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Abstract 
In this paper, we introduce the concepts sum - eccentricity divided by diameter of graph G, it is denoted by 

(
𝑆𝐸

𝑑𝑖𝑎𝑚
) (𝐺) and product - eccentricity divided by diameter of graph G, it is denoted by (

𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐺). We find the 

adjacency energy of sum - eccentricity divided by diameter and product - eccentricity divided by diameter of 

some classes of graphs. 
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I. Introduction 
Let G be a finite and undirected simple graph with m vertices named by 𝑣1, 𝑣2, ⋯ , 𝑣𝑚. Then the 

adjacency matrix A(G) of the graph G is a square matrix of order m, whose (𝑖, 𝑗)𝑡ℎentry is equal to 1 if the 

vertices 𝑣𝑖 and 𝑣𝑗 are adjacent and equal to zero otherwise. The characteristic polynomial of the adjacency 

matrix, ie., 𝑑𝑒𝑡(𝜂𝐼𝑚 − 𝐴(𝐺)), where I is the unit matrix of order m, is said to be the characteristic polynomial 

of the graph G and will be denoted by 𝑃(𝐺, 𝜂). The eigenvalues of a graph G are defined as the eigenvalues of 

its adjacency matrix A(G), and so they are just the roots of the equation  𝑃(𝐺, 𝜂) = 0. Since A(G) is a real 

symmetric matrix,  its eigenvalues are all real, denoting them by 𝜂1, 𝜂2, ⋯ , 𝜂𝑚, and as a whole, they are called 

the spectrum of G. In 1970, I.Gutman introduced the concept of the energy of G. [5] 

Let 𝑒(𝑣𝑖) denote the eccentricity of the vertex 𝑣𝑖, for 𝑖 = 1,2,⋯ ,𝑚. For vertices 𝑣𝑖 ,  𝑣𝑗 ∈ 𝑉(𝐺), the 

distance 𝑑(𝑣𝑖 , 𝑣𝑗) is defined as the length of the shortest path between 𝑣𝑖 and 𝑣𝑗 in G [13]. The eccentricity of a 

vertex is the maximum distance from it to any other vertex. 𝑒(𝑣𝑖) = max
𝑣𝑖∈𝑉(𝐺)

𝑑(𝑣𝑖 , 𝑣𝑗). 

The diameter of a graph G, denoted by diam(G), is the maximum eccentricity of any vertex in the 

graph or the greatest distance between any pair of vertices. [8] 

 

II. Preliminary 
Lemma 2.1 [2] 

Let M,N, P  and Q be matrices with M invertible. Then we have |
𝑀 𝑁
𝑃 𝑄

| = |𝑀||𝑄 − 𝑃𝑀−1𝑁| 

 

Lemma 2.2 [2] 

Let M,N, P  and Q be matrices. Let 𝑆 = (
𝑀 𝑁
𝑃 𝑄

) if M and P commutes. Then |𝑆| = |𝑀𝑄 − 𝑃𝑁|. 

Lemma 2.3 [3] 

If 𝐴(𝐾𝑝) is the adjacency matrix of 𝐾𝑝, then 𝐴2(𝐾𝑃) = (𝑝 − 2)𝐴(𝐾𝑝) + (𝑝 − 1)𝐼𝑝. 

 

Definition 2.4 [3] 

Let 𝐾2𝑝 be a complete graph with vertices 2𝑝, 𝑝 = 1,2, … , 𝑛. We delete the edge joining the vertices 𝑖 

and 𝑝 + 𝑖, 1 ≤ 𝑖 ≤ 𝑝. The resulting graph 𝐷1(𝐾2𝑝) has the order 2𝑝 and has  2𝑝(𝑝 − 1) edges. Further it is 

regular of degree  2𝑝 − 2. 
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Definition 2.5 [3] 

Consider the complete graph 𝐾2𝑝 with 2𝑝 vertices. We split the vertices into two equal parts and delete 

the edges between that spilted parts. We obtain a disconnected graph such a graph is of order  2𝑝 and has  

𝑝(𝑝 − 1) edges. Further it is regular of degree  𝑝 − 1. We denote it by 𝐷2(𝐾2𝑝). 

 

Definition 2.6 [3] 

Consider the complete graph 𝐾2𝑝 with 2𝑝 vertices. We split the vertices into two equal parts such that 

the vertices 1 to 𝑝 in one part and 𝑝 + 1 to 2𝑝 in the other part. Now delete the edges between the vertices in the 

same parts also edges joining 𝑖 and 𝑝 + 𝑖, 1 ≤ 𝑖 ≤ 𝑝. The resulting graph is of order 2𝑝 and has  𝑝(𝑝 − 1) 

edges. Further it is regular of degree  𝑝 − 1. We denote it by 𝐷3(𝐾2𝑝). 

 

Definition 2.7 [3] 

Consider a pair of complete graphs 𝐾𝑝 with vertex set {𝑣𝑖 , 𝑖 = 1,2,3, … 𝑝} and {𝑢𝑗, 𝑗 = 1,2,3, …𝑝}. We 

obtain a graph joining 𝑣𝑖 to 𝑢𝑖, for 𝑖 = 1,2,3, … 𝑝. Such a graph is of order 2𝑝 and 𝑝2 edges. Further it is regular 

of degree p. We denote it by 𝐽(𝐾𝑝
𝑝). 

 

Definition 2.8 [11] 

𝐾1,1,𝑛 is a graph obtained by attaching root of a star 𝐾1,𝑛 at one end of 𝑃2 and other end of 𝑃2 is joined 

with each pendant vertex of 𝐾1,𝑛. 

 

Definition 2.9 [12] 

A globe graph 𝐺𝑙𝑛 is a graph obtained from two isolated vertex are joined by n paths of length 2. 

 

III. Main Result 
Adjacency energy of sum - eccentricity divided by diameter of graphs 

Let 𝐺 = (𝑉, 𝑋) be a connected simple graph with |𝑉| = 𝑚 vertices and |𝐸| = 𝑞 edges. Let  

𝑒(𝑣𝑖), 𝑒(𝑣𝑗) be the eccentricity of the vertices 𝑣𝑖 , 𝑣𝑗  respectively, for all 𝑖, 𝑗 = 1,2,⋯ ,𝑚. Then the adjacency 

matrix of sum eccentricity divided by diameter of the graph is defined as 

𝑠𝑒𝑖𝑗 = {
𝑒(𝑣𝑖) + 𝑒(𝑣𝑗)

𝑑𝑖𝑎𝑚 𝐺
, 𝑖𝑓 𝑣𝑖  𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑗

0,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        
 

The adjacency matrix of sum - eccentricity divided by diameter is a symmetric matrix with eigenvalues 

as 𝜂1 ≥ 𝜂2 ≥ ⋯ ≥ 𝜂𝑚. The characteristic polynomial of (
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐺) is given by |𝜂𝐼 − (

𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐺)|. The adjacency 

energy of sum - eccentricity divided by diameter of the graph G is defined as the sum of the absolute values of 

𝜂𝑖 , 𝑖 = 1,2,⋯ ,𝑚. 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐺)] = ∑ |𝜂𝑖|

𝑚
𝑖=1 . 

 

Adjacency energy of sum - eccentricity divided by diameter of standard graphs 

Theorem 3.1.1 

Let 𝐾𝑚  be a complete graph. Then 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾𝑚 )] = 4(𝑚 − 1), where 𝑚 ≥ 2. 

 

Proof: 

Let 𝐾𝑚  be the complete graph with m vertices. Then the adjacency matrix of sum - eccentricity 

divided by diameter of 𝐾𝑚 is, 

(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾𝑚 ) =

[
 
 
 
 
0 2 2 ⋯ 2
2 0 2 ⋯ 2
2 2 0 ⋯ 2
⋮ ⋮ ⋮ ⋱ ⋮
2 2 2 ⋯ 0]

 
 
 
 

 

and its characteristic polynomial is, 

𝑃 ((
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾𝑚 ), 𝜂) = (𝜂 − 2(𝑚 − 1))(𝜂 + 2)𝑚−1 

Hence 𝑆𝑝 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾𝑚 )] = (

2(𝑚 − 1) −2
1 𝑚 − 1

) 

and 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾𝑚 )] = 4(𝑚 − 1). 
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Theorem 3.1.2 

Let 𝐾1,𝑚  be a star graph. Then 𝐸 [
𝑆𝐸

𝑑𝑖𝑎𝑚
(𝐾1,𝑚 )] = 3√𝑚 , where 𝑚 ≥ 2. 

Proof: 

Let 𝐾1,𝑚  be the star graph with 𝑚 + 1 vertices. Then the adjacency matrix of sum - eccentricity divided by 

diameter of 𝐾1,𝑚 is, 

(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾1,𝑚 ) =

[
 
 
 
 
 
 0

3

2

3

2
⋯

3

2
3

2
0 0 ⋯ 0

3

2
0 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
3

2
0 0 ⋯ 0]

 
 
 
 
 
 

. 

Therefore, 𝑃 ((
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾1,𝑚 ), 𝜂) = (𝜂2 −

9

4
𝑚) (𝜂)𝑚−1 

Hence  𝑆𝑝 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾1,𝑚 )] = (

−
3

2
√𝑚

3

2
√𝑚 0

1 1 𝑚 − 1
) 

and 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾1,𝑚 )] = 3√𝑚 . 

 

Theorem 3.1.3 

Let 𝐾𝑚,𝑚  be a complete bipartite graph. Then 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾𝑚,𝑚 )] = 4𝑚, where 𝑚 ≥ 1. 

Proof: 

Let 𝐾𝑚,𝑚  be the complete graph with 2𝑚 vertices. Then the adjacency matrix of sum - eccentricity divided by 

diameter of 𝐾𝑚,𝑚  is, 

(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾𝑚,𝑚 ) = [

0 2𝐽
2𝐽 0

],  where 𝐽 = [
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

] . 

Therefore, 𝑃 ((
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾𝑚,𝑚 ), 𝜂) = (𝜂2 − 4𝑚2)(𝜂)2𝑚−2. 

Hence  𝑆𝑝 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾𝑚,𝑚 )] = (

−2𝑚 2𝑚 0
1 1 2𝑚 − 2

) 

and 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾𝑚,𝑚 )] = 4𝑚 . 

 

Adjacency energy of sum - eccentricity divided by diameter of some regular graphs obtained from 

complete graph 

Theorem 3.2.1 

Let 𝐷1(𝐾2𝑚) be the edge deleting graph 1 of 𝐾2𝑚. Then 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐷1(𝐾2𝑚))] = 8(𝑚 − 1), where 𝑚 ≥ 2. 

Proof: 

Let 𝐷1(𝐾2𝑚) be the edge deleting graph 1 of 𝐾2𝑚 with order 2m, 𝑚 = 2,3,⋯ , 𝑛           and 2𝑚(𝑚 − 1) edges. 

Then the adjacency matrix sum - eccentricity divided by diameter of 𝐷1(𝐾2𝑚) is, 

(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐷1(𝐾2𝑚)) = [

2𝐴(𝐾𝑚) 2𝐴(𝐾𝑚)
2𝐴(𝐾𝑚) 2𝐴(𝐾𝑚)

]. 

Therefore,  𝑃 ((
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐷1(𝐾2𝑚)), 𝜂) = |

𝜂𝐼𝑚 − 2𝐴(𝐾𝑚) −2𝐴(𝐾𝑚)
−2𝐴(𝐾𝑚) 𝜂𝐼𝑚 − 2𝐴(𝐾𝑚)

| 

= |(𝜂𝐼𝑚 − 2𝐴(𝐾𝑚))2 − (2𝐴(𝐾𝑚))2|  (by lemma 2.2) 

= |(𝜂2𝐼𝑚 − 2𝜂(2𝐴(𝐾𝑚))| 

= (2𝜂)𝑚 |
𝜂2

2𝜂
𝐼𝑚 − 2𝐴(𝐾𝑚)| 

= (2𝜂)𝑚 (
𝜂

2
− 2(𝑚 − 1)) (

𝜂

2
+ 2)𝑚−1 

= (𝜂)𝑚(𝜂 − 4(𝑚 − 1))(𝜂 + 4)𝑚−1 

Hence 𝑆𝑝[(
𝑆𝐸

𝑑𝑖𝑎𝑚
)( 𝐷1(𝐾2𝑚))] = (

0 −4 4(𝑚 − 1)
𝑚 𝑚 − 1 1

) 

and 𝐸 [
𝑆𝐸

𝑑𝑖𝑎𝑚
(𝐷1(𝐾2𝑚))] = 8(𝑚 − 1). 

 

Theorem 3.2.2 

Let 𝐷3(𝐾2𝑚) be the edge deleting graph 3 of 𝐾2𝑚. Then 𝐸 [
𝑆𝐸

𝑑𝑖𝑎𝑚
(𝐷3(𝐾2𝑚))] = 8(𝑚 − 1), where 𝑚 ≥ 3. 
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Proof: 

Let 𝐷3(𝐾2𝑚) be the edge deleting graph 3 of 𝐾2𝑚 with order 2m, 𝑚 = 3,4,⋯ , 𝑛 and 𝑚(𝑚 − 1) edges.  Then 

adjacency matrix of sum - eccentricity divided by diameter of 𝐷3(𝐾2𝑚) is, 

(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚)) = [

0 2𝐴(𝐾𝑚)

2𝐴(𝐾𝑚) 0
]. 

Therefore, 𝑃((
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚)), 𝜂) = |

𝜂𝐼𝑚 −2𝐴(𝐾𝑚)

−2𝐴(𝐾𝑚) 𝜂𝐼𝑚
| 

=  |η𝐼𝑚| |𝜂𝐼𝑚 −
(2𝐴(𝐾𝑚))2

𝜂
|  (by lemma 2.1) 

= 𝜂𝑚 |𝜂𝐼𝑚 −
4(𝑚−2)𝐴(𝐾𝑚)+4(𝑚−1)𝐼𝑚

𝜂
|  (by lemma 2.3) 

= |𝜂2𝐼𝑚 − 4(𝑚 − 2)𝐴(𝐾𝑚) − 4(𝑚 − 1)𝐼𝑚| 

= (𝑚 − 2)𝑚 |(
𝜂2−4(𝑚−1)

𝑚−2
) 𝐼𝑚 − 4𝐴(𝐾𝑚)| 

=(𝑚 − 2)𝑚 (
𝜂2−4(𝑚−1)

𝑚−2
− 4(𝑚 − 1))(

𝜂2−4(𝑚−1)

𝑚−2
+ 4 )𝑚−1 

= (𝜂2 − 4(𝑚 − 1)2)(𝜂2 − 4)𝑚−1 

Hence 𝑆𝑝[(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚))] = (

−2(𝑚 − 1) 2(𝑚 − 1) −2 2
1 1 𝑚 − 1 𝑚 − 1

) 

and  𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚))] = 8(𝑚 − 1). 

 

Theorem 3.2.3 

Let  𝐽(𝐾𝑚
𝑚) be the join of complete graph. Then 𝐸 [(

𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚))] = 8(𝑚 − 1),  where 𝑚 ≥ 3. 

Proof: 

Let 𝐽(𝐾𝑚
𝑚) be the join of complete graph order 2𝑚 and 𝑚2 edges. Then adjacency matrix of sum - eccentricity 

divided by diameter of 𝐽(𝐾𝑚
𝑚) is, 

( 
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚)) =  [
2𝐴(𝐾𝑚) 2𝐼𝑚

2𝐼𝑚 2𝐴(𝐾𝑚)
]. 

Therefore, 𝑃 ((
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚)), 𝜂) = |
𝜂𝐼𝑚 − 2𝐴(𝐾𝑚) −2𝐼𝑚

−2𝐼𝑚 𝜂𝐼𝑚 − 2𝐴(𝐾𝑚)
| 

= (𝜂𝐼𝑚 − 2𝐴(𝐾𝑚))2 − (2𝐼𝑚)2 

= ((𝜂 − 2)𝐼𝑚 − 2𝐴(𝐾𝑚))((𝜂 + 2)𝐼𝑚 − 2𝐴(𝐾𝑚)) 

= ((𝜂 − 2)𝐼𝑚 − 2(𝑚 − 1)) ((𝜂 − 2)𝐼𝑚 + 2)
𝑚−1

 

((𝜂 + 2)𝐼𝑚 − 2(𝑚 − 1)) ((𝜂 + 2)𝐼𝑚 + 2)𝑚−1 

=  𝜂𝑚−1(𝜂 − 2𝑚)(𝜂 − 2(𝑚 − 2))(𝜂 + 4)𝑚−1 

Hence 𝑆𝑝[(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚))] = (
0 −4 2(𝑚 − 2) 2𝑚

𝑚 − 1 𝑚 − 1 1 1
) 

and 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚))] = 8(𝑚 − 1). 

 

Adjacency energy of sum - eccentricity divided by diameter of complement of some regular graphs 

obtained by complete graph. 

In [4] the complement graphs of 𝐷1(𝐾2𝑚),  𝐷2(𝐾2𝑚),  𝐷3(𝐾2𝑚) and 𝐽(𝐾𝑚
𝑚) are denoted by 

𝐷1(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝐷2(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,𝐷3(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝐽(𝐾𝑚
𝑚) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 𝐴̅ = 𝐽 − 𝐼 − 𝐴 where 𝐴̅ is the adjacency matrix of complement 

graph. 

Theorem 3.3.1 

Let 𝐷2(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ be the complement of edge deleting graph 2 of 𝐾2𝑚. Then 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐷2(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)] = 4𝑚, where  

𝑚 ≥ 2. 

Proof: 

Let 𝐷2(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ be the complement of edge deleting graph 2 of 𝐾2𝑚. Then the adjacency matrix of sum - 

eccentricity divided by diameter of 𝐷2(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is, 

(
𝑆𝐸

𝑑𝑖𝑎𝑚
) (𝐷2(𝐾2𝑚))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (

0 2𝐽
2𝐽 0

), where 𝐽 = [
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

]. 

Therefore,  𝑃 ((
𝑆𝐸

𝑑𝑖𝑎𝑚
) (𝐷2(𝐾2𝑚))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝜂) = 𝜂2𝑚−2(𝜂 − 2𝑚)(𝜂 + 2𝑚) 

Hence  𝑆𝑝 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐷2(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)] = (

2𝑚 −2𝑚 0
 1 1 2𝑚 − 2

) 

and 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐷2(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)] = 4𝑚. 
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Theorem 3.3.2 

Let 𝐷3(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ be the complement of edge deleting graph 3 of 𝐾2𝑚. Then 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)] = 8(𝑚 − 1) , 

where 𝑚 ≥ 2. 

Proof: 

Let  𝐷3(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ be the complement of edge deleting graph 3 of 𝐾2𝑚. Then the adjacency matrix of sum - 

eccentricity divided by diameter of 𝐷3(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is, 

(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (

2𝐴(𝐾𝑚) 2𝐼𝑚
2𝐼𝑚 2𝐴(𝐾𝑚)

) 

=  (
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚)) (by theorem (3.2.3)) 

Since 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
) (𝐽(𝐾𝑚

𝑚))] = 8(𝑚 − 1), we get 

𝐸[(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)] = 8(𝑚 − 1). 

Theorem 3.3.3 

Let 𝐽(𝐾𝑚
𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  be the complement of join of complete graph. Then 𝐸[(

𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )]  = 8(𝑚 − 1) , where 𝑚 ≥

3. 

Proof: 

Let 𝐽(𝐾𝑚
𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  be the complement of  join of complete graph. Then the adjacency matrix of sum - eccentricity 

divided by diameter of  𝐽(𝐾𝑚
𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is, 

(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (
0 2𝐴(𝐾𝑚)

2𝐴(𝐾𝑚) 0
) 

=  (
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚)) (by theorem 3.2.2) 

Since 𝐸[(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚))] = 8(𝑚 − 1), we get 

𝐸[(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )] = 8(𝑚 − 1). 

 

Adjacency energy of sum - eccentricity divided by diameter of some irregular graphs 

Theorem 3.4.1 

Let 𝐹𝑚  be a friendship graph. Then 𝐸 [
𝑆𝐸

𝑑𝑖𝑎𝑚
(𝐹𝑚 )] =   2(2𝑚 − 1) +

1

2
(2 ± √18𝑚 + 4), where 𝑚 ≥ 2. 

Proof: 

The adjacency matrix of sum - eccentricity divided by diameter of the friendship graph 𝐹𝑚 with 2𝑚 + 1 vertices 

is, 

(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐹𝑚 ) =

[
 
 
 
 
 
 
 
 0

3

2

3

2
⋯

3

2

3

2
3

2
0 2 ⋯ 0 0

3

2
2 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
3

2
0 0 ⋯ 0 2

3

2
0 0 ⋯ 2 0]

 
 
 
 
 
 
 
 

. 

Therefore, 𝑃 ((
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐹𝑚 ), 𝜂) = (𝜂2 − 2𝜂 −

9

2
𝑚) (𝜂 − 2)𝑚−1(𝜂 + 2)𝑚. 

Hence  𝑆𝑝 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐹𝑚 )] = (

2−√18𝑚+4

2

2+√18𝑚+4

2
2 −2

1 1 𝑚 − 1 𝑚
). 

and 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐹𝑚 )] =  2(2𝑚 − 1) +

1

2
(2 ± √18𝑚 + 4)  . 

 

Theorem 3.4.2 

Let 𝐺𝑙𝑚  be a globe graph. Then 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐺𝑙𝑚 )] =   4√2𝑚 , where 𝑚 ≥ 2. 

Proof: 

The adjacency matrix of sum - eccentricity divided by diameter of the globe graph 𝐺𝑙𝑚  with  𝑚 + 2 vertices is, 
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(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐺𝑙𝑚 ) =

[
 
 
 
 
 
 
0 0 2 2 ⋯ 2 2
0 0 2 2 ⋯ 2 2
2 2 0 0 ⋯ 0 0
2 2 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
2 2 0 0 ⋯ 0 0
2 2 0 0 ⋯ 0 0]

 
 
 
 
 
 

. 

Therefore, 𝑃 ((
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐺𝑙𝑚 ), 𝜂) =  (𝜂2 − 8𝑚)(𝜂)𝑚. 

Hence 𝑆𝑝 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐺𝑙𝑚 )] = (−2√2𝑚 2√2𝑚 0

1 1 𝑚
) 

and  𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐺𝑙𝑚 )] =  4√2𝑚  . 

 

Theorem 3.4.3 

Let 𝐾1,1,𝑚  be a graph. Then 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾1,1,𝑚 )] =   1 +

1

2
(1 ± √18𝑚 + 1), where 𝑚 ≥ 1. 

Proof: 

The adjacency matrix of sum - eccentricity divided by diameter of a graph 𝐾1,1,𝑚  with 𝑚 + 2 vertices is, 

(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾1,1,𝑚 ) =

[
 
 
 
 
 
 

0 1 3/2 3/2 ⋯ 3/2 3/2
1 0 3/2 3/2 ⋯ 3/2 3/2

3/2 3/2 0 0 ⋯ 0 0
3/2 3/2 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

3/2 3/2 0 0 ⋯ 0 0
3/2 3/2 0 0 ⋯ 0 0 ]

 
 
 
 
 
 

. 

Therefore,  𝑃 ((
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾1,1,𝑚 ), 𝜂) = (𝜂)𝑚−1(𝜂 + 1)(2𝜂2 − 2𝜂 − 9𝑚) 

Hence  𝑆𝑝 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
) (𝐾1,1,𝑚 )] = (

1

2
(1 − √18𝑚 + 1)

1

2
(1 + √18𝑚 + 1) −1 0

1 1 1 𝑚 − 1
) 

and 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾1,1,𝑚 )] =  1 +

1

2
(1 ± √18𝑚 + 1)  . 

 

Theorem 3.4.4 

Let 𝐵𝑚,𝑚  be a bistar graph. Then 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐵𝑚,𝑚 )] =

1

3
(±2 ± √25𝑚 + 4), where 𝑚 ≥ 1. 

Proof: 

The adjacency matrix of sum - eccentricity divided by diameter a bistar graph 𝐵𝑚,𝑚 with 2𝑚 + 2 vertices is, 

(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐵𝑚,𝑚 ) =

[
 
 
 
 
 
 
 

0 5/3 ⋯ 5/3 4/3 0 ⋯ 0
5/3 0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋯ ⋮

5/3 0 ⋯ 0 0 0 ⋯ 0
4/3 0 ⋯ 0 0 5/3 ⋯ 5/3
0 0 ⋯ 0 0 5/3 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 5/3 ⋯ 0 ]

 
 
 
 
 
 
 

. 

Therefore, 

𝑃 ((
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐵𝑚,𝑚 ), 𝜂) =  (𝜂)2𝑚−2( 9𝜂2 − 12𝜂 − 25𝑚)(9𝜂2 + 12𝜂 − 25𝑚). 

Hence 𝑆𝑝 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
) (𝐵𝑚,𝑚 )] = 

(
1

3
(−2 − √25𝑚 + 4)

1

3
(2 + √25𝑚 + 4)

1

3
(2 − √25𝑚 + 4)

1

3
(√25𝑚 + 4 − 2) 0

1 1 1 1 2𝑚 − 2

) 

and 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐵𝑚,𝑚 )] =  

1

3
(±2 ± √25𝑚 + 4). 

Theorem 3.4.5 

Let 𝐵2
𝑚,𝑚 be a square bistar graph. Then 𝐸 [(

𝑆𝐸

𝑑𝑖𝑎𝑚
)( 𝐵2

𝑚,𝑚)] =   1 +
1

2
(1 ± √36𝑚 + 1) . 

Proof: 

The adjacency matrix of sum - eccentricity divided by diameter a square bistar graph  𝐵2
𝑚,𝑚with 2𝑚 + 2 

vertices is, 
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(
𝑆𝐸

𝑑𝑖𝑎𝑚
)( 𝐵2

𝑚,𝑚) =

[
 
 
 
 
 
 

0 1 3/2 3/2 ⋯ 3/2 3/2
1 0 3/2 3/2 ⋯ 3/2 3/2

3/2 3/2 0 0 ⋯ 0 0
3/2 3/2 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

3/2 3/2 0 0 ⋯ 0 0
3/2 3/2 0 0 ⋯ 0 0 ]

 
 
 
 
 
 

. 

Therefore,   𝑃 ((
𝑆𝐸

𝑑𝑖𝑎𝑚
)( 𝐵2

𝑚,𝑚), 𝜂) = (𝜂)2𝑚−1(𝜂 + 1)(𝜂2 − 𝜂 − 9𝑚) 

Hence 𝑆𝑝 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
) ( 𝐵2

𝑚,𝑚)] = (
1

2
(1 − √36𝑚 + 1)

1

2
(1 + √36𝑚 + 1) −1 0

1 1 1 2𝑚 − 1
). 

and 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)( 𝐵2

𝑚,𝑚)] =  1 +
1

2
(1 ± √36𝑚 + 1). 

 

IV. Adjacency Energy Of Product - Eccentricity Divided By Diameter Of Graphs 
Definition: 

Let 𝑒(𝑣𝑖), 𝑒(𝑣𝑗) be the eccentricity of the vertices 𝑣𝑖 , 𝑣𝑗 respectively, for all 𝑖, 𝑗 = 1,2,⋯ ,𝑚. Then the adjacency 

matrix of the product - eccentricity by diameter, is defined as 

𝑝𝑒𝑖𝑗 = {
𝑒(𝑣𝑖)𝑒(𝑣𝑗)

𝑑𝑖𝑎𝑚 𝐺
, 𝑖𝑓 𝑣𝑖  𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑗

0,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        
 

The adjacency matrix of product - eccentricity divided by diameter is a symmetric matrix with 

eigenvalues as 𝜂1 ≥ 𝜂2 ≥ ⋯ ≥ 𝜂𝑚. The characteristic polynomial of (
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐺) is given by |𝜂𝐼 − (

𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐺)|. 

The adjacency energy of product - eccentricity divided by diameter the graph G is defined as the sum of the 

absolute values of  𝜂𝑖 , 𝑖 = 1,2,⋯ ,𝑚. 𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐺)] = ∑ |𝜂𝑖|

𝑚
𝑖=1 . 

 

Adjacency energy of product − eccentricity divided by diameter of some standard graphs 

Theorem 4.1.1 

Let  𝐾𝑚 be a complete graph. Then 𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐾𝑚)]  = 2(𝑚 − 1), where 𝑚 ≥ 2. 

 

Proof: 

The adjacency matrix of their product - eccentricity divided by diameter of the complete graph 𝐾𝑚 with m 

vertices is, 

(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐾𝑚 ) =

[
 
 
 
 
0 1 1 ⋯ 1
1 0 1 ⋯ 1
1 1 0 ⋯ 1
⋮ ⋮ ⋮ ⋱ ⋮
1 1 1 ⋯ 0]

 
 
 
 

    =  𝐴(𝐾𝑚 ) 

Since 𝐸(𝐾𝑚 ) = 2(𝑚 − 1), we get 

𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐾𝑚)]  = 2(𝑚 − 1). 

Theorem 4.1.2 

Let  𝐾1,𝑚 be a star graph. Then 𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐾1,𝑚)]  = 2√𝑚, where 𝑚 ≥ 1. 

Proof: 

The adjacency matrix of product - eccentricity divided by diameter of the star graph 𝐾1,𝑚 with 𝑚 + 1 vertices is, 

(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐾1,𝑚 ) =

[
 
 
 
 
0 1 1 ⋯ 1
1 0 0 ⋯ 0
1 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
1 0 0 ⋯ 0]

 
 
 
 

    =  𝐴(𝐾1,𝑚 ) 

Since 𝐸(𝐾1,𝑚 ) = 2√𝑚, we get 

𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐾𝑚)]  =  2√𝑚. 

Theorem 4.1.3 

Let  𝐾𝑚,𝑚 be a complete bipartite graph. Then 𝐸 [
𝑃𝐸

𝑑𝑖𝑎𝑚
(𝐾𝑚,𝑚)] = 4𝑚. 

Proof: 
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The adjacency matrix of product- eccentricity divided by diameter of the complete bipartite graph 𝐾𝑚,𝑚 with 2m 

vertices is, 

(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐾𝑚,𝑚 ) = [

0 2𝐽
2𝐽 0

],  where 𝐽 = [
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

] . 

= (
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾𝑚,𝑚 ) 

Since 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐾𝑚,𝑚 )] = 4𝑚, we get 

𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐾𝑚,𝑚 )] = 4𝑚. 

 

Adjacency energy of product - eccentricity divided by diameter of some regular graphs obtained from 

complete graph 

Theorem 4.2.1 

Let 𝐷1(𝐾2𝑚) be the edge deleting graph 1 of 𝐾2𝑚. Then 𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐷1(𝐾2𝑚))] =  8(𝑚 − 1), where 𝑚 ≥ 2. 

Proof: 

Let 𝐷1(𝐾2𝑚) be the edge deleting graph 1 of 𝐾2𝑚 order 2m, 𝑚 = 2,3,⋯ , 𝑛           and 2𝑚(𝑚 − 1) edges. Then 

the adjacency matrix of product - eccentricity divided by diameter is, 

(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐷1(𝐾2𝑚)) = [

2𝐴(𝐾𝑚) 2𝐴(𝐾𝑚)
2𝐴(𝐾𝑚) 2𝐴(𝐾𝑚)

]. 

=  (
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐷1(𝐾2𝑚)) 

Since 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐷1(𝐾2𝑚))] = 8(𝑚 − 1), we get 

𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐷1(𝐾2𝑚))] =  8(𝑚 − 1). 

Theorem 4.2.2 

Let 𝐷3(𝐾2𝑚) be the edge deleting graph 3 of 𝐾2𝑚. Then 𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚))] = 12(𝑚 − 1), where 𝑚 ≥ 3. 

Proof: 

Let 𝐷3(𝐾2𝑚) be the edge deleting graph 3 of 𝐾2𝑚 order 2m, 𝑚 = 3,4,⋯ , 𝑛 and 𝑚(𝑚 − 1) edges. Then the 

adjacency matrix of product - eccentricity divided by diameter is, 

(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚)) = [

0 3𝐴(𝐾𝑚)

3𝐴(𝐾𝑚) 0
]. 

Therefore,  𝑃((
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚)), 𝜂) = |

𝜂𝐼𝑚 −3𝐴(𝐾𝑚)

−3𝐴(𝐾𝑚) 𝜂𝐼𝑚
| 

=  |η𝐼𝑚| |𝜂𝐼𝑚 −
(3𝐴(𝐾𝑚))2

𝜂
|  (by lemma 2.1) 

= 𝜂𝑚 |𝜂𝐼𝑚 −
9(𝑚−2)𝐴(𝐾𝑚)+9(𝑚−1)𝐼𝑚

𝜂
|  (by lemma 2.3) 

= |𝜂2𝐼𝑚 − 9(𝑚 − 2)𝐴(𝐾𝑚) − 9(𝑚 − 1)𝐼𝑚| 

= (𝑚 − 2)𝑚 |(
𝜂2−9(𝑚−1)

𝑚−2
) 𝐼𝑚 − 9𝐴(𝐾𝑚)| 

=(𝑚 − 2)𝑚 (
𝜂2−9(𝑚−1)

𝑚−2
− 9(𝑚 − 1))(

𝜂2−9(𝑚−1)

𝑚−2
+ 9 )𝑚−1 

= (𝜂2 − 9(𝑚 − 1)2)(𝜂2 − 9)𝑚−1 

Hence 𝑆𝑝[(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚))] = (

−3(𝑚 − 1) 3(𝑚 − 1) −3 3
1 1 𝑚 − 1 𝑚 − 1

) 

and 𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚))] = 12(𝑚 − 1). 

Theorem 4.2.3 

Let  𝐽(𝐾𝑚
𝑚) be the join of complete graph. Then 𝐸 [(

𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚))] = 8(𝑚 − 1),  where 𝑚 ≥ 3. 

Proof: 

Let 𝐽(𝐾𝑚
𝑚) be the join of complete graph order 2𝑚 and 𝑚2 edges. Then the adjacency matrix of product - 

eccentricity divided by diameter is, 

( 
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚)) =  [
2𝐴(𝐾𝑚) 2𝐼𝑚

2𝐼𝑚 2𝐴(𝐾𝑚)
]. 

=   (
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚)) 

Since 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚))] = 8(𝑚 − 1), we get 

𝐸 [
𝑃𝐸

𝑑𝑖𝑎𝑚
(𝐽(𝐾𝑚

𝑚))] = 8(𝑚 − 1). 
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Adjacency energy of product - eccentricity divided by diameter of the complement of some regular 

graphs obtained by complete graph. 

Theorem 4.3.1 

Let 𝐷2(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ be the complement of edge deleting graph 2 of 𝐾2𝑚. Then 𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐷2(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)] =  4𝑚  , where  

𝑚 ≥ 2. 

Proof: 

Let 𝐷2(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ be the complement of edge deleting graph 2 of 𝐾2𝑚. Since 𝐴(𝐷2(𝐾2𝑚)) = (
𝐴(𝐾𝑚) 0

0 𝐴(𝐾𝑚)
), we 

get the adjacency matrix of product - eccentricity divided by diameter is, 

(
𝑃𝐸

𝑑𝑖𝑎𝑚
) (𝐷2(𝐾2𝑚))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (

0 2𝐽
2𝐽 0

), where 𝐽 = [
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

]. 

= (
𝑆𝐸

𝑑𝑖𝑎𝑚
) (𝐷2(𝐾2𝑚))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Also since 𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐷2(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)] = 4𝑚, we get 

𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐷2(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)] = 4𝑚. 

 

Theorem 4.3.2 

Let 𝐷3(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ be the complement of edge deleting graph 3 of 𝐾2𝑚. Then 𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)] = 8(𝑚 − 1) , 

where 𝑚 ≥ 2. 

Proof: 

Let  𝐷3(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ be the complement of edge deleting graph 2 of 𝐾2𝑚. Since  (
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚)) =

(
0 3𝐴(𝐾𝑚)

3𝐴(𝐾𝑚) 0
), we get the adjacency matrix of product - eccentricity divided by diameter is, 

(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (

2𝐴(𝐾𝑚) 2𝐼𝑚
2𝐼𝑚 2𝐴(𝐾𝑚)

) 

=  (
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚)) (by theorem (4.2.3)) 

Also since 𝐸[(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚))]  = 8(𝑚 − 1), we get 

𝐸[(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)] = 8(𝑚 − 1). 

Theorem 4.3.3 

Let 𝐽(𝐾𝑚
𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  be the complement of join of complete graph. Then 𝐸 [(

𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )]  = 12(𝑚 − 1) , where 

𝑚 ≥ 3. 

Proof: 

Let 𝐽(𝐾𝑚
𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  be the complement of join of pair of complete graph. Since (

𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚)) =

(
2𝐴(𝐾𝑚) 2𝐼𝑚

2𝐼𝑚 2𝐴(𝐾𝑚)
), we get the adjacency matrix of product - eccentricity divided by diameter  is, 

(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (
0 3𝐴(𝐾𝑚)

3𝐴(𝐾𝑚) 0
) 

=  (
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚)) (by theorem 4.2.2) 

Also since 𝐸[(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐷3(𝐾2𝑚))] = 12(𝑚 − 1), we get 

𝐸[(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐽(𝐾𝑚

𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )] = 12(𝑚 − 1). 

 

Adjacency energy product - eccentricity divided by diameter of some irregular graphs 

Theorem 4.4.1 

Let 𝐹𝑚  be a friendship graph. Then 𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐹𝑚 )] =   2(2𝑚 − 1) + (1 ± √2𝑚 + 1), where 𝑚 ≥ 2. 

Proof: 

Let  𝐹𝑚  be a friendship graph with 2𝑚 + 1 vertices. Then the adjacency matrix of product - eccentricity divided 

by diameter is, 
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(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐹𝑚 ) =

[
 
 
 
 
 
0 1 1 ⋯ 1 1
1 0 2 ⋯ 0 0
1 2 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 0 0 ⋯ 0 2
1 0 0 ⋯ 2 0]

 
 
 
 
 

. 

Therefore,  𝑃 ((
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐹𝑚 ), 𝜂) = (𝜂2 − 2𝜂 − 2𝑚)(𝜂 − 2)𝑚−1(𝜂 + 2)𝑚 

Hence 𝑆𝑝 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐹𝑚 )] = (1 + √2𝑚 + 1 1 − √2𝑚 + 1 2 −2

1 1 𝑚 − 1 𝑚
) 

and  𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐹𝑚 )] =  2(2𝑚 − 1) + (1 ± √2𝑚 + 1)  . 

Theorem 4.4.2 

Let  𝐺𝑙𝑚  be a globe graph. Then 𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐺𝑙𝑚 )]  =   4√2𝑚. 

Proof: 

Let 𝐺𝑙𝑚  be a globe graph with  𝑚 + 2 vertices. Then the adjacency matrix of product - eccentricity divided by 

diameter is, 

(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐺𝑙𝑚 ) =

[
 
 
 
 
 
 
0 0 2 2 ⋯ 2 2
0 0 2 2 ⋯ 2 2
2 2 0 0 ⋯ 0 0
2 2 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
2 2 0 0 ⋯ 0 0
2 2 0 0 ⋯ 0 0]

 
 
 
 
 
 

. 

= (
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐺𝑙𝑚 ). 

Also since  𝐸 [(
𝑆𝐸

𝑑𝑖𝑎𝑚
)(𝐺𝑙𝑚 )] =   4√2𝑚, we get 

𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐺𝑙𝑚 )] =   4√2𝑚. 

Theorem 4.4.3 

Let 𝐾1,1,𝑚  be a graph. Then 𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐾1,1,𝑚 )] =  

1

2
+

1

4
(1 ± √32𝑚 + 1) . 

Proof: 

Let 𝐾1,1,𝑚  be a graph with 𝑚 + 2 vertices. Then the adjacency matrix of product - eccentricity divided by 

diameter is, 

(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐾1,1,𝑚 ) =

[
 
 
 
 
 
 

0 1/2 1 1 ⋯ 1 1
1/2 0 1 1 ⋯ 1 1
1 1 0 0 ⋯ 0 0
1 1 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 1 0 0 ⋯ 0 0
1 1 0 0 ⋯ 0 0]

 
 
 
 
 
 

. 

Therefore, 𝑃 ((
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐾1,1,𝑚 ), 𝜂) = (𝜂)𝑚−1(2𝜂 + 1)(2𝜂2 − 𝜂 − 4𝑚). 

Hence,  𝑆𝑝 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
 )(𝐾1,1,𝑚 )] = 

(
1

4
(1 − √32𝑚 + 1)

1

4
(1 + √32𝑚 + 1) −

1

2
0

1 1 1 𝑚 − 1

) 

and  𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐾1,1,𝑚 )] =  

1

2
+

1

4
(1 ± √32𝑚 + 1). 

Theorem 4.4.4 

Let 𝐵𝑚,𝑚  be a bistar graph. Then 𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐵𝑚,𝑚 )] =

2

3
(±1 ± √9𝑚 + 1) . 

Proof: 

Let 𝐵𝑚,𝑚  be a bistar graph with 2𝑚 + 2 vertices. Then the adjacency matrix of product - eccentricity divided 

by diameter is, 
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(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐵𝑚,𝑚 ) =

[
 
 
 
 
 
 
 

0 2 ⋯ 2 4/3 0 ⋯ 0
2 0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋯ ⋮
2 0 ⋯ 0 0 0 ⋯ 0

4/3 0 ⋯ 0 0 2 ⋯ 2
0 0 ⋯ 0 0 2 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 2 ⋯ 0]

 
 
 
 
 
 
 

. 

Therefore, 

𝑃 ((
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐵𝑚,𝑚 ), 𝜂) = (𝜂)2𝑚−2( 3𝜂2 − 4𝜂 − 12𝑚)(3𝜂2 + 4𝜂 − 12𝑚) 

Hence  𝑆𝑝 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
) (𝐵𝑚,𝑚 )] = 

(
2

3
(−1 − √9𝑚 + 1)

2

3
(1 + √9𝑚 + 1)

2

3
(1 − √9𝑚 + 1)

2

3
(√9𝑚 + 1 − 1) 0

1 1 1 1 2𝑚 − 2
) and 

𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐵𝑚,𝑚 )] =  

2

3
(±1 ± √9𝑚 + 1)  . 

Theorem 4.4.5 

Let  𝐵2
𝑚,𝑚 be a square bistar graph. Then 𝐸 [(

𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐵2

𝑚,𝑚)] =  
1

2
+

1

4
(1 ± √64𝑚 + 1) 

Proof: 

Let 𝐵2
𝑚,𝑚 be a square bistar graph with 2𝑚 + 2 vertices. Then the adjacency matrix of product - eccentricity 

divided by diameter is, 

(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐵2

𝑚,𝑚) =

[
 
 
 
 
 
 

0 1/2 1 1 ⋯ 1 1
1/2 0 1 1 ⋯ 1 1
1 1 0 0 ⋯ 0 0
1 1 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 1 0 0 ⋯ 0 0
1 1 0 0 ⋯ 0 0]

 
 
 
 
 
 

. 

Therefore, 𝑃 ((
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐵2

𝑚,𝑚), 𝜂) = (𝜂)2𝑚−1(2𝜂 + 1)(2𝜂2 − 𝜂 − 8𝑚). 

Hence 𝑆𝑝 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
) (𝐵2

𝑚,𝑚)] = 

(
1

4
(1 − √64𝑚 + 1)

1

4
(1 + √64𝑚 + 1) −

1

2
0

1 1 1 2𝑚 − 1

) 

and  𝐸 [(
𝑃𝐸

𝑑𝑖𝑎𝑚
)(𝐵2

𝑚,𝑚)] =  
1

2
+

1

4
(1 ± √64𝑚 + 1)  . 
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