Proof of Goldbach's Conjecture

Umasankar Dolai
Assistant Teacher, Garhbeta South CLRC, Dwarigeria, Satbankura - 721253, Dist. - Paschim Medinipur, West Bengal, India

Abstract

The mathematical proof of Goldbach's conjecture in number theory is drawn in this paper by applying a specific bounding condition from Bertrand's postulate or Chebyshev's theorem.

Keywords: Bertrand's postulate \& Chebyshev's theorem, Goldbach's conjecture, prime number, even \& odd number, natural numbers series.

I. Introduction

It is already known that Goldbach's conjecture in number theory is: Every even integer greater than 2 can be expressed as the sum of two primes. If n be an integer, where $n>1$; then $2 n$ is an even integer, where $2 \mathrm{n}>2$. Thus the mathematical formulation of above conjecture is $2 \mathrm{n}=\mathrm{p}_{1}+\mathrm{p}_{2}$; where $\mathrm{p}_{1} \& \mathrm{p}_{2}$ are two prime numbers. Again from the other way the conjecture states that: Every even integer greater than 4 can be expressed as the sum of two odd primes. These even numbers (>4) are called Goldbach's numbers.

II. Notes of Proof

Bertrand's postulate (Chebyshev's theorem) states that:
(i) There exists at least a prime number (p) between n and $2 n$ for any integer $n>1$. Such that $n<p<2 n$. Let it be considered that n_{1} and n_{2} are two integers; where $n_{1} \& n_{2}$ both are greater than 1 . Now $2 n_{1} \& 2 n_{2}$ are the twice of $n_{1} \& n_{2}$ respectively. Suppose p_{1} be at least a prime in between $n_{1} \& 2 n_{1}$ and p_{2} be at least a prime in between $n_{2} \& 2 n_{2}$. Hence from the above postulate it is written that $n_{1}<p_{1}<2 n_{1}$ and $n_{2}<p_{2}<2 n_{2}$. So from these relations it can be determined that $n_{1}+n_{2}<p_{1}+p_{2}<2 n_{1}+2 n_{2}$ or $n_{1}+n_{2}<p_{1}+p_{2}<2\left(n_{1}+n_{2}\right)$. As $n_{1}>1 \& n_{2}>1$, so if $n_{1}=u=$ constant i.e. any fixed value of $n_{1}=2,3,4, \ldots$ (any integer greater than 1) \& $n_{2}=m$, where $m=2,3,4, \ldots$ (any integer greater than 1); then $u+m<p_{1}+p_{2}<2(u+m)$ or $m+u<p_{1}+p_{2}<2(m+u)$. After addition of $-u$, it is obtained that $m+u-u<$ $\mathrm{p}_{1}+\mathrm{p}_{2}-\mathrm{u}<2(\mathrm{~m}+\mathrm{u})-\mathrm{u}$ or $\mathrm{m}<\mathrm{p}_{1}+\mathrm{p}_{2}-\mathrm{u}<2 \mathrm{~m}+\mathrm{u}$. Now the above relation shows that $\mathrm{p}_{1}+\mathrm{p}_{2}-\mathrm{u}<2 \mathrm{~m}+\mathrm{u}$, so there is at least the possibility either $p_{1}+p_{2}-u+r=2 m+u$ or $p_{1}+p_{2}-u=2 m+u-r$; where r be an integer >0. Hence $p_{1}+p_{2}=2(m+u)-r$. As $\mathrm{p}_{1}+\mathrm{p}_{2}-\mathrm{u}<2 \mathrm{~m}+\mathrm{u}$, so $\mathrm{r}=\mathrm{u}+\mathrm{x}$; where $\mathrm{x}=0,1,2,3, \ldots$ (any integer). Again every even number (2 n) is the twice of a natural number (n). Thus $2(m+u)$ is even for any value of m and u. Now to consider Goldbach's number for even numbers except $4, p_{1} \& p_{2}$ both are always odd (because of all primes are odd in natural numbers series except 2), as a result $p_{1}+p_{2}$ is always even as (odd+odd)=even. That means r is always even as (eveneven) $=$ even. Hence r is even when $x=0,2,4,6, \ldots$ (any even integer) if u is an even $\& x=1,3,5,7, \ldots$ (any odd integer) if u is an odd because of (even+even)=even $\&$ (odd+odd)=even. Suppose $u=2, x=0 \& m=2,3,4, \ldots$; then $p_{1}+p_{2}=6,8,10, \ldots$ etc (all even integers >4). In this way by choosing the proper values of $m, u \& r$ from the above bounding condition it can be determined that every even integer greater than 4 can be expressed as the sum of at least two primes. This is nothing but a specific situation of Goldbach's conjecture.
However the above proof shows that $\mathrm{p}_{1}+\mathrm{p}_{2} \geq 6$ (according to consideration the lowest values of $\mathrm{m}, \mathrm{u} \& \mathrm{x}$ are 2,2 $\& 0$ respectively). Thus $2(m+u)-r \geq 6$. Hence $2(m+u)-(u+x) \geq 6$ or $2 m+u-x \geq 6$ or $2 m+u-6 \geq x$. i.e. $x \leq(2 m+u)-6$.
(ii) There exists at least one prime number (p) for integer $n>3$ with $n<p<2 n-2$. Let it be considered that n_{1} and n_{2} are two integers; where $n_{1} \& n_{2}$ both are greater than 3 and $p_{1} \& p_{2}$ are the at least prime numbers with $\mathrm{n}_{1}<\mathrm{p}_{1}<2 \mathrm{n}_{1}-2$ and $\mathrm{n}_{2}<\mathrm{p}_{2}<2 \mathrm{n}_{2}-2$ respectively. In the above way it can be drawn that $\mathrm{n}_{1}+\mathrm{n}_{2}<\mathrm{p}_{1}+\mathrm{p}_{2}<2\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)-4$. Here as $n_{1}>3 \& n_{2}>3$, so if $n_{1}=u=$ constant i.e. any fixed value of $n_{1}=4,5,6, \ldots$ (any integer greater than 3) \& $n_{2}=m$, where $m=4,5,6, \ldots$ (any integer greater than 3); then $u+m<p_{1}+p_{2}<2(u+m)-4$ or $m+u<p_{1}+p_{2}<2(m+u)-4$. After addition of $-u$, it is obtained that $m<p_{1}+p_{2}-u<2 m+u-4$. Now the above relation shows that $p_{1}+p_{2}-u<2 m+u-4$, so there is at least the possibility either $p_{1}+p_{2}-u+r=2 m+u-4$ or $p_{1}+p_{2}-u=2 m+u-4-r$; where r be an integer >0. Hence $\mathrm{p}_{1}+\mathrm{p}_{2}=2(\mathrm{~m}+\mathrm{u})-4-\mathrm{r}$. As $\mathrm{p}_{1}+\mathrm{p}_{2}-\mathrm{u}<2 \mathrm{~m}+\mathrm{u}-4$, so $\mathrm{r}=\mathrm{u}+\mathrm{x}$; where $\mathrm{x}=0,1,2,3, \ldots$ (any integer). Again every even number $(2 n)$ is the twice of a natural number (n). Thus $2(m+u)$ is even for any value of m and u. Now to consider Goldbach's number for even numbers except $4, \mathrm{p}_{1} \& \mathrm{p}_{2}$ both are always odd (because of all primes are odd in natural numbers series except 2), as a result $p_{1}+p_{2}$ is always even as (odd+odd)=even. That means r is always even as (even-even)=even and 4 is even number. Hence r is even when $x=0,2,4,6, \ldots$ (any even integer) if u is an even $\& x=1,3,5,7, \ldots$ (any odd integer) if u is an odd because of(even+even) $=$ even $\&$
(odd+odd)=even. Suppose $u=4, x=0 \& m=4,5,6, \ldots$; then $p_{1}+p_{2}=8,10,12, \ldots$ etc (all even integers >6). In this way by choosing the proper values of $\mathrm{m}, \mathrm{u} \& \mathrm{r}$ from the above bounding condition it can be determined that every even integer greater than 6 can be expressed as the sum of at least two primes. Here it is also nothing but a specific situation of Goldbach's conjecture.
However the above proof shows that $p_{1}+p_{2} \geq 8$ (according to consideration the lowest values of $m, u \& x$ are 4,4 $\& 0$ respectively). Thus $2(m+u)-4-r \geq 8$. Hence $2(m+u)-4-(u+x) \geq 8$ or $2 m+u-4-x \geq 8$ or $2 m+u-12 \geq x$. i.e. $x \leq(2 m+u)-$ 12.

III. Conclusion

Thus Goldbach's conjecture can be proved from Bertrand's postulate or Chebyshev's theorem with applying a special bounding condition for even integers $n>4$ (Goldbach's numbers). However the proof cannot be applicable for even number 4 . Because $4=2+2$; where 2 is only the even prime.

Acknowledgement

I like to thank Sir Larry J. Gerstein, Ex. Professor, California University, Loss Angeles, USA for his valuable comments on Goldbach's conjecture.

References

[1]. A. E. Ingham (1990), The Distribution of Prime Numbers, Cambridge University Press. pp. 2-5. ISBN 978-0-521-39789-6.
[2]. N. Costa Pereira, (1985), A Short Proof of Chebyshev's Theorem, American Mathematical Monthly (Aug.-Sep. 1985). 92(7): 494495. Doi: $10.2307 / 2322510$. JSTOR 2322510.
[3]. M. Nair(1982), On Chebyshev-Type Inequalities for Primes, American Mathematical Monthly (Feb. 1982). 89(2): 126-129.doi: 10.2307/2320934. JSTOR 2320934.
[4]. P. Hoffman (1998), The Man Who Loved Only Numbers, New York: Hyperion Books. P. 227. ISBN 978-0-7868-8406-3. MR ! 666054.
[5]. H. M. Edwards (2001), Riemann's zeta function, Courier Dover Publications, ISBN 978-0-486-41740-0.
[6]. D. J. Newman (1980), Simple analytic proof of the prime number theorem, American Mathematical Monthly. 87(9): 693-696. Doi: 10.2307/2321853. JSTOR 2321853. MR 0602825.
[7]. D. Zagier (1997), Newman's short proof of the prime number theorem, American Mathematical Monthly. 104(8): 705-708. Doi: 10.2307/2975232. JSTOR 2975232. MR 1476753.
[8]. Tim Trudgian (2016), Updating the error term in the prime number theorem, Ramanujan Journal. 39(2): 225-234.arXiv:1401.2689. doi: 10.1007/s11139-014-9656-6.
[9]. W. Sierpiński (1998), Elementary Theory of Numbers, North-Holland Mathematical Library. 31 (2 ${ }^{\text {nd }}$ Ed.). Elsevier. P. 113. ISBN 978-0-08-096019-7.
[10]. T. Koshy (2002), Elementary Number Theory with Applications, Academic Press. p. 369. ISBN 987-0-12421171-1.
[11]. Fliegel, F. Henry, Robertson, S. Douglas (1989), Goldbach's Comet: the numbers related to Goldbach's Conjecture, Journal of Recreational Mathematics. 21(1): 1-7.
[12]. T. Estermann (1938), On Goldbach's problem: proof that almost all even positive integers are sum of two primes, Proc. London Math. Soc. 2. 44: 307-314. Doi: 10.1112/plms/s2-44.4.307.
[13]. M. Th. Rassias (2017), Goldbach's Problem: Selected Topics, Springer.
[14]. J. R. Chen (1973), On the representation of a larger even integer as the sum of a prime and the product of at most two primes, Sci. Sinica. 16: 157-176.
[15]. D. R. Heath-Brown, J. C. Puchta (2002), Integers represented as a sum of primes and powers of two, Assian Journal of Mathematics. 6(3): 535-565. doi: 10.4310/AJM. 2002.
[16]. G. Melfi (1996), On two conjectures about practical numbers, Journal of Number Theory. 56: 205-210. Doi: 10.1006/jnth.1996.0012.
[17]. H.A. Helfgott (2013), The ternary Goldbach conjecture is true, arXiv: 1312.7748.
[18]. A. Granville (1995), Harald Cramèr and the distribution of prime numbers, Scandinavian Actuarial Journal. 1: 12-28. citeseerX 10.1.1.129.6847. doi: 10.1080/03461238.1995.10413946.
[19]. G. H. Hardy, J.E. Littlewood (1916), Contributions to the Theory of Riemann Zeta-Function and the Theory of the Distribution of Primes, Acta Mathematica. 41: 119-196. Doi: 10.1007/BF02422942.
[20]. W. Yuan (2002), Goldbach Conjecture, Series In Pure Mathematics. p. 21. ISBN 978-981-4487-52-8.
[21]. N. Mackinnon (1987), Prime Number Formulae, The Mathematical Gazette (Jun. 1987). 71(456): 113-114.doi: 10.2307/3616496. JSTOR 3616496.
[22]. M. Th. Rassias (2017), Goldbach's Problems: Selected Topics, Cham: Springer. p. vii. Doi: 10.1007/978-3-319-57912-2. MR 3674356.
[23]. C. S. Ogilvy, J. T. Anderson (1988), Excursions in Number Theory, Dover Publications Inc. pp. 29-35. ISBN 978-0-486-25778-5.
[24]. B. Green, T. Tao (2008), The primes contain arbitrary long arithmetic progressions, Annals Mathematics. 167(2): 481-547. arXiv:math.NT/0404188. Doi: 10.4007/annals.2008.167.481.
[25]. M. Erickson, A. Vazzana, D. Garth (2016), Introduction to Number Theory, Textbooks in Mathematics (2 ${ }^{\text {nd }}$ Ed.). Boca Raton, FL: CRC Press. p. 200. ISBN 978-1-4987-1749-6. MR 3468748.

[^0]
[^0]: Umasankar Dolai. "Proof of Goldbach's Conjecture." IOSR Journal of Mathematics (IOSR-JN 16(3), (2020): pp. 51-52.

 DOI: 10.9790/5728-1603035152

