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I. Introduction 
It is known that the original form of Goldbach’s conjecture in number theory is: Every even integer greater than 2 

can be expressed as the sum of two primes and a specific form of Goldbach’s conjecture in number theory is: Every even 

integer greater than 4 can be expressed as the sum of two odd primes. These even numbers (>4) are called Goldbach’s 

numbers. If n be an integer, where n>2; then 2n is an even integer, where 2n>4. So the mathematical formulation of above 

conjecture is 2n=p1+p2; where p1 & p2 are two odd prime numbers and 2n>4. Now two lowest odd prime numbers are 3 & 5. 

So if p1≠p2, then the lowest value of p1+p2=8 and if p1>p2, then p1=5 & p2=3. Hence 2n=8. Here 2n is an even integer, where 

2n>6 as well as n is an integer, where n>3. Thus Goldbach’s conjecture can be written as a new form with certain 

consideration that: Every even integer greater than 6 can be expressed as the sum of two odd primes, when the primes are not 

equal to each other. However every even integer (2n) is twice of an integer (n) as well as every even integer (2n) is the sum 

of two integers located at equal distance along with both sides from an integer which is its half (n) in the numbers series. 

Again according to Goldbach’s conjecture p1+p2=2n; where n>3 and when p1≠p2. Therefore p1 & p2 are two integers located 

at equal distance along with both sides from the integer (n) which is half of the even integer (2n). If p1>p2, then p1-n=n-p2; 

where p1≠p2. It is a specific form of Goldbach’s conjecture. Thus if it will be proved that there exist at least two primes 

located at equal distance along with both sides from an integer greater than 3 in numbers series; then the specific and the 

above considered form of Goldbach’s conjecture will be automatically proved.  

 

II. Explanation of  Proof 
Bertrand’s postulate (Chebyshev’s theorem) states that: There exists at least a prime number (p1) in between n1 and 

2n1-2 for any integer n1>3; where 2n1 is twice of n1. Such that n1<p1<2n1-2. Now 2 is only the even prime number and every 

even number is the twice of a number in number series. Thus except 2, the other prime numbers are always odd. So p1 is 

always odd. Again the lowest odd prime number is 3. So from the general conception, it is drawn that: There exists at least 

an odd prime number (p2) in between 2 and n2 for any integer n2>3. Such that 2<p2<n2. Now if n1=n2; then the conditions 

n1<p1<2n1-2 & 2<p2<n2 are simultaneously valid and it is possible when n1=n2>3. Let it be considered n1=n2=n (as it is 

assumed that the above conditions n1<p1<2n1-2 & 2<p2<n2 are simultaneously valid; so n1 & n2 are always same); where n 

be an integer>3. Thus the conditions are transferred into n<p1<2n-2 & 2<p2<n. Again from these conditions it can be 

obtained that: There exists at least a situation when n+2<p1+p2<2n-2+n i.e. n+2<p1+p2<3n-2; where p1≠p2 & p1>p2. Here n, 

2n, 3n, p1, p2& p1+p2 all are integers. From the inequality it can be written that n+2+x=p1+p2=3n-2-r; where x & r are the 

integers and x & r both>0. So n+2+x=3n-2-r or x+r=2n-4 or x+r=2(n-2)=(n-2)+(n-2). The relation x+r=(n-2)+(n-2) shows 

the general value of x+r in all situations of x & r (i.e. for all possible values of x & r) with respect to n-2 and 2(n-2) is the 

twice of n-2. That means for all possible values of x & r with respect to n-2, the general value of x+r can be described as 

x+r={(n-2)+a}+{(n-2)-a}; where a is an integer≥0 &  a=0, 1, 2, 3, …, (n-2). Thus x={(n-2)+a} & r={(n-2)-a} and vice versa. 

Now if x={(n-2)+a} & r={(n-2)-a}, then the relation n+2+x=p1+p2=3n-2-r shows that n+2+{(n-2)+a} =p1+p2=3n-2-{(n-2)-a} 

or p1+p2=2n+a. Again on the other hand if x={(n-2)-a} & r={(n-2)+a}, then the relation n+2+x=p1+p2=3n-2-r shows that 

n+2+{(n-2)-a} =p1+p2=3n-2-{(n-2)+a} or p1+p2=2n-a. Here 2n+a and 2n-a are integers as p1+p2 or 2n & a are integers. Now 

p1 & p2 both are odd primes. So p1+p2=an even integer (as odd+odd=even). So 2n+a or 2n-a must be an even integer. Hence 

2n is always an even integer for any value (even or odd) of n. Thus a is always an even integer to maintain the situation (as 

even+even=even & even-even=even). Therefore a=1, 3, 5, 7, …, (n-1) when n is even & a=1, 3, 5, 7, …, (n-2) when n is odd 

are not valid; rather a=0, 2, 4, 6, …, (n-2) when n is even & a=0, 2, 4, 6, …, {(n-2)-1} when n is odd are valid here. Now 

p1+p2=2n+a=2(n+a/2)=(n+a/2)+( n+a/2). On the other hand p1+p2=2n-a=2(n-a/2)=(n-a/2)+( n-a/2).   Suppose a/2=b, b be an 

integer; where b=0, 1, 2, 4, …, (n-2)/2 for n is even & b=0, 1, 2, 4, …, {(n-2)-1}/2 for n is odd. Hence p1+p2=(n+b)+( n+b) 

and on the other hand p1+p2=(n-b)+( n-b). Again n=4, 5, 6, 7, …, n (i.e. n≥4) and b=0, 1, 2, 4, …, (n-2)/2 for n is even & 

b=0, 1, 2, 4, …, {(n-2)-1}/2 for n is odd (i.e. b≥0), so for a specific even or odd value of n (i.e. any fixed even or odd value 

of n) and its corresponding b values (for an even or odd value of n); it can be concluded that n+b is an integer which is 

shown in the following way: For n=4 & b=0, 1, 2, 4, …, (n-2)/2 , so n+b=4, 5; for n=5 & b=0, 1, 2, 4, …, {(n-2)-1}/2 , so 

n+b=5, 6; for n=6 & b=0, 1, 2, 4, …, (n-2)/2  , so n+b=6, 7, 8; for n=7 & b=0, 1, 2, 4, …, {(n-2)-1}/2 , so n+b=7, 8, 9; … … 

…; for n=n & b=0, 1, 2, 4, …, (n-2)/2 , so n+b=n, n+1, n+2, n+3, …., {n+(n-2)/2} for n is even or for n=n & b=0, 1, 2, 4, …, 

{(n-2)-1}/2 , so  n+b=n, n+1, n+2, n+3, …., [n+{(n-2)-1}/2} for n is odd. That means for n=4, 5, 6, 7, …, n and b=0, 1, 2, 4, 
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…, (n-2)/2 for n is even & b=0, 1, 2, 4, …, {(n-2)-1}/2 for n is odd, the general situations of n+b values with respect to n & b 

are: n+b=n, n+1, n+2, n+3, …., {n+(n-2)/2} for n is even & n+b=n, n+1, n+2, n+3, …., [n+{(n-2)-1}/2] for n is odd. On the 

other hand by the same way; it can be concluded that n-b is an integer which is shown in the following way: For n=4 & b=0, 

1, 2, 4, …, (n-2)/2 , so n-b=4, 3; for n=5 & b=0, 1, 2, 4, …, {(n-2)-1}/2 , so n-b=5, 4; for n=6 & b=0, 1, 2, 4, …, (n-2)/2  , so 

n-b=6, 5, 4; for n=7 & b=0, 1, 2, 4, …, {(n-2)-1}/2 ,  so n-b=7, 6, 5; … … …; for n=n & b=0, 1, 2, 4, …, (n-2)/2 , so n-b=n, 

n-1, n-2, n-3, …., {n-(n-2)/2} for n is even or for n=n & b=0, 1, 2, 4, …, {(n-2)-1}/2 , so n-b=n, n-1, n-2, n-3, …., [n-{(n-2)-

1}/2} for n is odd. That means for n=4, 5, 6, 7, …, n and b=0, 1, 2, 4, …, (n-2)/2 for n is even & b=0, 1, 2, 4, …, {(n-2)-1}/2 

for n is odd, the general situations of n-b values with respect to n & b are: n-b=n, n-1, n-2, n-3, …., {n-(n-2)/2} for n is even 

& n-b=n, n-1, n-2, n-3, …., [n-{(n-2)-1}/2] for n is odd. Now if let it be considered that for even & odd all situations of n, 

the values of n+b=m; where m is an integer. As n≥4 and b≥0; so n+b=m≥4. Thus considering all values of n, in this case 

m=n+b=n, n+1, n+2, n+3, …, {n+(n-2)/2} for n is even & m=n+b=n, n+1, n+2, n+3, …, [n+{(n-2)-1}/2] for n is odd; where 

m=n+b=n is the first term of that numbers series for n is even or odd as the first term of b=0, 1, 2, 4, …, (n-2)/2 (for n is 

even) & b=0, 1, 2, 4, …, {(n-2)-1}/2 (for n is odd) is b=0.  Again on the other hand if let it be considered that for even & odd 

all situations of n, the values of n-b=m; where m is an integer. As n≥4 and b≥0; so n-b=m≥3 (as for n=4, a value of n-b=3 

expressed above). Thus considering all values of n,  in this case m=n-b=n, n-1, n-2, n-3, …, {n-(n-2)/2} for n is even & m=n-

b=n, n-1, n-2, n-3, …, [n-{(n-2)-1}/2] for n is odd; where m=n-b=n is the first term of that numbers series for n is even or 

odd as the first term of b=0, 1, 2, 4, …, (n-2)/2 (for n is even) & b=0, 1, 2, 4, …, {(n-2)-1}/2 (for n is odd) is b=0. Hence in 

both cases p1+p2=m+m or p1+p2=2m. The relation p1+p2=m+m shows the general value of p1+p2 in all situations of p1 & p2 

(i.e. for all possible values of p1 & p2) with respect to m and 2m is the twice of m. Therefore for all possible values of p1 & 

p2 with respect to m, the general value of p1+p2 can be described as p1+p2=(m+s)+(m-s); where s is an integer≥0 &  s=0, 1, 2, 

3, …, m. That means p1=m+s & p2=m-s and vice versa.   Again as p2<n<p1, p1>p2, n≥4, b≥0 & m=n+b=n or m=n-b=n is the 

first term of numbers series m=n+b or m=n-b respectively; so considering each term of both numbers series p1<m<p2 (as 

p1>p2). Thus it can be always written that p1=m+s & p2=m-s. Now the above explanation shows that  m is an integer & m>3 

(only the exception is m=n-b=3 for n=4 & b=1), so according to Bertrand’s postulate (Chebyshev’s theorem), it is stated 

that: There exists at least a prime number (p1=m+s) in between m and 2m-2 for any integer m>3; where 2m is twice of m as 

well as from the general conception, it is obtained that: There exists at least a prime number (p2=m-s) in between 2 and m for 

any integer m>3 simultaneously. Such that m<p1<2m-2 & 2<p2<m or m<m+s<2m-2 & 2<m-s<m. That is why it can be 

drawn from the above fact (the conditions m<p1<2m-2 & 2<p2<m are simultaneously exist in this situation) that there exist 

at least two primes (p1 & p2) located at equal distance along with both sides from an integer (m>3) in number series. That 

means from p1=m+s & p2=m-s; it is written that s= p1-m & s=m-p2 respectively. Thus p1-m=m-p2 or p1+p2=2m; where m>3, 

p1≠p2 & p1>p2. Again on the other hand, every even integer (2m) is twice of an integer (m) as well as every even integer 

(2m) is the sum of two integers located at equal distance along with both sides from an integer which is its half (m) in the 

numbers series. So every even integer (2m>6) is the sum of two primes (p1 & p2) as p1 & p2 are located at equal distance s 

(as p1=m+s & p2=m-s) along with both sides from the integer m; where p1≠p2. Therefore p1+p2=2m; where m>3, p1≠p2 & 

p1>p2. It is nothing but the specific situation of Goldbach’s conjecture. However when s=0, then from p1=m+s & p2=m-s; it 

can be obtained that p1=m & p2=m. It is only possible when m is itself a prime. Here the situation holds the condition p1=p2 

in this respect. Again when s=m, then p1=2m & p2=0. Now 2m is always even for any value of n and both p1 & p2 are neither 

even (although 2 is an exception, but it does not hold the conditions of discussed proof) nor zero according to consideration 

of above proof. So it can be obtained from above explanation that s can accept at least a value of s=1, 3, 5, 7, …, (m-3) for m 

is even & s=2, 4, 6, 8, …, (m-3) for m is odd to maintain all the situations of this proof to hold the condition m>3, p1≠p2 & 

p1>p2. In case of m=n-b=3 (for n=4 & b=1) discussed above, there is only possibility to assume that p1=m & p2=m are only 

valid; because of there exists no number in between 2 & 3 (i.e. in between 2 & m) and in between 3 & 4 (i.e. in between m & 

2m-2) in numbers series. Surprisingly 3 is itself a prime number, so its twice 6 is expressed as 6=3+3; where m=3, 2m=6, 

p1=3 & p2=3. Thus the specific form of Goldbach’s conjecture (Every even integer greater than 4 can be expressed as the 

sum of two odd primes) is proved in the general way.       

 

III. Summary 
It is written that p1+p2=2n+a=2n+2b=2(n+b)=2m or p1+p2=2n-a=2n-2b=2(n-b)=2m; where a=2b, m>3, p1≠p2 & 

p1>p2. Now if b=0, then from both cases m=n; so it can be written that p1+p2=2n or p1+p2=n+n; where n>3, p1≠p2 & 

p1>p2.Therefore p1-n=n-p2. It is a specific form of Goldbach’s conjecture. The relation p1+p2=n+n shows the general value of 

p1+p2 in all situations of p1 & p2 (i.e. for all possible values of p1 & p2) with respect to n and 2n is the twice of n. That means 

for all possible values of p1 & p2 with respect to n, the general value of p1+p2 can be described as p1+p2=(n+d)+(n-d); where 

d is an integer≥0 &  d=0, 1, 2, 3, …, n. Hence p1=n+d & p2=n-d and vice versa. As p1<n<p2, so p1=n+d & p2=n-d. From that 

above situation the lowest value of p1+p2=8 as the lowest two odd primes are p1=5 & p2= 3 (as p1>p2). So the relation 

p1+p2=2n is always valid for p1+p2≥8 in the above conditions n>3, p1≠p2 & p1>p2. From the above discussion it is obtained 

that p1+p2=2n+a or p1+p2=2n-a. Thus 2n+a≥8 or 2n-a≥8.  Again as b=0, so a=0. Therefore in both cases 2n≥8 or n≥4. It is 

the required condition of the specific form of Goldbach’s conjecture. Now if d=0, then p1=n & p2=n. It is only possible when 

n is itself a prime and here the situation holds the condition p1=p2. However the described proof of Goldbach’s conjecture is 

valid for the condition n≥4 and it is also shown above that the case for number 3 is a specific situation of above proof; but 2 

is itself the only even prime number, so its twice 4 is expressed as 4=2+2; where n=2, 2n=4, p1=2 & p2=2 as well as the 

specific situation seemingly holds the condition p1=p2 in this respect. Here neither n nor m holds the condition n or m=2 with 

respect to the conditions of above proof from anywhere. That is why the situation for n or m=2 is an exception from all sides 

with respect to the above conditions (i.e. n or m>3, p1≠p2 & p1>p2) of discussed proof. Thus from the above explanation, it 

can be drawn that there exist at least two primes (p1 & p2) located at equal distance (s) along with both sides from an 

integer (m>3) in numbers series;where s can accept at least a value of  s=1, 3, 5, 7, … (m-3) for m is even & s=2, 4, 6, 8, 

…, (m-3) for m is odd  as well as original form of Goldbach’s conjecture (Every even integer greater than 2 can be expressed 
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as the sum of two primes) and specific form of Goldbach’s conjecture (Every even integer greater than 4 can be expressed as 

the sum of two odd primes) in number theory both are true side by side.          
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