm, denoted $\|\Lambda\|$, is the length of a shortest lattice nonzero vector, i.e., $\|\Lambda\|=\min _{0 \neq \mathrm{x} \in \Lambda}\|\mathrm{x}\|$.
Given that we are going to associate the oriented graphs in our work, the definitions below will allow a better understanding for the rest of the work.

## Definition 2.

1. A graph G is a ordered pair $(\mathrm{V}, \mathrm{E})$ where :

- V is a finite set of vertices (also called nodes or points);
- $E \subset\left\{(x, y) /(x, y) \in V^{2}\right.$ and $\left.x \neq y\right\}$ is a subset of $V \times V$. The elements of $E$ are called the edges of the graph.

2. A graph $G$ is connected if it is possible from any vertex, to join all the others vertices following the edges.
3. A complete graph is a graph that has an edge between every simple vertex in the graph. We label $K_{n}$ the complete graph with $n$ vertices.
4. A graph $G$ is said to be tripartite if there exists a partition $\left\{V_{1}, V_{2}, V_{3}\right\}$ of $V$ such that each edge of $G$ connects a vertex of $V_{1}$ to a vertex of $V_{2}$ and to a vertex of $V_{3}$.
5. A cycle of a graph, also called a circuit is a non-empty trail in which the only repeated are the first and the ending vertices.
6. A simple cycle is a cycle with no repeated vertices (except for the beginning and the ending vertex).

Inspired by the characterization of the tensor product of two and three root lattices of type A, we will generalize the characterization of the tensor product of a finite number of root lattices of type A as below.

Definition 3.Let $\Lambda_{1} \subset \mathbb{R}^{n 1}$ and $\Lambda_{2} \subset \mathbb{R}^{n 2}$ be lattices of respectively ranks $n_{1}$ and $n_{2}$, let $a_{1, \ldots}, a_{n 1} \in \mathbb{R}^{n 1}$ and $b_{1}, \ldots$, $\mathrm{b}_{\mathrm{n} 2} \in \mathbb{R}^{\mathrm{n} 2}$ be respective bases. The tensor product $\Lambda_{1} \otimes \Lambda_{2} \subset \mathbb{R}^{\mathrm{n} 1 \mathrm{n} 2}$ is defined as the lattice with basis $\left\{\mathrm{a}_{\mathrm{i}} \otimes \mathrm{b}: \mathrm{i} \in 1, \ldots, \mathrm{n}_{1} ; \mathrm{j} \in 1, \ldots, \mathrm{n}_{2}\right\}$.
Here $\mathrm{x} \otimes \mathrm{y}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n} 1}\right) \otimes\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n} 2}\right)$ with $\mathrm{x} \in \mathbb{R}^{\mathrm{n} 1}$ and $\mathrm{y} \in \mathbb{R}^{\mathrm{n} 2}$ is defined as the natural embedding in $\mathbb{R}^{\mathrm{nln} 2}$ as follows:

$$
\left(\mathrm{x}_{1} \mathrm{y}_{1}, \mathrm{x}_{1} \mathrm{y}_{2}, \ldots, \mathrm{x}_{1} \mathrm{y}_{\mathrm{n} 2}, x_{2} \mathrm{y}_{1}, \ldots, \mathrm{x}_{\mathrm{n} 1} \mathrm{y}_{\mathrm{n} 2}\right) \in \mathbb{R}^{\mathrm{n} 1 \mathrm{n} 2}
$$

For three lattices, the tensor product $\Lambda_{1} \otimes \Lambda_{2} \otimes \Lambda_{3} \subset \mathbb{R}^{\mathrm{n} 1 \mathrm{n} 2 \mathrm{n} 3}$ (with $\Lambda_{3} \subset \mathbb{R}^{\mathrm{n} 3}$ and it basis $c_{1}, \ldots, c_{\mathrm{n} 3} \in \mathbb{R}^{\mathrm{n} 3}$ ) is defined as the lattice with basis $\left\{\mathrm{a}_{\mathrm{i}} \otimes \mathrm{b}_{\mathrm{j}} \otimes \mathrm{q}_{\mathrm{q}}: \mathrm{i}=1, \ldots, \mathrm{n}_{1} ; \mathrm{j}=1, \ldots, \mathrm{n}_{2} ; \mathrm{k}=1, \ldots, \mathrm{n}_{3}\right\}$.
Here $\mathrm{x} \otimes \mathrm{y} \otimes \mathrm{z}=(\mathrm{x} \otimes \mathrm{y}) \otimes \mathrm{z}=\left(\mathrm{x}_{1} \mathrm{y}_{1}, \mathrm{x}_{1} \mathrm{y}_{2}, \ldots, \mathrm{x}_{1} \mathrm{y}_{\mathrm{n} 2}, \mathrm{x}_{2} \mathrm{y}_{1}, \ldots, \mathrm{x}_{\mathrm{n} 1} \mathrm{y}_{\mathrm{n} 2}\right) \otimes\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{n} 3}\right)$;
Thus, $x \otimes y \otimes z=\left(x_{1} y_{1} z_{1}, x_{1} y_{1} z_{2}, \ldots, x_{1} y_{1} z_{n 3}, x_{1} y_{2} z_{1}, \ldots, x_{n 1} y_{n 2} z_{n 3}\right) \in \mathbb{R}^{n 12 n 2 n}$.
Definition 4.Let $\Lambda_{1} \subset \mathbb{R}^{\mathrm{n1}}, \Lambda_{2} \subset \mathbb{R}^{\mathrm{n} 2}, \ldots, \Lambda_{\mathrm{k}} \subset \mathbb{R}^{\mathrm{nk}}$ be lattices of respectively ranks $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{k}}$; let $\mathrm{a}_{1}{ }^{(1)}, \ldots$, $a_{n 1}{ }^{(1)} \in \mathbb{R}^{n 1} ; a_{1}{ }^{(2)}, \ldots, a_{n 2}{ }^{(2)} \in \mathbb{R}^{n 2} ; \ldots ; a_{1}{ }^{(k)}, \ldots, a_{n k}{ }^{(k)} \in \mathbb{R}^{n k}$ be respective bases. The tensor product $\Lambda_{1} \otimes \Lambda_{2} \otimes \ldots$ $\otimes \Lambda_{\mathrm{k}} \subset \mathbb{R}^{\text {nln2..nk. }}$ is defined as the lattice with basis $\left\{\mathrm{a}_{\mathrm{i}(1)}{ }^{(1)} \otimes \mathrm{a}_{\mathrm{i}(2)}{ }^{(2)} \otimes \ldots \otimes \mathrm{a}_{\mathrm{i}(\mathrm{k})}{ }^{(k)}: \mathrm{i}(1)=1, \ldots, \mathrm{n}_{1} ; \ldots ; \mathrm{i}(\mathrm{k})=1, \ldots, \mathrm{n}_{\mathrm{k}}\right.$ \}.
Here, we use the associativity to compute $x^{(1)} \otimes x^{(2)} \otimes \ldots \otimes x^{(k)}$ as below :
$x^{(1)} \otimes x^{(2)} \otimes \ldots \otimes x^{(k)}=\left(x_{1}{ }^{(1)} \mathrm{X}_{1}{ }^{(2)} \ldots \mathrm{X}_{1}{ }^{(k)}, \mathrm{x}_{1}{ }^{(1)} \mathrm{X}_{1}{ }^{(2)} \ldots \mathrm{X}_{2}{ }^{(k)}, \ldots, \mathrm{X}_{\mathrm{n} 1}{ }^{(1)} \mathrm{X}_{\mathrm{n} 2}{ }^{(2)} \ldots \mathrm{X}_{\mathrm{n} 3}{ }^{(k)}\right) \in \mathbb{R}^{\mathrm{n} 1 \mathrm{n} 2 . . n k}$.
Closest Vector Problem 1. Let $\Lambda \subset \mathbb{R}^{d}$ be a lattice and $t \in \operatorname{span}(\Lambda)$. The aim is to construct a vector $x$ in $\Lambda$ that minimizes the distance $\|t-x\|$. Such an $x$ is also called a closest vector to $t$.
The following example recalls the definition of the root lattice of type A below, gives its dual lattice, and provides a generator matrix for both.
Example 2.1.[5, Lemmas 2. and 3.] Let $n$ be a positive integer. The subset $A_{n}$ of $\mathbb{R}^{n+1}$ defined by:

$$
\mathrm{A}_{\mathrm{n}}=\left\{\mathrm{x} \in \mathrm{Z}^{\mathrm{n}+1}:\langle\mathrm{x},[1]\rangle=0\right\} ;
$$

where $[1]=(1,1, \ldots, 1)$ is a lattice of rank $n$ in $\mathbb{R}^{n+1}$ with a generator matrix

$$
\mathrm{B}=\left(\begin{array}{cccccc}
1 & -1 & 0 & \cdots & 0 & 0  \tag{2}\\
0 & 1 & -1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & -1 & 0 \\
0 & \cdots & 0 & 0 & 1 & -1
\end{array}\right)
$$

A generator matrix of its dual $\left(A_{n}\right)^{*}$ is the $n \times(n+1)-$ matrix $B^{*}$ given by

$$
\mathrm{B}^{*}=\frac{1}{n+1}\left(\begin{array}{ccccc}
n & -1 & -1 & \cdots & -1  \tag{3}\\
-1 & n & -1 & \cdots & -1 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
-1 & \cdots & n & -1 & -1 \\
-1 & \cdots & -1 & n & -1
\end{array}\right)
$$

Definition 5. (Voronoi region)[5] The Voronoi region of a lattice $\Lambda$ is defined by:

$$
\begin{aligned}
V(\Lambda) & :=\{x \in \operatorname{span}(\Lambda):\|x\| \leq\|x-v\| \forall v \in \Lambda\} \\
& =\{x \in \operatorname{span}(\Lambda): 2\langle x, v\rangle \leq\langle v, v\rangle \forall v \in \Lambda\}
\end{aligned}
$$

Consistingofallpointsinspan( $\Lambda$ )thathave0asaclosestvector.Itismeansthatitisthesetof pointsofspan $(\Lambda)$ havingthenearestvector0inthelattice $\Lambda$.
TheVoronoiregionisjusttheintersectionofhalfspaces $\mathrm{H}_{\mathrm{v}}:=\{\mathrm{x} \in \operatorname{span}(\Lambda): 2\langle\mathrm{x}, \mathrm{v}\rangle \leq\langle\mathrm{v}, \mathrm{v}\rangle\}$
forallv $\in \Lambda \backslash\{0\}$. Notethattheonlyhalfspaces $\mathrm{H}_{\mathrm{v}}$ inthisintersectionthatmatterarethose correspondingtoafacet ( $\operatorname{rank}(\Lambda)$-1dimensionalfaceof $V(\Lambda)$ ),
$\{x \in \operatorname{span}(\Lambda):\|x\| \leq\|x-v\|\} \cap$
$\mathrm{V}(\Lambda)$ oftheVoronoiregion.Suchv $\in \Lambda$ arecalledVoronoirelevantvectors.
Definition 6. (Voronoirelevant vectors)[5]: Let $\Lambda$ be a lattice. Let $v \in \Lambda \backslash\{0\}$; $v$ is an Voronoirelevantvectorsifthereexistx $\in \operatorname{span}(\Lambda)$ suchthat: $\|x\|=\|x-v\|$ and $\forall w \in \Lambda \backslash\{0\}\|x\|<\|x-w\|$.
These are also the minimal set $\mathrm{RV}(\Lambda) \subset \Lambda$ of the vectors such that

$$
\mathrm{V}(\Lambda)=\cap \mathrm{H}_{v} \text {, with } \mathrm{v} \in \mathrm{RV}(\Lambda)
$$

Voronoi showed that for $\mathrm{v} \in \Lambda \backslash\{0\}$ we have that v is a Voronoi relevant vector if and only if 0 and v are the only closest vectors to $\frac{v}{2}$ in $\Lambda$.
Lemma 1. [5]Lett $\in \operatorname{span}(\Lambda)$ and $x \in \Lambda$.Thereexistsavectory $\in \Lambda$ suchthat $||(x+y)-t||<\| x-t| |$ ifandonlyifthereexistsaVoronoirelevantvectorv $\in R V(\Lambda)$ suchthat $\|(x+v)-t\|<\|x-t\|$.

## Proof.

We suppose that there exists $y \in \Lambda$ such that $\|(x+y)-t\|<\|x-t\|$;
we know that: $\|(x+y)-t\|=\|t-(x+y)\|$ and $\|x-t\|=\|t-x\|$;
thus $\|t-(x+y)\|<\|t-x\| ;$
by Definition 10, we deduce that ( $\mathrm{t}-\mathrm{x}$ ) is not in the set $\mathrm{V}(\Lambda)$;
it is means that there exists a vector $v \in R V(\Lambda)$ such that $\|t-x\|>\|(t-x)-v\|$;
thus there exists a vector $v \in \Lambda$ such that $\|(x+v)-t\|<\|x-t\|$.
Inversely, we suppose now there exists $v \in R V(\Lambda)$ such that $\|(x+y)-t| |<| | x-t\|$;
SinceRV $(\Lambda) \subset \Lambda$, then there exist a vector $v \in \Lambda$ such that $\|(x+y)-t\|<\|x-t\|$;
for $\mathrm{y}=\mathrm{v}$, we have the result.
Proposition 1.Let $\Lambda$ be a lattice. A vector $v \in \Lambda \backslash\{0\}$ is Voronoirelevant vector if and only if $\langle\mathrm{v}, \mathrm{x}\rangle\langle\langle\mathrm{x}, \mathrm{x}\rangle$, for all $\mathrm{x} \in \Lambda \backslash\{0, \mathrm{v}\}$.

## Proof.

We remark that $\left\|\frac{1}{2} v-x\right\|^{2}-\left\|\frac{1}{2} v\right\|^{2}=\left\|\frac{1}{2} v\right\|^{2}-\langle\mathrm{v}, \mathrm{x}\rangle+\|\mathrm{x}\|^{2}-\left\|\frac{1}{2} v\right\|^{2}=\|\mathrm{x}\|^{2}-\langle\mathrm{v}, \mathrm{x}\rangle$;
Thus $\left\|\frac{1}{2} v-x\right\|^{2}=\langle\mathrm{x}, \mathrm{x}\rangle-\langle\mathrm{v}, \mathrm{x}\rangle$;
Then, for a $v \in \Lambda \backslash\{0\}$ and all $x \in \Lambda \backslash\{0, v\}$ we have that:
$\left.\left\|\frac{1}{2} v-x\right\|^{2}-\left\|\frac{1}{2} v\right\|^{2}>\left\|\frac{1}{2} v\right\|^{2} \mathrm{iff}\langle\mathrm{x}, \mathrm{x}\rangle\right\rangle\langle\mathrm{v}, \mathrm{x}\rangle$.
The construction of the tensor product of two root lattices of type A is done as below.
Let $m, n \geq 1$, we consider the lattice $A_{n} \otimes A_{m} \subset \mathbb{Z}^{(n+1)(m+1)}$ of rank $n m$. Note that this lattice consists of all elements $\mathrm{x}=\left(\mathrm{x}_{11}, \mathrm{x}_{12}, \ldots, \mathrm{x}_{1(\mathrm{n}+1)}, \mathrm{x}_{21}, \ldots, \mathrm{x}_{(\mathrm{n}+1)(\mathrm{m}+1)}\right) \in \mathbb{Z}^{(\mathrm{n}+1)(\mathrm{m}+1)}$ which satisfy the following conditions : (1) $\sum_{i=1}^{n+1} x_{i j}=0$ for $\mathrm{j}=1, \ldots, \mathrm{~m}+1$
(2) $\sum_{j=1}^{m+1} x_{i j}=0$ for $\mathrm{i}=1, \ldots, \mathrm{n}+1$

Remark 1. From the root lattice tensor product constructions, it follows that $A_{n} \otimes A_{m}$ is a subgroup of lattice $A_{(n+1)(m+1)-1}$. To solve CVP in the tensor product of three lattices of type $A$, it will be enough to use associativity and solve C V P first in $A_{n} \otimes A_{m}$ then in $A_{(n+1)(m+1)-1} \otimes A_{p}$.
Definition 7.Let $t \in\{-1,0,1\}^{(n+1)(m+1)}$ be given. We will define the subgraph $G_{t}=\left(V_{t}, E_{t}\right) \subset K_{(n+1),(m+1)}=(V, E)$ corresponding to $t$.Let $E_{t}$ consist of the following directed edges:

- Theedge $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ foreacht ${ }_{\mathrm{ij}}$ thathasvalue-1;
- Theedge $\left(\mathrm{v}_{\mathrm{j}}, \mathrm{u}_{\mathrm{i}}\right)$ foreach $\mathrm{t}_{\mathrm{ij}}$ thathasvalue1.


## III. ClosestVectorProblemin $\mathbf{A}_{\mathbf{n}} \boldsymbol{\otimes} \mathbf{A}_{\mathrm{m}} \boldsymbol{\otimes} \mathbf{A}_{\mathbf{p}}$

In this section, we will characterize the Voronoi relevant vector in $A_{n} \otimes A_{m} \otimes A_{p}(m, n, p \geq 1)$ in order to determine a polynomial algorithm to solve the closest vector problem in this lattice. We will use the same techniques as for the case of the tensor product of two root lattices of type A. But in this case of the tensor product of three root lattices of type A, we will use the complete directed tripartite graph.
Definition 8. Let $\mathrm{m}, \mathrm{n}, \mathrm{p} \geq 1$, be three positives integers that are not all zero. We call root lattice
$A_{n} \otimes A_{m} \otimes A_{p} \subset \mathbb{Z}^{(n+1)(m+1)(p+1)}$ of rank nmp all of elements
$\mathrm{x}=\left(\mathrm{x}_{111}, \ldots, \mathrm{x}_{11(\mathrm{p}+1)}, \mathrm{x}_{121}, \ldots, \mathrm{x}_{12(\mathrm{p}+1)}, \mathrm{x}_{(\mathrm{n}+1)(\mathrm{m}+1)(\mathrm{p}+1)}\right) \in \mathbb{Z}^{(\mathrm{n}+1)(\mathrm{m}+1)(\mathrm{p}+1)}$ which satisfy the following conditions
(1) $\sum_{i=1}^{n+1} x_{i j k}=0$ for $\mathrm{j}=1, \ldots, \mathrm{~m}+1$ and $\mathrm{k}=1, \ldots, \mathrm{p}+1$

$$
\begin{equation*}
\sum_{j=1}^{m+1} x_{i j k}=0 \text { for } \mathrm{i}=1, \ldots, \mathrm{n}+1 \text { and } \mathrm{k}=1, \ldots, \mathrm{p}+1 \tag{2}
\end{equation*}
$$

$\sum_{k=1}^{p+1} x_{i j k}=0$ for $\mathrm{i}=1, \ldots, \mathrm{n}+1$ and $\mathrm{j}=1, \ldots, \mathrm{~m}+1$
We will use the indices $\mathrm{i}, \mathrm{j}$ and k throughout this section.

## Characterizing the Voronoi relevant vectors.

As announced we construct a polynomial algorithm to solve the closest vector problem for the lattice $A_{n} \otimes A_{m} \otimes A_{p}$. For this, we characterize the Voronoi relevant of $A_{n} \otimes A_{m} \otimes A_{p}$. First we will limit our search space.

Many of the results present here are due by LéoDucas and Wessel van Woerden[5].
Proposition 2.For all voronoi relevant vectors $u \in A_{n} \otimes A_{m} \otimes A_{p}$ we have $\left|u_{i j k}\right|<6$ for all $i=1, \ldots, n+1$;
$j=1, \ldots, m+1$ and $k=1, \ldots, p+1$.

## Proof.

Let $u \in A_{n} \otimes A_{m} \otimes A_{p}$ be a Voronoi relevant vector. We suppose that there exist $i, j, k$ such that $\left|u_{i j k}\right| \geq 6$; because of symmetry of the Voronoi region we can assume without loss of generality that $\left|\mathrm{u}_{111}\right| \geq 6$. And because $u$ is a Voronoi relevant vector iff $-u$ is also a relevant vector, we can also assume that $\mathrm{u}_{\mathrm{ijk}} \geq 6$.
Let $\mathrm{x}^{\mathrm{ijk}} \in \mathrm{A}_{\mathrm{n}} \otimes \mathrm{A}_{\mathrm{m}} \otimes \mathrm{A}_{\mathrm{p}}$ foralli=2,..,n+1; $\mathrm{j}=2, \ldots, \mathrm{~m}+1$ andk $=2, \ldots, \mathrm{p}+1$ begivenby
$\mathrm{x}_{111}=\mathrm{x}_{1 \mathrm{jk}}=\mathrm{x}_{\mathrm{ij1}}=\mathrm{x}_{\mathrm{i} 1 \mathrm{j}}=1 ; \mathrm{x}_{11 \mathrm{k}}=\mathrm{x}_{1 \mathrm{j} 1}=\mathrm{x}_{\mathrm{il1}}=\mathrm{x}_{\mathrm{ijk}}=-1$ and 0 otherwise.
Note that $\left\langle\mathrm{x}^{\mathrm{ijk}}, \mathrm{x}^{\mathrm{ijk}}\right\rangle=8$ foralli,j,k.Thenby Definition2, weget: $\mathrm{u}_{111}+\mathrm{u}_{1 \mathrm{jk}}+\mathrm{u}_{\mathrm{ij1}}+\mathrm{u}_{\mathrm{i} 1 \mathrm{j}}-\mathrm{u}_{11 \mathrm{k}}-\mathrm{u}_{1 \mathrm{j} 1}-\mathrm{u}_{\mathrm{il1}}-\mathrm{u}_{\mathrm{ijk}}=$
$\left\langle\mathrm{u}, \mathrm{x}^{\mathrm{ijk}}\right\rangle<8$ for all $\mathrm{i}=1, \ldots, \mathrm{n}+1 ; \mathrm{j}=1, \ldots, \mathrm{~m}+1$ andk $=1, \ldots, \mathrm{p}+1$.
Because these are all integers, we even have that : $u_{111}+u_{1 j k}+u_{i j 1}+u_{i 1 k}-u_{11 k}-u_{1 j 1}-u_{i 11}-u_{i j k} \leq 7$.
Summingmultipleoftheserelationsfor afixedj $=2, \ldots, \mathrm{~m}+1$ gives:
$\mathrm{mu}_{111}-\mathrm{mu}_{11 \mathrm{k}}+\mathrm{mu}_{\mathrm{ilk}}-\mathrm{mu}_{\mathrm{i} 11}+\sum_{j=2}^{m+1} \cdot\left(\mathrm{u}_{1 \mathrm{jk}}+\mathrm{u}_{\mathrm{ij1} 1}-\mathrm{u}_{1 \mathrm{j} 1}-\mathrm{u}_{\mathrm{ijk}}\right) \leq 7(\mathrm{~m}+1-1)$. Summing multiple of these
relations for a fixed $\mathrm{k}=2, \ldots, \mathrm{p}+1$ gives : $\mathrm{mpu}_{111}-\mathrm{mpu}_{\mathrm{i} 11}+\sum_{k=2}^{p+1} \cdot\left(\mathrm{mu}_{\mathrm{i} 1 \mathrm{k}}-\mathrm{mu}_{11 \mathrm{k}}\right)+\sum_{k=2}^{p+1} \cdot\left(\sum_{j=2}^{m+1} \cdot\left(\mathrm{u}_{1 \mathrm{jk}}+\mathrm{u}_{\mathrm{ij} 1}-\right.\right.$ $\left.\mathrm{u}_{1 \mathrm{j} 1}-\mathrm{u}_{\mathrm{ijk}}\right)$ ) $7(\mathrm{~m}+1-1)(\mathrm{p}+1-1)$;
therefore $-\mathrm{mu}_{\mathrm{i} 11}=\sum_{k=2}^{p+1} \cdot \mathrm{mu}_{\mathrm{ilk}}$ and $-\mathrm{mu}_{111}=\sum_{k=2}^{p+1} \cdot \mathrm{mu}_{11 \mathrm{k}}$;
as becomes: $\mathrm{mpu}_{111}-\mathrm{mpu}_{\mathrm{i} 11}-\mathrm{mu}_{\mathrm{i} 11}+\mathrm{mpu}_{\mathrm{i} 11}+\sum_{k=2}^{p+1} \cdot\left(\sum_{j=2}^{m+1} \cdot\left(\mathrm{u}_{1 \mathrm{jk}}+\mathrm{u}_{\mathrm{ij1} 1}-\mathrm{u}_{\mathrm{ij} 1}-\mathrm{u}_{\mathrm{ijk}}\right)\right) \leq 7(\mathrm{~m}+1-1)(\mathrm{p}+1-1)$;
furthermore, $\sum_{k=2}^{p+1} \cdot\left(\sum_{j=2}^{m+1} \cdot\left(\mathrm{u}_{1 \mathrm{jk}}+\mathrm{u}_{\mathrm{ij} 1}-\mathrm{u}_{1 \mathrm{j} 1}-\mathrm{u}_{\mathrm{ijk}}\right)\right)=\sum_{k=2}^{p+1} \cdot\left(-\mathrm{u}_{11 \mathrm{k}}-\mathrm{u}_{\mathrm{i} 11}+\mathrm{u}_{111}+\mathrm{u}_{\mathrm{ilk}}\right)=\mathrm{u}_{111}-\mathrm{pu}_{\mathrm{i} 11}+\mathrm{pu}_{111}-$ $\mathrm{u}_{\mathrm{i} 11}$;
so the inequations becomes: $m p u_{111}-m p u_{i 11}-\mathrm{mu}_{i 11}+m p u_{i 11}+u_{111}-\mathrm{pu}_{i 11}+\mathrm{pu}_{111}-\mathrm{u}_{\mathrm{i} 11} \leq 7(\mathrm{~m}+1-1)(\mathrm{p}+1-$ 1);
thus, $(\mathrm{m}+1)(\mathrm{p}+1)\left(\mathrm{u}_{111}-\mathrm{u}_{\mathrm{i} 11}\right) \leq 7(\mathrm{~m}+1-1)(\mathrm{p}+1-1)$; so $\mathrm{u}_{111}-\mathrm{u}_{\mathrm{i} 11} \leq \frac{7(m+1-1)(p+1-1)}{(m+1)(p+1)}$;
by hypothesis we have $u_{111} \geq 6$, then we now get that: $u_{i 11} \geq \frac{7(m+1-1)(p+1-1)}{(m+1)(p+1)}+6$;
and thus $\mathrm{u}_{\mathrm{i} 11} \geq-1+\frac{7(m+1+p+1-1)}{(m+1)(p+1)}$; and we also have $(7(m+1)(p+1)-1)>(m+1)(p+1)$ for all $(p+1),(m+1) \geq$ 3.

So $\mathrm{u}_{\mathrm{i} 11} \geq 0$ for all $\mathrm{i}=2, \ldots, \mathrm{n}+1$ and $\mathrm{u}_{111} \geq 6$; but in that case:
$0=\sum_{i=1}^{n+1} \cdot \mathrm{u}_{\mathrm{i} 11} \geq 6+0+0+\ldots+0=6$ which gives a contradiction.
Therefore $\left|\mathrm{u}_{\mathrm{ijk}}\right|<6$ for all $\mathrm{i}=1, \ldots, \mathrm{n}+1 ; \mathrm{j}=1, \ldots, \mathrm{~m}+1$ and $\mathrm{k}=1, \ldots, \mathrm{p}+1$.
Remark 2. From the Proposition 2, we can deduce that all Voronoirelevant vectorsof $A_{n} \otimes A_{m} \otimes A_{p}$ must lie in $X=\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}^{(n+1)(m+1)(p+1)} \cap\left(A_{n} \otimes A_{m} \otimes A_{p}\right)$. As for the case of two root lattices we have determined the set of coordinates of the Voronoirelevant vector in $A_{n} \otimes A_{m}$ but the characterization of its elements according to a certain subgraphs ofthecompletedirectedtripartitegraph $\mathrm{K}_{\mathrm{n}+1, \mathrm{~m}+1, \mathrm{p}+1}=(\mathrm{V}, \mathrm{E})$ isverydifficult.Thisisthereason why, we will use the associativity of the lattice of type A and the results obtained by LéoDucas and WesselvanWoerdenin [5]tosolveCVPinthetensorproductofmorethantwolatticesoftype A.
SincethetensorproductsofA ${ }_{(n+1)(m+1)-1} \otimes A_{p}$ and $A_{n+1} \otimes A_{(m+1)(p+1)-1}$ areusedtosolveCVP
in $A_{n} \otimes A_{m} \otimes A_{p}$,thefollowingpropositiongivesusthecharacterizationoftheVoronoirelevant vector in $\mathrm{A}_{(\mathrm{n}+1)(\mathrm{m}+1)-1} \otimes \mathrm{~A}_{\mathrm{p}}$.

## Proposition3.(Voronoirelevantvectorsoff $A_{(n+1)(m+1)-1} \otimes_{A_{p}}$ and $\left._{\mathbf{n}} \otimes_{\mathbf{A}_{m}} \otimes_{A_{p}}\right)$

Now consider $X=\{-1,0,1\}$. The Voronoi relevant vectors of $A_{(n+1)(m+1)-1} \otimes A_{p}$ are precisely all $u \in X \backslash\{0\}$ such that $G_{u}$ consists of a simple cycle.
The Voronoi relevant vectors of $A_{n} \otimes A_{m} \otimes A_{p}$ are also precisely all $s \in X \backslash\{0\}$ such that $G_{s}$ consists of a simple cycle.
Proof.Just use (Theorem 2, [5]) and associativity.
SinceG ${ }_{\mathrm{u}}$ andG $_{\mathrm{s}}$ areconnectedandthattheindegreeofeachnodeisexactly1, wecanjust thatthewholegraphconsistsofasingledirectedsimplecycle.
From Theorem 2, [5]we can deduce that the number of Voronoi relevant vectors of $\mathrm{A}_{\mathrm{n}} \otimes \mathrm{A}_{\mathrm{m}} \otimes \mathrm{A}_{\mathrm{p}}$ is equal to:

$$
\sum_{i}\binom{(n+1)(m+1)}{i}\binom{p+1}{i} \cdot i!.(i-1)!
$$

Where $\mathrm{i}=2, \ldots, \min \{(\mathrm{n}+1)(\mathrm{m}+1),(\mathrm{p}+1)\}$.
Finding the closest vectorin $\mathbf{A}_{\mathbf{n}} \otimes \mathbf{A}_{\mathrm{m}} \otimes \mathrm{A}_{\mathrm{p}}$
The Voronoirelevantvectorsof $\mathrm{A}_{\mathrm{n}} \otimes \mathrm{A}_{\mathrm{m}} \otimes \mathrm{A}_{\mathrm{p}}$ beingcharacterized,wewillinthefollowing present a polynomial algorithm allowing solving CVP in this type of lattice.
Lemma 2.Let $x \in A_{n} \otimes A_{m} \otimes A_{p}$, and let $t \in \operatorname{span}\left(A_{n} \otimes A_{m} \otimes A_{p}\right)$ be our target. If there exists a Voronoi relevant vector $u \in R V\left(A_{n} \otimes A_{m} \otimes A_{p}\right)$ such that $\|(x+u)-t\|<\|x-t\|$ we can find such a Voronoi relevant vector in $\mathrm{O}(((\mathrm{n}+1)(\mathrm{m}+1)-1+\mathrm{p})((\mathrm{n}+1)(\mathrm{m}+1)-1) \mathrm{p})$ operations. If it doesn't exist this will be directed by algorithm.
Proof.Just use (Lemmas 3 and 8, [5]) and associativity.
Remark 3.Let $\mathrm{b}^{\mathrm{ijk}} \in \mathrm{A}_{\mathrm{n}} \otimes \mathrm{A}_{\mathrm{m}} \otimes \mathrm{A}_{\mathrm{p}}$ be given by: $b_{i, j, k}^{i j k}=b_{i, j+1, k+1}^{i j k}=b_{i+1, j, k+1}^{i j k}=b_{i+1, j+1, k}^{i j k}=1$;
$b_{i, j, k+1}^{i j k}=b_{i, j+1, k}^{i j k}=b_{i+1, j, k}^{i j k}=b_{i+1, j+1, k+1}^{i j k}=-1$ and 0 otherwise for all $\mathrm{i}=1, \ldots,(\mathrm{n}+1) ; \mathrm{j}=1, . .,(\mathrm{m}+1)$ and
$\mathrm{k}=1, \ldots, \mathrm{p}+1$. Note that $\mathrm{B}=\left\{\mathrm{b}^{\mathrm{ijk}}: \mathrm{i}=1, \ldots,(\mathrm{n}+1) ; \mathrm{j}=1, . .,(\mathrm{m}+1)\right.$ and $\left.\mathrm{k}=1, \ldots, \mathrm{p}+1\right\}$ is a basis of $\mathrm{A}_{\mathrm{n}} \otimes \mathrm{A}_{\mathrm{m}} \otimes \mathrm{A}_{\mathrm{p}}$. Because the basis B is so sparse we can efficiently encode elements in this basis.
Lemma 3. For any $t \in \operatorname{span}\left(A_{n} \otimes A_{m} \otimes A_{p}\right)$, we can find an $x \in A_{n} \otimes A_{m} \otimes A_{p}$ such that
$\|\mathrm{x}-\mathrm{t}\| \leq 2 \sqrt{(n+1)(m+1)(p+1)}$ in $\mathrm{O}(((\mathrm{n}+1)(\mathrm{m}+1)-1) \mathrm{p}))$ operations.
Proof.Just use (Lemmas 7, [5]) and associativity.
In Lemma 5, if $\sum_{i j} a_{i j} b^{i j} \in \operatorname{span}\left(\mathrm{~A}_{\mathrm{n}} \otimes \mathrm{A}_{\mathrm{m}} \otimes \mathrm{A}_{\mathrm{p}}\right) \cap\left(2^{-\mathrm{d}} \mathbb{Z}^{(\mathrm{n}+1)(\mathrm{m}+1)(\mathrm{p}+1)}\right)$ from the transformation, it is clear that $a_{i j} \in 2^{-d} \mathbb{Z}$. Since $\mathrm{A}_{\mathrm{n}} \otimes \mathrm{A}_{\mathrm{m}} \otimes \mathrm{A}_{\mathrm{p}}$ has only integer vectors, we can that if $\mathrm{t} \in 2^{-\mathrm{d}} \mathbb{Z}^{(\mathrm{n}+1)(\mathrm{m}+1)(\mathrm{p}+1)}$ then the squared distance to the targetwill in each iteration improve with at least $2^{-i+1}$ which exactly what we need to bound the number of iterations.

Algorithm1: ApolynomialCVPalgorithmforthelattice $\mathbf{A}_{\mathbf{n}} \otimes \mathbf{A}_{\mathbf{m}} \otimes \mathbf{A}_{\mathbf{p}}$.
Require: $\mathrm{n}, \mathrm{m}, \mathrm{p}, \mathrm{d} \geq 1$ andt $=\sum_{i j} a_{i j} b^{i j} \in \operatorname{span}\left(\mathrm{~A}_{\mathrm{n}} \otimes \mathrm{A}_{\mathrm{m}} \otimes \mathrm{A}_{\mathrm{p}}\right)$. with $a_{i j} \in 2^{-d} \mathbb{Z}$.
Ensure: a closest vector $\mathbf{x}$ to $\mathbf{t}$ in $\mathrm{A}_{\mathrm{n}} \otimes \mathrm{A}_{\mathrm{m}} \otimes \mathrm{A}_{\mathrm{p}}$.

```
1:Find \(\left(\mathrm{a}_{\mathrm{qr}}\right)_{\mathrm{qr}, \mathrm{r}}\) suchthatt \(=\sum_{q r} a_{q r} b^{q r} ;\)
2: \(\mathrm{a}:=\sum_{q r}\left\lfloor a_{q r}\right\rceil b^{q r}, \mathrm{~b}:=\mathrm{a}\);
3:fori=1,..., d (outer loop) do
\(: \quad \mathrm{t}_{\mathrm{i}}:=\sum_{q r} 2^{-i}\left[2^{-i} a_{q r}\right] b^{q r}\);
5: constructweightedK \({ }_{(n+1)(m+1),(p+1)}\left(\right.\) withu \(\left.:=a-t_{\mathrm{i}}\right)\);
6: \(\quad\) constructweightedK \({ }_{(n+1),(m+1)(p+1)}\left(\right.\) withs: \(\left.=a-t_{i}\right)\);
7: \(\quad\) whileK \(_{(n+1)(m+1),(p+1)}\left(a-t_{i}\right)\) hasanegativecycle \(G_{u}\) do(innerloop)
8: \(\quad \mathrm{a}:=\mathrm{a}+\mathrm{u}\);
9: \(\quad x_{i}:=a\);
10: \(\quad\) whileK \(_{(n+1),(m+1)(p+1)}\left(a-t_{i}\right)\) hasanegativecycleG \({ }_{s}\) do(innerloop)
11: \(\quad \mathrm{b}:=\mathrm{b}+\mathrm{u}\);
12: \(\quad y_{i}:=a\);
13: \(\quad\) if \(\| x_{d}-t| |<||y-t||\) then
14: \(\quad \mathrm{x}_{\mathrm{d}}\) isaclosestvectortot;
15: else
16: \(\quad \mathrm{y}_{\mathrm{d}}\) isaclosestvectortot;
```

Proposition 4.Given a target $\mathrm{t}=\sum_{i j} a_{i j} b^{i j} \in \operatorname{span}\left(\mathrm{~A}_{\mathrm{n}} \otimes \mathrm{A}_{\mathrm{m}} \otimes \mathrm{A}_{\mathrm{p}}\right)$. with $a_{i j} \in 2^{-d} \mathbb{Z}$ and with $\mathrm{d} \geq 1$ we can find a closest vector to $t$ in $A_{n} \otimes A_{m} \otimes A_{p}$ in $\left.\left.O(d .((n+1)(m+1)-1) p)^{2} \min \{(n+1)(m+1)-1), p\right\}\right)$ arithmetic operations with the previous algorithm.
Proof.Just use (Theorem 3, [5]) and associativity.
Remark 4.Ingeneral,theoptimalparenthesiswouldbethatwhichcontainsthevector $\left(A_{n} \otimes A_{m} \otimes A_{p}\right)$.Thismeansthatwecouldfirstcheckifthevectort $\in \operatorname{span}\left(A_{n} \otimes A_{m} \otimes A_{p}\right)$. This means that we could first check if the vector $t$ is either in $\operatorname{span}\left(\mathrm{A}_{\mathrm{n}} \otimes \mathrm{A}_{(\mathrm{m}+1)(\mathrm{p}+1)-1}\right)$ or in $\operatorname{span}\left(\mathrm{A}_{(\mathrm{n}+1)(\mathrm{m}+1) 1} \otimes \mathrm{~A}_{\mathrm{p}}\right)$, andthiswillallowustogaininagoodnumberofoperations.Notealsothatthesearchfort hisoptimalparenthesisbecomesmorecomplexwhen thenumberoflatticesincreases.

## IV. Closest Vector Problem in $\mathbf{A}_{\mathrm{n} 1} \otimes \mathrm{~A}_{\mathrm{n} 2} \otimes \ldots \otimes \mathbf{A}_{\mathrm{nk}}$

Accordingtothe previousremark, we can generalizethe resolution of CVP in the tensor product of kroot lattices of type A.
Let k lattices $\mathrm{A}_{\mathrm{n} 1}, \ldots, \mathrm{~A}_{\mathrm{nk}}$ of type A .
Definition 9.Let $n_{1}, \ldots, n_{k} \geq 1$, be $k$ positives integers that are not all zero. We call root lattice $A_{n_{1}} \otimes A_{n_{2}} \otimes \ldots$ $\otimes A_{n_{k}} \subset \mathbb{Z}^{(n 1+1) \ldots(n k+1)}$ of rank $n_{1} \cdot n_{2} \ldots n_{k}$ all of the elements
$\mathrm{x}=\left(\mathrm{x}_{111 \ldots 1}, \mathrm{x}_{11 \ldots 1(\mathrm{nk}+1)}, \mathrm{X}_{121 \ldots 1}, \ldots, \mathrm{x}_{(\mathrm{n} 1+1) \ldots(\mathrm{nk}+1)} \in \mathbb{Z}^{(\mathrm{n} 1+1) \ldots(\mathrm{nk}+1)}\right.$ satisfying conditions:

- $\quad \sum_{\mathrm{i}(1)=1}^{\mathrm{n}_{1}+1} \mathrm{x}_{\mathrm{i}(1)_{\mathrm{i}}(2) \ldots \mathrm{i}^{(\mathrm{k})}}=0$ for $\mathrm{i}^{(2)}=1, \ldots, \mathrm{n}_{2}+1 ; \ldots ; \mathrm{i}^{(\mathrm{k})}=1, \ldots, \mathrm{n}_{\mathrm{k}}+1$
- $\quad \sum_{\mathrm{i}^{(2)}=1}^{\mathrm{n}_{2}+1} \mathrm{x}_{\mathrm{i}(1) \mathrm{i}^{(2)} \ldots \mathrm{i}^{(\mathrm{k})}}=0$ for $\mathrm{i}^{(2)}=1, \ldots, \mathrm{n}_{1}+1 ; \ldots ; \mathrm{i}^{(\mathrm{k})}=1, \ldots, \mathrm{n}_{\mathrm{k}}+1$
- ....... ...... ........

We will use the indices $\left.\mathrm{i}^{(1)}, \ldots, \mathrm{i}^{(\mathrm{k}}\right)$ throughout this section.
Wenote that by gradually regrouping these lattices, and two by two, and by using the associativity of thetensorproduct, solving $C V P \quad$ in $A_{n 1} \otimes A_{n 2} \otimes \ldots \otimes A_{n k}$ amounts to solving the same problem in $\left(A_{n 1} \otimes A_{n 2}\right) \otimes A_{n 3} \otimes \ldots \otimes A_{n k}$.
Stepbystep, solvingCVPin $\quad A_{n 1} \otimes A_{n 2} \otimes \ldots \otimes A_{n k} \quad$ couldbereducedtosolving $\quad i t i n A_{n 1} \otimes A_{(n 2+1) \ldots(n k+1)-1}$, or in $\mathrm{A}_{(\mathrm{n} 1+1)(\mathrm{n} 2+1)-1} \otimes \mathrm{~A}_{(\mathrm{n} 3+1) \ldots(\mathrm{nk}+1)-1}$, or in $\ldots$
Thus,wewillhaveseveralsublatticeswhenthenumberkislarge.Therefore,theclosestvector associatedtothevectorassociatedwiththelatticewillbequitesimplybetheonewhosenormwillbesmallestamongallthevec torswhichwillbedeterminedintheaforementionedlattices. Theprevioussectionillustrateswellthecasefork=3.


## V. Conclusion

In this project, we have shown that we can use the optimal parenthesis to solve the closest vector problem in the tensor product of three root lattices of type A; and this optimal parenthesis could also allow to generalize this resolution in the case of a finite number of root lattices of type A, this having previously solved the problem of optimal parenthesis which becomes complex when the numbers of root lattices becomes large.

In our future work, we will use the characterization of the Voronoi relevant vectors and the oriented complete k -graphs to solve CVP in the tensor product of $k$ lattices of type A

## References

[1]. D.Aggarwal,D.Dadush,N.Stephens-Davidowitz,Solvingtheclosestvectorproblemin $2^{n}$ time-thediscrete gaussian strikes again,2015.
[2]. R.K.Ahuja,T.L.Magnanti,J.B.OrlinNetworkFlows:Algorithms,andApplications.,UpperSadldeRiver,NJ, USA: Prentice-Hall.,1993.
[3]. J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der mathematischenWissenschaften,SpringerNewYork,1998.
[4]. T.H.Cormen,C.E.Leiserson,R.L.Rivest,C.Stein,Introductiontoalgorithms,TheMITPress,3rded.,2009.
[5]. L. Ducas, W. P. J. van Woerden, The closest vector problem in tensored root lattices of type A and their duals, Des.CodesCryptogr.,2017.
[6]. O. Golddreich, S. Goldwasser, S. Halevi, Public-key cryptosystems from lattice reduction problems, Crypto 97, LectureNotesincomputerscience294,(1997),112-131.
[7]. V.Lyubashevsky,C.Peikert,O.RegevOnidealLatticesandLearningwithErrors over Rings,2010,1-23.
[8]. R.G.McKilliam,A.J.Grant,I.V.L.ClarksonFindingaclosestpointinalatticeofvoronoi’sfirstkind,2014.
[9]. D.MicciancioLatticealgorithmsandapplications,UniversityofCalifornia,SanDiego,Spring2014.
[10]. D. Micciancio, P. Voulgaris, A deterministic single exponential time algorithm for most lattice problems based onvoronoicellcomputations,inproceedingsoftheForty-secondACMsymposiumonTheoryofComputing,STOC'10, 2010, 351358.
[11]. H. Napias, A generalization of the LLL-algorithm over euclidean rings or orders, Journal de Théorie deNom-bresdeBordeaux,8.(1996),387-396.
[12]. P. W. Shor, Polynomial time algorithms for prime factorization and discete logarithms on a quantum computer, SIAMJ.computing26(1997)1484-1509.
[13]. D. Stehle, Algorithme de réduction de réseaux et application à la recherche de pires des cas pour l'arrondi de fonctionsmathématiques,Thèsededoctoratsoutenuele2décembre2005, àl'UniversitéHenriPoincarré- Nancy 1,France.
[14]. W. P. J. van Woerden, The closest vector problem in cyclotomic lattices, Bachelor thesis, in Mathematicalinstitute,LeidenUniversity,24june2016.

