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Abstract:  
Model: Small neuron clusters can demonstrate the hypersynchronized epileptiform regime which is very similar 

to the real human brain epilepsy. The model of Hodgkin-Huxley neuron driven by the stimulating current 

coming from the axon is used in our approach for a single cell. One of the neuronss plays a role of a control 

element acting autonomously: it tracks the outputs of other companions in the cluster and detects the 

epileptiform behavior in the collective dynamics. This control element possesses a feedback loop to some part of 

the cluster neurons and sends the signal to their inputs to suppress the epileptiform regime. 

Methods: The Kolesnikov’s sub-optimal feedback algorithm is used together with our approach of the ‘control 

back propagation’ in the network. It consist of two parts: the target repeller (the main part of the algorithm) 

tends to break the hypersynchronization through all dynamical evolution, while the target attractor based on the 

control neuron sub-system drives its feedback signal to form and support the dynamical target repeller.  

Results: We derive analytically all basic equations restoring the necessary control signals in the feedback loop 

and perform numerical simulations for our proposed model. Our algorithm is robust: it is stable under the 

perturbation of the initial conditions and the relatively small external noise. 
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I. Introduction: Network Hierarchy for Epileptiform Mathematical Modeling 
Small artificial neuron clusters can demonstrate the hypersynchronized epileptiform regime which is 

very similar to the real human brain local epilepsy. The mathematical approaches for modeling epileptiform 

behavior in such networks described in the literature could be systematized according to the network scales
1-3

, as 

it is presented in the Table 1.  

 

Table 1. Hierarchic levels for epileptiform behavior modeling. 

 Hierarchic Level Standard terminology 

1 Microscopic (detailed modeling of neural cells) Detailed network models4 

2 Low mesoscopic (neural clusters) Upper level detailed network models,  

Neural clusters 

3 High mesoscopic (neural populations presented with the 
coupling of NMMs and/or distributed neural fields) 

Neural mass models (NMMs),  

Neural field models5,6 

4 Macroscopic Virtual epileptic patient,  

Epileptor7 

 

The classification in Table 1 follows the statistical physics hierarchy for micro-, meso- and macro-

scales. In this work we focus on the level of neural clusters.  

Neural signal processing plays an increasingly important role in therapeutics, in such applications as 

neural prosthetics, where electrical signals are read out of the brain and used to control an artificial limb, in 

closed loop brain stimulation. A series of experiments demonstrate that few factors should be present in the 

functioning of neural cell clusters: temporally structured input, dependency on prior experience, competition 

between clusters and control of their activation
8
. 
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Here we develop our model approach
9
, where the epileptiform regime in a small cluster of 

mathematical neurons is suppressed by a feedback signal coming from a single control element (‘control 

neuron’) acting autonomously. We use the Hodgkin-Huxley ordinary differential equation system to model 

biological neurons.  

The control approach presented here describes a totally novel target repeller algorithm based on 

Kolesnikov’s ‘synergetic’ approach
10-11

. In our present approach there is no need to divide the control algorithm 

into two different phases, the detecting of the epileptiform behavior and its further suppression, like it was in our 

previous model
9
; it deals with both processes simultaneously.   

 

II. Model for the Small Cluster of Hodgkin-Huxley Neurons 
For simplicity let’s consider the basic structure of the neural cluster with two working neurons 1 and 2 

which can enter to an epileptiform regime of hypersynchronization, and the third control element 3 getting the 

output signals from 1 and 2 and sending the feedback control over the cluster dynamics to the neuron 2, see 

Figure 1. Such a network could be a sub-set of a bigger network providing the input currents Iinput1 and Iinput2 

stimulating the dynamics of the corresponding cells.  

 

 

Figure 1.Basic model for an epileptiform suppression in the cluster of three Hodgkin-Huxley 

neurons
9
. 

 

All the currents connecting the neurons follow the same notation type: the current Ikl, is the output for 

the k-th neuron and the input for the l-th neuron. The neurons 2 could bу driven by the feedback current I32 

coming from the control element. This current will be used for suppressing the hypersynchronized dynamics in 

the network.  

The neuron 3 does not get external currents from other parts of a bigger network. It just collects the 

currents of the neurons 1 and 2 to detect the possible hypersynchronized regime. Apart from it, the third element 

has an inner control algorithm Icontrol, which is shown in Fig.1 inside the third circle.  

It is important to mention that it is not an external current coming from outside, but the inner control 

free function of the neuron 3. Recently we proposed the similar model
9
 for different type of control feedback.  

Thus, the current Icontrol(t) in Fig. 1 corresponds to the autonomous work of the control neuron 3 and 

must be formulated in the frame of a certain feedback algorithm based only on the input currents I13(t) and I23(t). 

Thу explicit formulation of this algorithm in the form of Kolesnikov’s feedback is the main goal of our present 

research. 

Hodkin-Huxley neuron. The k-th neuron in the cluster is presented via the Hodkin-Huxley (HH) nonlinear 

ordinary differential equation system
4
: 
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Here we define the notation for the following ‘conductivity functional’: 
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and the phenomenologically observed membrane gate functionals
4
: 

.

1
10

)(30
exp

1
)(;

20

)(
exp07.0)}({

;
80

)(
exp125.0)}({;

1
10

)(10
exp

)](10[01.0
)}({

;
18

)(
exp4)}({;

1
10

)(25
exp

)](25[1.0
)}({








 




























 





















 




tv
v

tv
tv

tv
tv

tv

tv
tv

tv
tv

tv

tv
tv

k

kh
k

kh

k
kn

k

k
kn

k
km

k

k
km







                                           (3) 

The system (1) contains four dynamical variables: one for the axon action potential vk(t) forming the 

current entering the companion cells, and three membrane gate variables {mk(t), nk(t), hk(t)} which describe the 

probability for the gates to be open or closed. The summary current Ik(t) is formed with all external currents 

entering the k-th cell. It plays a role of an external signal stimulating the HH neuron dynamics. Particurlarly: 
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The functional (2) includes also the set of constants: the potentials ENa (equilibrium potential at which 

the net flow of Na ions is zero), EK (equilibrium potential at which the net flow of K ions is zero), ECl 

(equilibrium potential at which leakage is zero) in mV, the membrane capacitance CM and the conductivities gNa 

(sodium channel conductivity), gK (potassium channel conductivity), gCl (leakage channel conductivity) in 

mS/cm
2
: 
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Altogether Eqs.(1)-(5) define nonlinear dynamics of HH neuron, which covers the resting, regular 

spiking and chaotic bursting regimes. We remind here that the spiking/bursting dynamics in the k-th neuron 

could be observed only if the input current Ik overcomes a certain threshold level.  

Action potential transfer. For the transfer function from the action potential in the axon of the k-th neuron via 

its synapses towards the dendrite/soma input of the l-th neuron we use the simplified gain model
9
:  

,0const;])([)( rest   vtvtI kl                                                      
 (6) 

with the constant gain coefficient α and the phenomenological constant reference rest potential of the HH 

neuron
4
:  
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Particularly, following Fig.1, 
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In the model (6)-(8) we neglected some effects observed in the real neurons: the time delay in the action 

potencial transfer, the ‘cumulative’ effect of the currents coming from the denrites and stimulating the soma, 

and some others. 

 

III. Target Repeller-Attractor Control Algorithm 
The system (1) during its nonlinear evolution can enter into a hypersynchronized regime, which has 

some features of epileptiform dynamics.  

Recently we studied Fradkov’s speed gradient control algorithm
12

 to provide the suppression of the 

epileptiform regime. In our previous research
4
 the control algorithm in a small HH neural cluster consisted of 

two parts: the detection of the hypersynchronization and the suppressing feedback, see Figure 2. The feedback 

control has been switched on only if two potentials, v1 and v2, became hypersynchronized in time. 

 
Figure 2. The principle scheme of epileptiform monitoring and speed gradient control algorithm

9
. 

 

It means that the neuron 3 in the algorithm in Fig.2 did not send the feedback signal I32 to the neuron 2 

if the epileptiform regime has not been detected, and out of this regime the action potential v3 was absent. 

In our present approach the algorithm forms the repeller acting permanently and driving the system out 

of hypersynchronization. The second component of the control scheme, the attractor, is responsible for forming 

and supporting the repeller itself, see the details below. 

Target repeller-attractor system. Here we follow a different approach, when the target repeller R12 

formed in the systems for the neurons 1 and 2 tends to break the hypersynchronization through all dynamical 

evolution, while the target attractor A3 based on the sub-system related to the control neuron 3 drives the 

feedback signal to form the repeller. 

Thus, in our present algorithm the feedback loop in Fig.1 works permanently: the target repeller R12 

based on the dynamical sub-system of the neurons 1 and 2 suppresses the possible epileptiform behavior, while 

the target attractor A3 based on the neuron 3 drives the system (1) out of the hypersynchronization regime via 

correcting the structure of the dynamical repeller R12 using the feedback loop, see Figure 3. 
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Figure 3. Target repeller-attractor algorithm used in the present paper. 

 

The repeller R12 in our system is dynamical: it depends on the input currents Iinput1(t) and Iinput2(t). To 

construct it, let’s re-formulate here Kolesnikov’s approach for a target repeller. Usually this approach has been 

used to form in the dynamical system a target attractor locking the phase trajectories in its neighborhood
10-11

.  

In this paper we re-formulate the method to form the target repeller in the system to break the 

hypersynchronization. Kolesnikov’s sub-optimal feedback algorithm is used together with our ‘control back 

propagation’ scheme
9,13

. 

 

Construction of the repeller. The repeller R12 in our dynamical system must act on the subsystem related to the 

neurons 1 and 2. Following basic Kolesnikov’s approach
11

, let’s define the target function: 
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(9) 

measuring the rate of (hyper)synchronization between the neurons 1 and 2. Our goal is to drive the system 

exponentially far away from small ψ12, such that we can define the control as: 
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with the positive constant T12. The positive sign in RHS(10) correspond to the repeller with the exponentially 

divergent trajectories. Using (10), (4) and first equation of the system (1) for the neurons 1 and 2, we get: 
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The upper index (*) for the current I32 shows that (10) is a target function to form the repeller (9)-(10). It must 

be designed as a result of our control in the neuron 3 with the output action potential v3, see Fig.1. (the ‘control 

back propagation’ scheme
9,13

). By the transfer model (6) it implies: 
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Thus, the target potential for the control neuron 3 is given by (12). It is the time-dependent function, so, 

the control goal here is a tracking.  

Construction of the attractor. The attractor A3 in our dynamical system is related to the sub-system of the 

neuron 3. The goal of this attractor is to form the output signal (12) by the control current Icontrol. To restore the 

necessary control current, let’s again take Kolesnikov’s algorithm
11

 in the form 
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and 
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(14) 

with the positive constant T3. The negative sign in RHS(14) stands for the forming attractor, tracking the target 

potential (12).   

 By (13)-(14) and by the first equation of the system (1) for the third neuron, we get for the target I3: 
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Finally, using (4) for the currents entering the third neuron, and (6) for the outputs v1 and v2, we get: 
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(16) 

The set of Eqs.(11), (12), (15) and (16) forms the feedback algorithm. 

Thus, we’ve constructed a target pair ‘repeller-attractor’ in our dynamical system. 

 

IV. Numerical Simulations 
For the purpose of numerical simulations the following set of parameters has been chosen: 

.02.0;1.0;5.0;1;52;50 3122input1input  TTCII M                                         (17) 

The motivation for the numerical set (17) is following. The gain coefficient α should be in accordance 

with experimental data. The input currents Iinput1 and Iinput2 must be greater than a threshold level; and they are 

chosen to be closed each to other to cause the epileptiform regime in the network. 

 The constants T12 and T3 define the typical time scales for the re-forming the repeller R12 (9)-(10) and 

the attractor A3 (13)-(14) due to the change of the input currents and the inner evolution of the dynamical system 

(1). According to the proposed algorithm, the attractor A3 is responsible for fitting the repeller R12 to the 

changing dynamics, thus, it should work faster. That implies the inequality for the time constants: T3 << T12.  

The results of the simulations are presented in Figure 4.  

 

  
Figure 4. Numerical simulations for suppressing of the epileptiform regime in the dynamics of 

the neurons 1 and 2 via the feedback of the control neuron 3. The action potentials for v1 (dash 

line), v2 (solid line) and control v3 (dot line) are plotted vs time t. Left: No feedback loop in Fig.1 

(I32 = 0 and v3 = 0); Right: There is a target repeller-attactor feedback loop. 

 

In Figure 4 we plot the action potentials for all three neurons from our cluster. The potential of the 

neuron 3 is actually a control signal entering the neuron 2, see (12). We present here the potential v3, not the 

current I32, just to keep the same units for all three functions. One can see that the numerical results demonstrate 

the efficiency of the control algorithm. Without Kolesnikov’s control in Fig.4 (left) one can observe the 

epilepriform regime of two hypersynchronized neurons 1 and 2. In the presence of our control algorithm in Fig.4 

(right) the repeller drives the second neuron far away from the epileptiform dynamics. The result of numerical 

simulations does not depend sufficiently on the initial conditions of the system (1). 

There is no need to measure the rate of hypersynchronization as it was done in the previous algorithm
9
. 

The dynamical repeller provides the exponential divergence of the trajectories at the typical time scale T12 = 0.1 

for all neighborhoods of (9). 

 

V. Conclusion and Further Considerations 

The algorithm proposed in the paper is universal and does not depend on the initial conditions of the 

dynamical variables. Our algorithm is robust: it is stable under the perturbation of the initial conditions and the 
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relatively small external noise. It can be easily extended for a bigger number of neurons participating in the 

epileptiform dynamics. 

The construction of the repeller in the dynamical system is natural in the frame of Kolesnikov’s 

algorithm. Nevertheless, the construction of the dynamical attractor via the feedback loop of the neuron 3 could 

be performed in the frame of any optimal or suboptimal approaches: Pontryagin’s optimal control, Fradkov’s 

speed gradient
12

, and others. Pros and cons of different approaches will be a matter of our following research.  
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