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I. Introduction 
The 3x+1 problem is a conjecture proposed by L. Collatz in 1937, also known as Collatz problem, 

3x+1 mapping, Hasse’s algorithm, Kakutani problem, etc.
[1]

. The schemes put forward by M.R.Feix and 

J.L.Rouet
[2]

, M.Chamberland
[3]

 are ineffective. E.Belaga
[4]

 even doubt the provability of  the 3x+1 problem. 

This paper is different from the above approaches. In this paper the 3x+1 problem is equivalently transformed 

into the all-odd 3x+1 sequences, by which the equations with equal terms are introduced, then mathematical 

induction is applied to the equations with equal terms, at last the 3x+1 problem is proved. 

 

First, we make the following conventions for the terminologies and symbols used in this paper: 

(1)The word “sequence” used in this paper denotes infinite sequences, unless otherwise specified. 

(2) The lower case italic Latin letters used as variables denote positive integers, unless otherwise specified. 

(3) Sequences in this paper are denoted by upper case italic Latin letters (or with primes or with subscripts). 

Their corresponding lower case italic Latin letters denote the general terms of the sequences in question. For 

example, the general terms of the sequences A and B’ are an and b’n. 

(4) N and No are two special symbols. N denotes the set of positive integers, No denotes the set of positive odd 

numbers. 

 

1. 3x+1 problem and all-odd 3x+1 sequences  

The 3x+1 problem can be described by natural language as follows: Starting from any given positive integer n, 

if it is an even number, then it is divided by 2; if it is an odd number, then it is multiplied by 3 and plus 1; for the 

result obtained repeat the above operations; at last number 1 is bound to be obtained. For example, suppose 

n=52, then the result is: 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1. 

We call the above description the original description of the 3x+1 problem. In order to describe it clearly and 

solve it at last, we introduce the concept of deevenization (deevenization is a new English word coined by the 

authors). 

Suppose n = 2
i
r，where r∈No，i≥0. We call the process from n to r a deeven process or deeven operation. We use 

“β（）” to denote the deeven function, i.e.  

β（n）=β(2
i
r) =(2

i
r) / 2

i
 = r. When n∈No，β（n）= n.  

According to the above definition we know that for any positive integer n, we must have β（n）∈No.  

Therefore, we can simplify the 3x+1 problem. Although the object of study of the 3x+1 problem is any positive 

integer, from the original description of the 3x+1 problem we know that starting from the given positive integer 

n , when n = 2
i
r ( r∈No)，n should be divided by 2 i times to obtain r, i.e. the deeven process should be 

performed first. Therefore, we can change the object of study from n (n∈N) to r ( r∈No) ，And this change will 

make no difference on the nature of the 3x+1 problem.  

According to the concept of deevenization, the 3x+1 problem can be stated as: start from any positive odd 

number r, repeat the operations of multiplying 3, adding 1, and deevenization, we are bound to obtain the odd 



The proof of 3x+1 problem 

DOI: 10.9790/5728-1702030512                  www.iosrjournals.org                     6 | Page 

number 1 in finite steps. 

Obviously, when we record the results of multiplying 3, adding 1, and deevenization successively, we are bound 

to obtain a sequence (or series) of which all terms are positive odd numbers. This sequence is the all-odd 3x+1 

sequence. 

Definition 1: If the sequence E satisfies the follow relation: 

     e1∈No,  e2 =β（3 e1+1）, …, en+1=β(3en +1), …， 

then E is called an all-odd 3x+1 sequence.  

Example 1: Suppose the first term of the all-odd 3x+1 sequence E is e1=11, then we have 

e2 =β(3e1+1)=β(3×11+1)=β(2×17)=17; 

e3 =β(3e2+1)=β(3×17+1)=β(2
2
×13)=13; 

e4 =β(3e3+1)=β(3×13+1)=β(2
3
×5)=5; 

e5 =β(3e4+1)=β(3×5+1)=β(2
4
×1)=1; 

e6=β(3e5+1)=β(3×1+1)=β(2
2
×1)=1; 

…… 

That is, the all-odd 3x+1 sequence E is：11，17，13，5，1，1，… 

Please note that e5，e6 and their successors repeat the pattern: 1 times 3 plus1 equals 4, 4 being divided by 2
2
 

equals 1. 

    It is easy to see that from the fifth term onward, the successors of the above all-odd 3x+1 sequence E are all 

1. 

    When the 3x+1 problem is transformed into the all-odd 3x+1 sequence, the key to solve it lies in proving 

the proposition: all of the all-odd 3x+1 sequences are bound to have a term valued 1. 

Definition 2: If term bi and term bj(i≠j) in the sequence B equals each other, then bi and bj are called the equal 

terms in the sequence B；if the sequence B has equal terms, then B is a sequence with equal terms. 

From this definition we learn that if the term bi is an equal term in the sequence B，then there must exists a term 

bj (i≠j) such that bi＝bj. 

 

2. Equations with equal terms 

Now, we study the sufficient and necessary condition for an all-odd 3x+1 sequence to have equal terms. For 

readability, we give necessary condition and sufficient condition separately as two theorems. First, we give the 

following definition. 

Definition 3: suppose a0, a1,…, ak∈No, and  

 a1＝(3 a+1) /2
i1, a2＝(3 a1+1) /2

i2,…, ak＝(3ak–1+1) /2
ik. 

Then we call i1, i2,…, ik the k successive exponents of the term a0 of the all-odd 3x+1 sequence, k successive 

exponent of a0 for short . 

Example 2: (i) Find the 3 successive exponents of 3; (ii) Find the k successive exponents of 1. 

    Solution: (i) Let a＝3，then, a1＝(3a+1)/2
i1＝(3×3+1)/2

1＝5∈No. Thus, i1＝1.  

Likewise,  i2＝ 4 ， i3＝ 2 .  

(ii) Similar to (i) we can find the k successive exponents of 1 as : i1＝i2＝…＝ik＝2. 

From Example 2 we learn that, when an odd number is given, its k successive exponents are also given at the 

same time. And the k successive exponents of any odd number a are all positive numbers. As all of the terms of 

the all-odd 3x+1 sequences are odd numbers, we have: 

Fact 1: The k successive exponents of all of the terms of the all-odd 3x+1 sequences are positive integers. 

(In Note 2 the importance of Fact 1 is discussed).  

Theorem 1: Suppose the k successive exponents of the ith term ei of an all-odd 3x+1 sequence E are i1, i2, …, ik，

if ei＝ei+k，then 

ei＝(3
k–1

+3
k–2

·2
i1+…+3·2

i1+i2+…+ik–2+2
i1+i2+…+ik–1)/(2

i1+i2+…+ik–3
k
) .       (1) 

Proof: From the definition of the k successive exponents, we know  

ei+1＝(3ei +1) / 2
i1                               (2) 

                          ei+2＝(3ei+1+1) / 2
i2                              (3) 

…… 

ei+k＝(3ei+k-1+1) / 2
ik 

Substituting (2) into (3), we obtain: 

ei+2＝(3
2
ei +3+2

i1)/ 2
i1+i2 

Likewise, 

ei+3＝(3
3
ei +3

2
+3·2

i1+2
i1+i2)/ 2

i1+i2+i3 

…… 
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ei+k＝(3
k
ei +3

k–1
+3

k–2
·2

i1+…+3·2
i1+i2+…+ik–2+2

i1+i2+…+ ik–1)/ 2
i1+i2+…+ik. 

From ei＝ei+k, we know 

ei＝(3
k
ei +3

k–1
+3

k–2
·2

i1+…+3·2
i1+i2+…+ik–2+2

i1+i2+…+ ik–1)/ 2
i1+i2+…+ik. 

2
i1+i2+…+ik ei＝3

k
ei +3

k–1
+3

k–2
·2

i1+…+3·2
i1+i2+…+ik–2+2

i1+i2+…+ik–
1. 

2
i1+i2+…+ik ei–3

k
ei＝3

k–1
+3

k–2
·2

i1+…+3·2
i1+i2+…+ik–2+2

i1+i2+…+ik–
1. 

ei＝(3
k–1

+3
k–2

·2
i1+…+3·2

i1+i2+…+ik–2+2
i1+i2+…+ ik–1) /( 2

i1+i2+…+ik–3
k
). 

     .                                                          Q.E.D. 

Theorem 2: If term ei in an all-odd 3x+1 sequence E satisfies the following relation: 

ei＝(3
k–1

+3
k–2

·2
i1+…+3·2

i1+i2+…+ik–2+2
i1+i2+…+ ik–1)/(2

i1+i2+…+ik–3
k
) 

where i1, i2, …, ik are the k successive exponents of ei , then ei＝ei+k. 

Proof: From 

ei＝(3
k–1

+3
k–2

·2
i1+…+3·2

i1+i2+…+ik–2+2
i1+i2+…+ ik–1)/(2

i1+i2+…+ik–3
k
) 

we obtain 

 (2
i1+i2+…+ik–3

k
) ei＝3

k–1
+3

k–2
·2

i1+…+3·2
i1+i2+…+ik–2+2

i1+i2+…+ ik–1
 

2
i1+i2+…+ik ei–3

k
ei＝3

k–1
+3

k–2
·2

i1+…+3·2
i1+i2+…+ik–2+2

i1+i2+…+ ik–1 

2
i1+i2+…+ik ei＝3

k
ei +3

k–1
+3

k–2
·2

i1+…+3·2
i1+i2+…+ik–2+2

i1+i2+…+ ik–1 

ei＝(3
k
ei +3

k–1
+3

k–2
·2

i1+…+3·2
i1+i2+…+ik–2+2

i1+i2+…+ ik–1)/ 2
i1+i2+…+ik.                  (4) 

Besides, because the sequence E is an all-odd 3x+1 sequence, and i1, i2, …, ik are the k successive exponents of ei (That 

is, i1, i2,…,ik are the numbers of factor 2 in 3ei+1, 3ei+1+1,…, 3ei+k-1+1 respectively)，we obtain the following k 

equations, 

ei+1＝(3ei +1) / 2
i1                          

      ei+2＝(3ei+1+1) / 2
i2                          

…… 

ei+k＝(3ei+k–1+1) / 2
ik 

Similar to the inference in Theorem 1, we obtain 

ei+k＝(3
k
ei +3

k–1
+3

k–2
·2

i1+…+3·2
i1+i2+…+ik–2+2

i1+i2+…+ ik–1)/ 2
i1+i2+…+ik.       (5) 

From (4) and (5), we obtain 

ei＝ei+k.                                 Q.E.D. 

Now, we use the symbol “x”  to replace ei. Thus, formula (1) becomes formula (6): 

x＝(3
n–1

+3
n–2

·2
i1+…+3·2

i1+i2+…+in–2+2
i1+i2+…+in–1) /( 2

i1+i2+…+in –3
n
 )            (6) 

From Theorem 1 and Theorem 2 we can obtain Corollary 1 directly. 

Corollary 1: An all-odd 3x+1 sequence E has an equal term x if and only if x is given by formula (6). 

Corollary 1 gives the sufficient and necessary condition for any all-odd 3x+1 sequence to have equal terms. It is 

correct. But it is not clearly expressed. So, we make it more clear by the following statements. 

Because (6) is an equation, we can view it as an equation with x and i1, i2, …, ik as its variables (called the 

equation with equal terms). And we call the solution with x∈No and i1, i2,…,ik being the k successive exponents 

of x the characteristic solution. 

From Theorem 1 we know that if any (or every) all-odd 3x+1 sequence E has an equal term x, then x can 

necessarily be expressed by the equation (6). This means that if any all-odd 3x+1 sequence E has an equal term, 

then the equation with equal terms has a characteristic solution. Likewise, Theorem 2 tells us that if the equation 

with equal terms has a characteristic solution, then any all-odd 3x+1 sequence E has an equal term. Thus, we 

have Corollary 2 

Corollary 2: The sufficient and necessary condition for any all-odd 3x+1 sequence to have an equal term is that 

the equation with equal terms has a characteristic solution (and x in the characteristic solution is the equal term).  

(If you doubt Corollary 2, please refer to “The discussions on the solving of application problems by listing 

equations” in Note 1) 

Obviously, Corollary 1 and Corollary 2 are equivalent, but Corollary 2 is more clear. 

It is worth mentioning that the equation with equal terms is similar to the ratio of the circumference of a circle to 

its diameter =c/d (c is the circumference, d is the diameter of a circle). The most important parameter of a 

circle is its radius r. But  is irrelevant with r. Therefore, the ratio of the circumference that would have been of 

certain circle to its diameter becomes the ratio of the circumferences of all circles to their diameters. Similarly, 
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the most important parameter of a sequence is its terms. But the equation with equal terms is irrelevant with the 

terms of any all-odd 3x+1 sequence. Therefore, whether the equations with equal terms have characteristic 

solutions that would have been the decision condition of whether certain all-odd 3x+1 sequence has an equal 

term become the decision condition of whether all of the all-odd 3x+1 sequences have equal terms. This result 

profoundly reveals the importance of Corollary 2, and paves the way for solving the 3x+1 problem. 

 

3. The final proofs 

We know that, the range of the function f(i1,…, in)＝(3
n–1

+3
n–2

·2
i1+…+3·2

i1+i2+…+in–2+2
i1+i2+…+in–1) /( 2

i1+i2+…+in 

–3
n
 ) is an infinite range. But it worth notice that in this range there is only one element which is a positive 

integer. That is, 

Lemma 1. When f(i1,…, in)∈N, f(i1,…, in)＝1 uniquely. Or,  f(i1,…, in)＝1∈N uniquely.  

Proof: We use mathematical induction. 

Step 1: Verify that, when f(i1)∈N, f(i1)＝1 uniquely. Because f(i1)＝1 /( 2
i1–3)， there is  and only is i1＝2 such 

that f(i1)＝1. That is f(i1)＝1∈N uniquely.  Hence when n＝1 Lemma 1 holds. 

In order not to confuse with the result inferred by Step 3,  here we first point out the relevance between f(i1,…, 

ik+1) and f(i1,…, ik).  

f(i1,…, ik)＝(3
k–1

+3
k–2

·2
i1+…+3·2

i1+i2+…+ik–2+2
i1+i2+…+ik–1) /( 2

i1+i2+…+ik–3
k
)    (7) 

Therefore,  

3
k–1

+3
k–2

·2
i1+…+3·2

i1+i2+…+ik–2+2
i1+i2+…+ik–1＝( 2

i1+i2+…+ik–3
k
)·f(i1,…, ik)    (8) 

Besides, f(i1,…, ik+1)＝(3
k
+3

k–1
·2

i1+…+3·2
i1+i2+…+ik–1+2

i1+i2+…+ik) /( 2
i1+i2+…+ik+1–3

k+1
)， thus，   

f(i1,…, ik+1)＝(3(3
k–1

+3
k–2

·2
i1+…+3·2

i1+i2+…+ik–2+2
i1+i2+…+ik–1)+2

i1+i2+…+ik) /( 2
i1+i2+…+ik+1–3

k+1
) (9) 

Substituting formula (8) into formula (9) we obtain 

f(i1,…, ik+1)＝(3( 2
i1+i2+…+ik–3

k
)·f(i1,…, ik)+2

i1+i2+…+ik)/( 2
i1+i2+…+ik+1–3

k+1
)      (10)             

(The above process shows that, when f(i1,…, ik) is given by formula (7), f(i1,…, ik+1) in formula (10) and formula 

(9) is the same function. It worth notice that, formula (10) let us see that f(i1,…, ik) is a “component” of f(i1,…, 

ik+1). The relationship between f(i1,…, ik+1) and f(i1,…, ik) paves the way for Step 3 induction. Therefore, the 

existence of formula (10) is the fundamental reason for Lemma 1 being able to be proved by mathematical 

induction.) 

Step 2: Suppose f(i1,…, ik)＝1∈N uniquely. 

Step 3: Prove f(i1,…, ik+1)＝1∈N uniquely. 

From the induction supposition and formula (10) we know, 

f(i1,…, ik+1)＝(3( 2
i1+i2+…+ik–3

k
)+2

i1+i2+…+ik) /( 2
i1+i2+…+ik+1–3

k+1
)   

f(i1,…, ik+1)＝(4·2
i1+i2+…+ik–3

k+1
) /( 2

i1+i2+…+ik+1–3
k+1

) 

f(i1,…, ik+1)＝(2
i1+i2+…+ik+2

–3
k+1

) /( 2
i1+i2+…+ik+1–3

k+1
)              (11)                    

From formula (11) we know that, when ik+1＞2, f(i1,…, ik+1)＜1. When 当 ik+1＝1, 

f(i1,…, ik+1)＝(2
i1+i2+…+ik+2

–3
k+1

) /(2
i1+i2+…+ik+1

–3
k+1

)  

＝(2·2
i1+i2+…+ik+1

–3
k+1

) /(2
i1+i2+…+ik+1

–3
k+1

) 

＝((2
i1+i2+…+ik+1

–3
k+1

)+2
i1+i2+…+ik+1

) /(2
i1+i2+…+ik+1

–3
k+1

) 

＝1+2
i1+i2+…+ik+1

/(2
i1+i2+…+ik+1

–3
k+1

)∈/ N. 

Now, there is and only is ik+1＝2 such that f(i1,…, ik+1)＝1∈N. That is, f(i1,…, ik+1)＝1∈N uniquely. 

Thus, we prove that, when f(i1,…, ik)＝1∈N uniquely, f(i1,…, ik+1)＝1∈N uniquely.   Q.E.D. 

From the above proof it is not hard to see that, f(i1,…, in)＝1 if and only if i1＝i2＝…＝in＝2. Hence we know 

that the following theorem holds. 

Theorem 3: The equations with equal terms: 

x＝(3
n–1

+3
n–2

·2
i1+…+3·2

i1+i2+…+in–2+2
i1+i2+…+in–1)/(2

i1+i2+…+in–3
n
)         

only has the following characteristic solutions: 

x＝1，and i1＝i2＝…＝in＝2.                                     (12) 

Theorem 4: 3x+1 problem is true. 

We give the following two proofs. 
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Proof 1: From the proof of Theorem 1 we know that, so long as we suppose an all-odd 3x+1 sequence E has an 

equal term x and the k successive exponents of x are i1, i2, „, ik, then we can obtain the equation with equal 

terms. From Corollary 1 and Theorem 3 we know that sequence E has the equal term 1. As sequence E is general, 

we obtain that any all-odd 3x+1 sequence necessarily has the equal term 1. Thus, the theorem holds and 3x+1 

problem is true. 

Proof 2: Theorem 3 tells us that the equation with equal terms has necessarily the characteristic solution given 

by formula (12). From Corollary 2 we know that any all-odd 3x+1 sequence necessarily has equal terms. 

Theorem 3 also tells us that all of the equal terms equal 1. Therefore, any all-odd 3x+1 sequence has a term 

valued 1. Thus, the theorem holds and the 3x+1 problem is true. 

Q.E.D. 

Note 1: The answers to some doubts. 

This paper is doubted by some reviewers and scholars. Although these doubts are not correct, they reflect some 

deeply rooted problems. The followings are the answers to these doubts. 

(1) The discussions on the solving of application problems by listing equations 

Doubt 1: From Theorem 2 we cannot obtain “If the equation with equal terms has a characteristic solution, then 

the all-odd 3x+1 sequence E has equal terms”. 

In order for the obtaining of the argument “If the equation with equal terms has a characteristic solution, then 

the all-odd 3x+1 sequence E has equal terms” more clear, we do not depend on Theorem 2 but on the following 

listable equations approach to obtain the argument so as to answer the doubt. 

Let us investigate the contents of “the list of equations to solve the application problems” in middle school 

mathematics textbook. The application problems in middle school mathematics textbook have a common feature: 

for a given problem, one or more equations can always be listed corresponding to it. Therefore, the problem is 

called the listable equation problem. 

When we list a equation corresponding to a application problem (or a listable equation problem), we face two 

objects. One is the application problem given (called the original problem), the other is the equation listed. Thus, 

two questions arise: 1. Why can the solution of the original problem be obtained by solving the equation listed? 

2. Which solutions of the equation listed are the solutions of the original problem? In order to answer these 

questions, let us look at an example first. 

    Problem 1: The sum of the square of an integer and a positive integer equals 3, find out the two numbers. 

Solution: Suppose the integer is x, the positive integer is y. According to the problem we can list 

                   x
2
+y=3                            (13) 

Here, Problem 1 is the original problem, equation (13) is the equation listed. At first glance, they are quite 

different. Yet, they refer to the same thing. Because x is supposed to be the integer, x
2
 can be read as “the square 

of the integer”. Likewise, y can be read as “the positive integer”. Thus, equation (13) can be read as “the sum of 

the square of the integer and the positive integer equals 3”. Hence we see that the original problem and the 

equation listed refer to the same thing, i.e., the equation listed is a re-description of the original problem. Thus 

we say that, the original problem and the equation listed are “identical” and call this fact “the principle of 

identity”. The principle of identity tells us that, the finding of the solution of the original problem can be 

realized by finding the solution of the equation listed. This is the fundamental reason for “the list of equation to 

solve the application problems” being a classical mathematical method. . 

Besides, from the angle of equation listed, x and y in (13) can be any real number or complex number. But, in 

order for equation (13) and Problem 1 to refer to the same thing, x must be the integer, y must be the positive 

integer. Here, x and y are variables. The conditions set to variables x and y are called constraints. Precisely 

speaking, only all of the variables satisfy the constraints can the equation listed and the original problem refer to 

the same thing. Since in this case the two refer to the same thing, the solutions of the two are necessarily the 

same. The remaining thing for us to do is that we should make sure what kind of solutions are the solutions of 

the equations listed. 

The so-called solution of an equation, formally speaking, is an assignment to its relevant variables. As to the 

equation listed, if the assignment to each variable satisfies the constraints of the variable in question, then the 

solution (called the effective solution) is one whose variables of the equation listed satisfy the constraints. Thus, 

we know that all of the effective solutions of the equation listed are the solutions of the original problem. 

    Solving equation (13), we can obtain 3 effective solutions of the equation: 

 

x=1        x=0        x=–1 

y=2,       y=3，       y=2 .   

 

It is not hard to verify that these effective solutions are all solutions of Problem 1. Obviously, the following 

conclusion holds: 

Conclusion 1: The original problem has a solution，if and only if the equation listed has an effective solution. 
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According to the above discussion, let us prove the argument “if an equation with equal terms has a 

characteristic solution, then the all-odd 3x+1 sequence E has equal terms” again. 

Proof: From the proof of Theorem 1 we know that, so long as we suppose that the all-odd 3x+1 sequence E has 

the equal term x, and the k successive exponents of x are i1, i2,…, ik, we can obtain the equation with equal terms. 

This fact tells us that the problem of finding the equal terms of the all-odd 3x+1 sequence E is a listable 

equation problem (i.e., application problem). At this time, finding the equal terms of the all-odd 3x+1 sequence 

E is the original problem, and the equation with equal terms is the equation listed. From Conclusion 1 we know 

that, if the equation with equal terms has an effective solution, then the all-odd 3x+1 sequence E has equal terms. 

And the characteristic solution of the equation with equal terms is just its effective solution. Thus, the argument 

holds. 

Q.E.D. 

Through the above proof (It is in fact the second proof of Corollary 2) we see clearly the sameness between x in 

the characteristic solution of the equation with equal terms and the equal terms of the all-odd 3x+1 sequence E，
that is, if the equation with equal terms has a characteristic solution, then the all-odd 3x+1 sequence E has equal 

terms. As E generally refers to any all-odd 3x+1 sequence, thus, if the equation with equal terms has a 

characteristic solution, then any all-odd 3x+1 sequence E has equal terms. It is groundless to doubt this 

conclusion. 

 

Note 2: “A counterexample” and the principles of supposition 
In this note we mainly discuss the problem that the result of our proof of the 3x+1 problem has the 

“counterexample”. 

First, we give the principles that must be followed when making supposition: 

The principles of supposition: If the proposition A is necessarily true, then we cannot suppose it is false; if the 

proposition A is necessarily false, then we cannot suppose it is true. 

When the proposition A being true (false) is proved logically (or by a fact), then we say that A is necessarily true 

(false), we also say that A is a conclusion or a theorem. The difference between a proposition and a conclusion 

lies in that, the former is a judgement whose truth value is unknown, while the latter is a judgement whose truth 

value is known. Therefore, to the former we can suppose it being true, we can also suppose it being false, while 

to the latter we cannot make the opposite supposition. (In fact, this is an alternative expression of the principles 

of supposition)  

(Note: Because there is a fundamental difference between a proposition and a conclusion, their expressions 

should be different. For example, proposition I “6 can be divided by 3 exactly” corresponds to conclusion I “that 

6 can be divided by 3 exactly is true”; proposition II “5 can be divided by 3 exactly” corresponds to conclusion 

II “that 5 can be divided by 3 exactly is false”. But people are accustomed to omit “is true” and “is false”. They 

usually express conclusion I as “6 can be divided by 3 exactly”, express conclusion II as “5 cannot be divided by 

3 exactly”. Although these omissions usually do not result in misunderstanding, but we must not confuse the 

propositions with the conclusions.) 

The correctness of the principles of suppositions is self-evident. For example, in the axiomatic system of 

number theory, we cannot suppose “3+2–5=1” or “3+2–5≠0”. If we made such suppositions, we would obtain 

0=1，0=n 和 0≠0，n≠n etc., so as to cause an unbearable chaos in the axiomatic system of number theory. 

Likewise, in the axiomatic system of Euclidean geometry we cannot suppose the sum of the three internal angles 

of a triangle not to equal to 180°， while in the axiomatic system of non-Euclidean geometry we cannot suppose 

the sum of the three internal angles of a triangle to equal to 180° etc.. 

Now, we show some concepts related to the “counterexample”. 

Definition 4: Suppose the positive integer b satisfies the relations: a
n︱b，a

n+1︱/ b，0≤n. Then,we denote b/a
n 
as 

β(b)a，i.e., β(b)a＝b/a
n.
. We call β()a the de-a-factor operator. And we denote β( )2  as β( ) briefly. 

    For example,  β(45)3＝45/3
2＝5, β(40)＝40/2

3＝5. 

Definition 5: If the sequence E satisfies the relations: e1∈N(3︱/ e1),  e2 =β(2e1+1)3, …, en+1=β(2en +1)3, …，then 

we call E an anti-3x+1 sequence. 

Definition 6: Suppose 3︱/ ai∈N, 0≤i≤k. And suppose a1＝(2 a0+1) /3
i1

, a2＝(2 a1+1) /3
i2

,…, ak＝(2ak–1+1) /3
ik
. 

Then, we call i1, i2,…, ik the k successive exponents of the term a0 of the anti-3x+1 sequence, the k successive 

exponents of a0 for short. 

According to Definition 5, we can obtain the following anti-3x+1 sequences. 

Sequence 1: 787,175,13, 1, 1, 1，… 

Sequence 2: 10, 7, 5,11,23,47，… 

Sequence 1 is a sequence that has the equal term 1, its property is like the all-odd 3x+1 sequences. Sequence 2 is 

a sequence that tends to infinity without an equal term. 

Now, let’s calculate the k successive exponents of the first three terms of sequence 1. 
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The k successive exponents of the first term 787 is: i1＝2，i2＝3，i3＝3，i4＝…＝ik＝1. 

The k successive exponents of the second term 175 is: i1′＝3，i2′＝3，i3′＝…＝ik′＝1. 

The k successive exponents of the third term 13 is: i1′′＝3，i2′′＝…＝ik′′＝1. 

Then let’s calculate the k successive exponents of the first three terms of sequence 2. 

The k successive exponents of the first term 10 is: i1＝1，i2＝1，i3＝…＝ik＝0. 

The k successive exponents of the second term 7 is: i1′＝1，i2′＝…＝ik′＝0. 

The k successive exponents of the third term 5 is: i1′′＝…＝ik′′＝0. 

From Definition 3 and Definition 6 we know that the all-odd 3x+1 sequences and the anti-3x+1 sequences have 

their own k successive exponents. 

Definition 7: If in the k successive exponents i1, i2,…, ik of a0 there exists iq＝0(1≤q≤k), then we call a0 a term of 

k successive exponents with zero. If the k successive exponents of a0 i1, i2,…, ik∈N, then we call a0 a term of k 

successive exponents without zero. If all of the terms of a sequence are terms of  k successive exponents 

without zero, then we call the sequence a sequence of k successive exponents without zero. If all of the terms of 

a sequence are terms of k successive exponents with zero, then we call the sequence a sequence of k successive 

exponents with zero. 

Obviously, sequence 1 is a sequence of k successive exponents without zero, sequence 2 is a sequence of k 

successive exponents with zero. (From Fact 1 we know that the all-odd 3x+1 sequences are sequences of k 

successive exponents without zero.) 

From the relationships of the k successive exponents of various terms of sequence 1 and sequence 2 we can 

obtain: 

Suppose x′ is the successor of the term x of an anti-3x+1 sequence, the k+1 successive exponents of x are i1，

i2，…，ik+1，the k successive exponents of x′ are i1′，i2′，…，ik′. Then, i1′＝i2，i2′＝i3，…，ik′= ik+1. Thus we 

know that, so long as the k successive exponents of the first term of an anti-3x+1 sequence are the k successive 

exponents without (or with) zero, then the sequence is a sequence of k successive exponents without (or with) 

zero. Therefore, an anti-3x+1 sequence is either a sequence of k successive exponents without zero or a 

sequence of k successive exponents with zero. 

Conclusion 2: (From Definition 6 we know that) no term in the anti-3x+1 sequences can be divided exactly by 

3.  

Conclusion 3: Suppose x′ is the successor of the term x in an anti-3x+1 sequence. (1). If 1＜x≡1(mod 3) then x′

＜x， and the 1 successive exponent of x is i1∈N. (2). If x≡2(mod 3) then x＜x′≡2(mod 3)， and the k successive 

exponents of x are i1＝i2＝…＝ik＝0.  

We only prove (1) of Conclusion 3: From x=3n+1(0＜n) we obtain 2x+1=6n+3. From x′= (2x+1)/3
i1

= (6n+3)/3
i1 

we know ：1≤i1∈N. Also because x′= (6n+3)/3
i1

≤2n+1＜3n+1，x′＜x. Hence (1) of Conclusion 3 holds.     

Q.E.D. 

From (2) of Conclusion 3 we know that if an anti-3x+1 sequence E has a term x≡2(mod 3) then E is a sequence 

of k successive exponents with zero. Therefore, if x is a term of a sequence of k successive exponents without 

zero, then x≡/ 2(mod 3).  From Conclusion 2 we can obtain: 

Conclusion 4: For any term x of the sequence of the k successive exponents without zero of the anti-3x+1 

sequence we have x≡1(mod 3). 

The following is the generation process of the “counterexample”. 

Suppose any anti-3x+1 sequence has an equal term x, and the k successive exponents of x are i1, i2,…, ik. Then, 

similar to the obtaining of formula (6) we can obtain the following equation with equal terms of the anti-3x+1 

sequences: 

x＝(2
k–1

+2
k–2

·3
i1+…+2·3

i1+i2+…+ik–2+3
i1+i2+…+ik–1) /( 3

i1+i2+…+ik–2
k
).    (6′) 

We call the solution with x∈N (3︱/ x), and i1, i2, …, ik being the k successive exponents of x the characteristic  

solution  of  the  anti-3x+1 sequences. 

Similar to the obtaining of Corollary 2 we can obtain the following Corollary: 

Corollary 2’: The sufficient and necessary condition for any anti-3x+1 sequence to have an equal term is 

formula (6’) to have a characteristic solution of the anti-3x+1 sequence. 

Similar to the proof of Theorem 3 we can obtain 

Theorem 3’: The equation with equal terms of the anti-3x+1 sequence 

x＝(2
n–1

+2
n–2

·3
i1+…+2·3

i1+i2+…+in–2+3
i1+i2+…+in–1) /( 3

i1+i2+…+in –2
n
 )   

 

only has the following characteristic solution 

x＝1，and i1＝i2＝…＝in＝1. 

Thus, from Corollary 2’ and Theorem 3’, similar to the proof of Theorem 4, we can obtain: 
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Theorem 4’: Any anti-3x+1 sequence has an equal term 1. 

Obviously, the proof process of Theorem 4’ is the same as that of Theorem 4. Yet, sequence 2 of the anti-3x+1 

sequence do not have equal term 1. Therefore, sequence 2 is the “counterexample” of Theorem 4’. It also means 

that Theorem 4 “doesn’t hold” 

The reason for Theorem 4’ to have an “counterexample” lies in that “suppose any anti-3x+1 sequence E to have 

an equal term x” violates the principle of supposition, for before we make the above “supposition” we have 

already known the existence of sequence 2. Once we discover such sequence as sequence 2 that do not have an 

equal term, the proposition “any anti-3x+1 sequence has an equal term” is “necessarily false”. From the 

principles of supposition we know that the supposition is not allowed. We cannot “suppose any anti-3x+1 

sequence E to have an equal term x”, so we cannot obtain formula (6’), so we cannot obtain Theorem 4’, so 

there is no “counterexample”. 

Contrary to the above supposition, “Suppose that any all-odd 3x+1 sequence E has an equal term x” do not 

violate the principles of supposition, for up to now we have not proved that the proposition “any all-odd 3x+1 

sequence has an equal term” is necessarily false. Therefore, “Suppose that any all-odd 3x+1 sequence E has an 

equal term x” is rational. And after the supposition the whole proving process conforms to the inference rules, 

Therefore, Theorem 4 necessarily holds. The following is an evidence of the correctness of the proof of 

Theorem 4. 

Similar to the case of the all-odd 3x+1 sequences, up to now we cannot prove the proposition “any sequence of 

k successive exponents without zero of the anti-3x+1 sequences has an equal term” to be necessarily false. From 

the principles of supposition we know that “suppose that any sequence E of k successive exponents without zero 

of the anti-3x+1 sequences has an equal term x” is rational. And similar to the proving process of Theorem 4, we 

can obtain: 

Theorem 4”: Any sequence of the k successive exponents without zero of the anti-3x+1 sequences has the equal 

term 1. 

It is fortunate that Theorem 4” has a more simple proof.. 

Proof 2 of Theorem 4”: From Conclusion 4 we know that if x is a term of the sequence of the k successive 

exponents without zero of the anti-3x+1 sequences then x≡1(mod 3). From (1) of Conclusion 3 we know that 

when x＞1, the successor of x is x′＜x From this we can obtain that any sequence of k successive exponents 

without zero necessarily has the minimal term 1. When x=1, the successor of x is x′=1. Therefore, Theorem 4” 

holds. Q.E.D. 

That Theorem 4” (and Theorem 4) hold and Theorem 4’ does not hold fully demonstrate that the principles of 

supposition is a very important logical rule. Now our discussion is over. 

It is worth mentioning that up to now we cannot find a proof similar to the Proof 2 of Theorem 4” to prove that 

“any all-odd 3x+1 sequence has the equal term 1” hold. (Up to now, the proof given in the main body of the text 

is the only proof method). This fact not only demonstrates that 3x+1 problem is a very special mathematical 

problem, but also demonstrates that our proof of 3x+1 problem is unique and novel. Although “unique” and 

“novel” is one of the main reasons for this paper to be doubted, it is the value of this paper.  

 

Reference 
[1]. Jeffrey C. Lagarias, editor, The Ultimate Challenge: The 3x+1 Problem, American Mathematical Society, 2010 

[2]. M. R. Feix and J. L. Rouet, The (3x+1)/2 Problem and its generalization: a stochastic approach, Proceedings of international 
Conference on the Collatz Problem and Related Topics, August 5-6, 1999, Katholische Universitat Eichstatt, Germany 

[3]. M. Chamberland, A Dynamical Systems Approach to the 3x+1 Problem, Proceedings of international Conference on the Collatz 

Problem and Related Topics, August 5-6, 1999, Katholische Universitat Eichstatt, Germany 
[4]. E. Belaga, Reflecting on the 3x+1 Mystery, Proceedings of international Conference on the Collatz Problem and Related Topics, 

August 5-6, 1999, Katholische Universitat Eichstatt, Germany 

 
 

 

Ming Xian, et. al. "The proof of 3x+1 problem." IOSR Journal of Mathematics (IOSR-JM), 17(2), 

(2021): pp. 05-12. 

 


