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Abstract: 
The purpose of this research is to bridge the disparity between the theory of mathematics and musical practice 

by investigating the application of finite cyclic groups to musical notations. It also provides novel approaches to 

long-standing problems in music representation and analysis. This work intends to further computational 

musicology and music theory through multidisciplinary collaboration and empirical validation, with possible 

applications to a variety of musical pursuits. Modulo 12, the musical notes form an additive abelian group. 

Knowing how to identify a cyclic group would allow someone to use the generator to find the basic circuit 

needed for additional practical applications of pure mathematics. cyclic groups to musical notations the goal of 

this study is to close the gap between mathematical theory and musical practice, offering innovative solutions to 

age-old challenges in music representation and analysis. Through interdisciplinary collaboration and empirical 

validation, this study aims to contribute to the advancement of both music theory and computational musicology, 

with potential implications for a wide range of musical endeavors. 
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I. Introduction: 

Musical notation has evolved over centuries, aiming to represent the intricate elements of music in a 

structured and understandable format. Traditional notation systems often rely on linear representations, such as 

staff notation. However, recent advancements in mathematical theory and computational techniques have 

opened up new avenues for exploring alternative approaches to musical representation. One such promising 

avenue is the application of finite cyclic groups, which offer unique properties that can potentially enrich the 

understanding and analysis of musical structures. 

 

The area of pure mathematics known as group theory is originated from the algebra. Because it was 

abstract, It appeared to be more of an arts subject than a science subject. was actually viewed as being purely 

abstract and impractical. Even students of group theory after being introduced to the abstract nature of the 

subject, the course appears to not believe that it has any real-world applications. (Tsok, 2013). This challenge 

encourages scholars to examine the various ways that groups can be expressed in concrete terms from a 

theoretical and practical perspective in order to bring its applicability to real-world situations, especially in the 

context of musical notes. The purpose of this work is to apply some group theory principles to the analysis and 

comprehension of musical notes in light of the group's axioms.. The main objective is to see the relationship that 

exist between these musical notes and cyclic group and their interpretation algebraically. This work focuses on 

the behavior of musical notes, which is mostly determined by group axioms, theorems like the first theorem by 

Langrange and Sylow, cyclic groups, and two left cosets. 

A group that has an element to which an operation is applied that yields the entire set is called a cyclic 

group. It is clear that a cyclic groups is a groups of repeated patterns until returning to the beginning. In general, 

a Groups that have all of their elements as powers of a fixed element are known as cyclic groups. A group 𝐺 is 

called cyclic if G = < 𝑎 >= {𝑎𝑛|𝑛 ∈ ℤ}. That is, a group G is cyclic if G is generated by one of its elements. 

Cyclic group has many important applications in Chemistry, Material Sciences to mention but a few. Although 

the concept of group theory originated with the idea of abstract algebra, it can be applied to many other 

mathematical fields, other scientific fields, and even the musical arts. Despite the fact that written or printed 

indications that indicate vocal or instrumental sound constitute music. Broadly speaking, The arrangement of 
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sounds to create a particular shape, harmony, melody, rhythm, or other expressive element or thought of feeling 

is refers to as music. Without musical music is not complete. and music NOTES are oval-shaped symbols that 

are place on the lines and in the spaces of staff. They represent musical sound called PITCHES.  

Hence these are 𝐶, 𝐶#, 𝐷, 𝐷#, 𝐸, 𝐹, 𝐹#, 𝐺, 𝐺#, 𝐴, 𝐴#, 𝐵. When logically combine give out pleasant sound to the 

ear. 

 Definition of Terms:  
We wish to present some definitions to help understand the relationship between the concepts of music and 

abstract algebra. 

Music:  
Thus, the study of the essential components—notes, scales, chords, rhythm, harmony, and form—that define 

and control the language of music refers to as Musical theory. It serves as a set of rules and guidelines that 

musicians use to create, analyse, and interpret music. And these notes are given in the table below: 

 

Notes 𝐶  𝐶# 𝐷 𝐷# 𝐸 𝐹 𝐹# 𝐺 𝐺# 𝐴 𝐴# 𝐵 

Nam  1st  

note 

2nd   

Note 

3rd 

note 

4th 

note 

5th 

note 

6th 

note 

7th 

note 

8th 

note 

9th 

note 

10th 

note 

11th 

note 

12th 

note 

 

Musical Flat 𝒃 

The FLAT sign (𝑏) before a note lower the pitch of that note. A musical flat is the transition of sound from one 

pitch to a lower note. For instance transition to any other note on the left from 𝐹. 

Musical Sharp # 

The sharp sign (#) before a note raises the pitch of the note. Hence can be represents the transition of sound 

from one pitch (note) to a higher pitch, indicated by #. For instance, movement from 𝐹 to any other note to the 

right on the musical notes.  

Musical Tone: 

Musical tone is the term used to describe any change in pitch from one musical note to the next. this pair of 

steps in any direction relative to the musical notes. As an illustration, movement from 𝐹 𝑡𝑜 𝐺 or to 𝐷#.  

Octaves. The difference in pitch between two musical notes is called an octave.  

Semitone;   
half-tone When moving from one musical note to the next, is it a step forward or step backward on the scale?. 

For example, movement from 𝐹 𝑡𝑜 𝐹# 𝑜𝑟 𝐹 𝑡𝑜 𝐸. 

3.4 Chord 

When two, three, or more notes are played simultaneously, a chord is formed. 

3.5 Abstract Group 

Let (G,∗) be an algebraic structure, where ∗ is a binary operation. Then (G,∗) is called a group under this 

condition if the following axioms are satisfied  

i. closure law: 
𝐺 is closed under the operation ∗, that is, to each ordered pair 𝑎, 𝑏 ∈ 𝐺, there exists a unique element 𝑎 ∗ 𝑏 ∈ 𝐺 

 ii. Associativity law:  
* is an associative binary operation, that is, 

(𝑎 ∗ 𝑏) ∗ c = 𝑎 ∗ (𝑏 ∗ c), ∀ a, b, c ∈ G. 
iii The reality of identity element: 
There exists an element 𝑒 ∈ 𝐺 (called identity element of G) s.t.  

𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎, ∀ a ∈ G. 
iv. Existence of inverse element for each element in G:To each a ∈ G, 

 There is a component 𝑎−1 ∈ G (referred to as the opposite of 𝑎 with respect to ∗) s.t. 

𝑎 ∗ 𝑎−1 = 𝑎−1 ∗ a = e 
v. In addition a group is said to be abelian (or commutative) if 

  𝑎 ∗  𝑏 =  𝑏 ∗  𝑎  ∀ 𝑎, 𝑏 ∈  𝐺. i.e. the operation does not change the result.  

For example; 3 + 5 = 5 + 3. For this paper addition operation will be equivalent to: 𝑎 ∗ 𝑎 ∗ 𝑎 ∗ 𝑎 ∗ . . .∗ 𝑎⏟            
𝑛−𝑡𝑖𝑚𝑒𝑠

= 𝑎𝑛. 

For instance Z, the set of integers. 
P- Group  

Assume 𝑝 is a fixed prime. A limited group 𝐻 group is referred to as a p-group if every element within it has an 

order that is a power of 𝑝.. 

P- Subgroup  

If 𝐻 ≤  𝐺 and |𝐻|  =  𝑝𝑟  for some 𝑟 ≥ 0 then 𝐻 is called p - subgroup of 𝐺. 

 



Exploring the Application of Finite Cyclic Groups to Musical Notations. 

DOI: 10.9790/5728-2004010111                                www.iosrjournals.org                                             3 | Page 

Definition (P-Sylow Subgroup): 

Suppose 𝐺 is a finite group and 𝑜(𝐺) = 𝑃𝑚𝑛 where 𝑃 is prime number and 𝑃 is not a divisor of 𝑛. Then a 

subgroup 𝐻of 𝐺 is said to be a 𝑃 − 𝑆𝑦𝑙𝑜𝑤 subgroup of 𝐺 𝑖𝑓𝑓 𝑜(𝐻) = 𝑃𝑚 

Or  

Let 𝑝 be a prime number and 𝐺 be a finite group.  If 𝑃𝑚/𝑜(𝐺) and 𝑃𝑚+1 ∤ 𝑜(𝐺), then a subgroup of 𝐺 of order 

𝑃𝑚 is called a 𝑃 − 𝑆𝑦𝑙𝑜𝑤 subgroup of 𝐺. 
Cyclic group:  

When an element 𝑎 ∈ 𝐺 exist and is such that   G = {𝑎𝑛|𝑛 ∈ ℤ}. The generator of 𝐺 is an element of this type, 

designated as 𝐺 = < 𝑎 >. 
Generator of a group: An element whose powers comprise the element of the group is called a generator of the 

group.. 

Integers 𝑴𝒐𝒅𝒖𝒍𝒐 𝒎  

The set of integer modulo 𝑚 is denoted by ℤ𝑚. And this is a finite group that is called the additive group of the 

residue class of integers  𝑚. 

Number Theory: There are cyclic groups in nature, patterns, and other mathematical domains. Number theory 

is one area where cyclic groups are frequently used. When studying cyclic groups, one essential tool is the 

division algorithm. 

Definition: A set's permutation A is a one to one and onto function defined as Φ:A → A. Permutations are 

different configurations for how a set can be put together or organized. 

 

2.1: Historical background of the relationship between mathematics and music 
Music and mathematics have a long history of collaboration. Pythagoras (428–347), who is credited 

with founding the first mathematical school that focused only on logical reasoning, is also credited with 

founding the first school of theoretical music. Pythagoras was not only a mathematician but also a composer and 

a music theorist. when the ear detects the ratio between the amount of vibrations produced in the same amount 

of time; that when the ear fails to detect this ratio, their effect is unpleasant. (Taken from the Overview of Given 

that Euler's music theory addresses a number of naturally occurring prime and prime factorization concerns, it is 

highly likely that he worked on other combinatorial and number theory projects at the same time. Listening to 

composers discuss mathematics is equally fascinating. Since music is a science, there must be established 

guidelines. These guidelines must stem from an obvious concept, which can only be ascertained with the aid of 

mathematics. The most liberated and passionately individualistic artists are mathematicians. There are no 

material or instrument restrictions on them. Their preferences and intellectual curiosity ultimately dictate where 

they end up at any given time. In actuality, their research focuses on the human mind. Mathematically inclined 

teaching of music. "Statable as a connected set of axioms, definitions, and theorems, the proofs of which are 

derived by means of an appropriate logic" is the ideal description for a musical theory. This is in the line of the 

classic musical treatises of composers such as Rameau [94], Mersenne [78], and others. This, as we have already 

discussed, is an exposition presented in the form of a lemma, theory, etc. Before Babbitt, a number of serial 

composers were aware that they were working with groups. Fokker was greatly impacted by Huygens's music 

theory writings. Halsey and Hewitt's article is a significant contribution to the methodical application of group 

theory in music. Seeing how mathematics can benefit music and vice versa is always beneficial. 

 

Group theory in music and mathematics 

Few authors have explored the area of music, although many have focused on applying group theory to 

various fields in the sciences, games, and other domains. The father of theoretical music is Pythagoras (428–347 

B.C.), who is credited with founding the first school of mathematics as a fully deductive discipline. He used to 

claim that musical notes are not unusual and that "everything is number.", that is C, C#, D, D#,E, F, F#, G, G#, 

A, A#, B. But why “all is number”? The Pythagoreans gave numbers symbolic meanings and interpretations. 

They classified even numbers as belonging to women and odd numbers to men. One represents reason, two 

represents opinion, three symbolizes harmony, four represents justice, five represents marriage, six represents 

creation, seven represents awe, and ten represents the universe, according to the Pythagoreans. There were two 

potential explanations offered. The Eastern influence comes first. Pythagoras may have been affected by 

numerology, which deals with numbers and mystical relationships between them, as a result of his travels to 

Egypt and Babylon. Offering a substitute is a potential second justification A vibrating string could produce two 

distinct kinds of musical notes if it was divided into two lengths by a moveable device. The length ratios of the 

vibrating string's component sections then describe these notes. The Pythagoreans may have concluded that 

numbers might be used to explain other phenomena after using them to explain musical notes and to describe 

constellations. Heath (1965) Thomas M. Flore (1993). He referred to C, C#, D, D#, E, F, F#, G, G#, A, A#, B. 

As the 𝑍12 Model of pitch class. Hence the musical clock and the cyclic group of order 12 can be constructed as 

below: 
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3.1: Methodology: 

We collect some theorems, Lemmas and proposition including examples that are used in proving our main 

results 

Theorem 3.1: 

Let 𝐻 ≤ 𝐺 be groups and 𝑔 ∈ 𝐺. then; 

(i) 𝑔 ∈ 𝑔𝐻 (ii) Two left cosets of 𝐻 in 𝐺 are either identical or disjoint; 

(iii) The quantity of components in 𝑔𝐻 is |𝐻|. 
Proof; 

(i). Since 1 ∈ 𝐻, we have 𝑔 = 𝑔1 ∈ 𝑔𝐻. 
(ii). Take two left cosets 𝑎𝐻 and 𝑏𝐻 such that 𝑎𝐻 ∩ 𝑏𝐻 ≠ ∅. 
Let 𝑐 ∈  𝑎𝐻 ∩ 𝑏𝐻. Then 𝑐 ∈ 𝑎𝐻 and 𝑐 ∈ 𝑏𝐻. 
This imply that 𝑐 = 𝑎ℎ1 and 𝑐 = 𝑎ℎ2 for some ℎ1, ℎ2 ∈ 𝐻. 

But 𝑎ℎ1 = 𝑏ℎ2 imply that 𝑎 = 𝑏ℎ2ℎ1
−1

 and 𝑏 = 𝑎ℎ1ℎ2
−1

. 

 So for any ℎ ∈ 𝐻 

 𝑎ℎ = (𝑏ℎ2ℎ1
−1)ℎ = 𝑏(ℎ2ℎ1

−1ℎ) ∈ 𝑏𝐻 by associativity 

That is, 𝑎𝐻 ⊆ 𝑏𝐻. . . . . . . . . . . . (∗) 

 And 𝑏ℎ = (𝑎ℎ1ℎ2
−1)ℎ = 𝑎(ℎ1ℎ2

−1ℎ) ∈ 𝑎𝐻 by associativity 

 That is, 𝑏𝐻 ⊆ 𝑎𝐻 . . . . . . . . . . . . (∗∗) 
Thus from (∗) and (∗∗) we have that 𝑎𝐻 = 𝑏𝐻. 
It thus follows that if 𝑎𝐻 ∩ 𝑏𝐻 ≠ ∅,  
Then 𝑎𝐻 = 𝑏𝐻 and as such, distinct left cosets are disjoint. 

(iii). The map 𝐻 ⟶ 𝑔𝐻 defined by ℎ ⟶ 𝑔ℎ is readily seen to be bijective.  

Thus |𝐻| = |𝑔𝐻|. 
Theorem 3.2: (Lagrenge’s theorem) 

A finite group's subgroup order is determined by the group's order.. 

Proof; 

Let 𝐻 ≤ 𝐺 and  |𝐺| = 𝑛, |𝐻| = 𝑚  

Now, 𝐻′𝑠 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑐𝑜𝑠𝑒𝑡𝑠 𝑎𝑟𝑒 𝑢𝑛𝑖𝑡𝑒𝑑 𝑡𝑜 𝑓𝑜𝑟𝑚 𝐺. 
Let there be 𝑗 distincts cosets of 𝐻 𝑖𝑛 𝐺.  
We are aware that for any 𝑎 ∈ 𝐺 

  ∣ 𝑎𝐻 ∣ = ∣ 𝐻 ∣= 𝑚 

Consequently, the overall count of elements in G 𝑖𝑠 𝑚𝑗. 
  𝑠. 𝑡. 𝑛 = 𝑚𝑗; 
Hence 𝑚 divides 𝑛 as asserted. 

Note: 

Observe that 𝑛 = 𝑚𝑗 as in the proof of the theorem 3.2 imply that 

 |𝐺| = |𝐺 ∶ 𝐻|/|𝐻| 
Theorem 3.3:  

A cyclic group's subgroups are all cyclic. 

Proof: 

Let 𝐺 = 〈𝑔〉 be a cyclic group, where 𝑔 ∈ 𝐺.  
Let 𝐻 ⊆ 𝐺. If 𝐻 = {𝑒}, then 𝐻 = {𝑔𝑜} is  trivially cyclic with generator 𝑒.  

So assume 𝐻 ≠ {𝑒}. And chose ℎ ∈ 𝐻. 
Then ℎ = 𝑔𝑠 for some 𝑠 ∈ ℤ and ℎ−1 = 𝑔−1 ∈ 𝐻. 
Consequently, positive integers exist 𝑡, such that 𝑔𝑡 ∈ 𝐻. 
Choose the least positive integer among them, and refer to it as 𝑙, (Any collection of positive integers has a 

smallest number inside it according to the well-ordering principle of natural numbers). 

By Division Algorithm we may write 

 𝑠 = 𝑞𝑙 + 𝑟 where 0 ≤ 𝑟 < 𝑙.  
 Then ℎ = 𝑔𝑠 = 𝑔𝑞𝑙+𝑟 = (𝑔𝑙)𝑞 ∙ 𝑔𝑟 .  
 So that 𝑔𝑟 = (𝑔𝑙)−𝑞 ∙ ℎ ∈ 𝐻. 
 If 𝑟 ≠ 0, then 𝑟 < 𝑙 
 Which contradict the choice of 𝑙. 
 Thus 𝑟 = 0 and so ℎ = (𝑔𝑙)𝑞 . 
 Hence 𝐻 ⊆ 〈𝑔𝑙〉 
 Now 𝑔𝑙 ∈ 𝐻 and so, 〈𝑔𝑙〉 ⊆ 𝐻.  
 Accordingly, 𝐻 = 〈𝑔𝑙〉 and the result follows that 𝑔𝑙 generate H.  

So H is cyclic. 
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Theorem 3.4:  

Let 𝐺 a cyclic group having 𝑎 generator. If the order of 𝐺 is infinite, then 𝐺 is isomorphic to 〈ℤ, +〉. If 𝐺 has 

|𝐺| < ∞, then G is isomorphic to 〈ℤ𝑛 , +〉  
Proof. Case 1: For all positive integers 𝑚, 𝑎𝑚 ≠ 𝑒. Here, we assert that there are never two different exponents 

ℎ 𝑎𝑛𝑑 𝑘 can give equal elements 𝑎ℎ = 𝑎𝑘 and say ℎ >  𝑘. Then  𝑎ℎ𝑎−𝑘 = 𝑎ℎ−𝑘 = 𝑒, in opposition to our case 

one presumption. Thus, each component of 𝐺 may be written as 𝑎𝑚 for a unique 𝑚 ∈  𝑍. The map Φ: 𝐺 →  𝑍 

given by Φ(𝑎𝑖) = 1is thus well defined, one to one, and onto ℤ. Also, Φ(𝑎𝑖𝑎𝑗) = (𝑎𝑖+𝑗) = 𝑖 + 𝑗 =  Φ(𝑎𝑖) +
 Φ(𝑎𝑗)  
therefore the homomorphism property is satisfied and Φ is an isomorphism.  

Case 2: 𝑎𝑚 = 𝑒 for a certain positive integer 𝑚. Let 𝑛 be the smallest positive integer such that 𝑎𝑛 = 𝑒. If 𝑠 ∈
 𝑍 and 𝑠 =  𝑛𝑞 +  𝑟 for 0 ≤  𝑟 <  𝑛, then 

𝑎𝑠 = 𝑎𝑛𝑞+𝑟 = (𝑎𝑛)𝑞𝑎𝑟 = 𝑒𝑞𝑎𝑟 = 𝑎𝑟 . As in case 1 if 0 <  𝑘 <  ℎ <  𝑛 and 𝑎ℎ = 𝑎𝑘 then, 𝑎ℎ−𝑘 = 𝑒 and 0 <
 ℎ −  𝑘 <  𝑛, contradicting our choice of 𝑛. Thus, the elements 𝑎0 = 𝑒, 𝑎, 𝑎2, 𝑎3, . . . , 𝑎𝑛−1 are unique and make 

up every component of G. The map Φ(𝑎𝑖) = 𝑖 for 𝑖 =  0, 1, 2, . . . , 𝑛 −  1 is therefore well defined, onto and one 

to one ℤ.  

Because 𝑎𝑛 = 𝑒, we see that 𝑎𝑖+𝑗 = 𝑎𝑘  where 𝑘 = +𝑛𝑗. (𝑎
𝑖+𝑗) = 𝑖+𝑛𝑗 =  Φ(𝑎

𝑖)+𝑛 Φ(𝑎
𝑗).  

Thus, Φ(𝑎𝑖+𝑗) = 𝑖+𝑛𝑗 =  Φ(𝑎
𝑖)+𝑛 Φ(𝑎

𝑗).  
Thus, Φ is an isomorphism and the homomorphism property is satisfied. 

Theorem 3.5: (Sylow’s first theorem): 

Assume 𝑃 is a prime number and 𝐺 is a group of finite order.. If 𝑃𝑚/𝑜(𝐺) and 𝑃𝑚+1 ∤ 𝑜(𝐺), then 𝐺 has a 

subgroup of order 𝑃𝑚. 

Proof; 

We shall prove the theorem by induction on 𝑜(𝐺). We see that the theorem is obviously true of 𝑜(𝐺) = 1 

Let 𝑜(𝐺) = 𝑃𝑚𝑛 where 𝑃 is not a divisor of 𝑛. If 𝑚 = 0, Clearly, the theorem is correct. If 𝑚 = 1 the theorem 

is true by cauchy’s theorem. So let 𝑚 > 1. Then 𝐺 is a group of composite order and so 𝐺 must possess a group 

𝐻 such that 𝐻 ≠ 𝐺. 

If 𝑃 is not a divisor of 
𝑜(𝐺)

𝑜(𝐻)
, then 𝑃𝑚/𝑜(𝐻) Because 𝑜(𝐺) = 𝑃𝑛𝑛 = 𝑜(𝐻) ∙

𝑜(𝐺)

𝑜(𝐻)
 

Also 𝑃𝑚+1 cannot be a divisor of 𝑜(𝐻) because then 𝑃𝑚+1 will be a divisor of 𝑜(𝐺) of which 𝑜(𝐻) is a divisor. 

Further 𝑜(𝐻) < 𝑜(𝐺). Therefore by our induction hypothesis, the theorem is true for 𝐻. 
Therefore 𝐻 has a subgroup of 𝐺. So let us assume that for every subgroup 𝐻 of 𝐺 where 𝐻 ≠ 𝐺, 𝑃 is a divisor 

of  
𝑜(𝐺)

𝑜(𝐻)
.  

Consider the class equation, 𝑜(𝐺) = 𝑜(𝑍) + ∑
𝑜(𝐺)

𝑜[𝑁(𝑎)]𝑎∉𝑍  ... . . . . . .   . . . . . . (1) 

Since 𝑎 ∉ 𝑍 ⟹ 𝑁(𝑎) ≠ 𝐺, therefore according to our assumption 𝑃 is a divisor of ∑_(a∉Z)▒o(G)/o[N(a)] Also 

𝑃/𝑜(𝐺) Therefore from (1), Thus, we deduce that 𝑃 is a divisor. of 𝑜(ℤ). Cauchy's Theorem thus states that ℤ 

has an element b of order P. ℤ is the centre of 𝐺. Also 𝑁 = {𝑏} is a cycle subgroup of ℤ of order 𝑃. Therefore 𝑁 

is a cyclic subgroup of 𝐺 or order 𝑃. Since 𝑏 ∈ ℤ, therefore 𝑁 is a normal subgroup of 𝐺 of order 𝑃. Now 

consider the quotient group 𝐺′ = 𝐺/𝑁. We have 𝑜(𝐺) = 𝑜(𝐺)/𝑜(𝑁) = 𝑃𝑚𝑛/𝑃 = 𝑃𝑚−1𝑛 

Thus 𝑜(𝐺′) < 𝑜(𝐺). Also 
𝑃𝑚−1

𝑜(𝐺′)
 But 𝑃𝐺  is not a divisor of 𝑜(𝐺′). Therefore Through our induction hypothesis 𝑚′ 

has a subgroup, say 𝑠′ of order 𝑃𝑚−1 we know that the natural mapping Φ:𝐺 → 𝐺/𝑁 define by Φ(𝑥) =
𝑁𝑥 ∀ 𝑥 ∈ 𝐺 is a homomorphism of 𝐺 onto 𝐺/𝑁 with kernel 𝑁. Let 𝑆 = {𝑥 ∈ 𝐺:Φ(𝑥) ∈ 𝑆′}. 
Then 𝑆 is a subgroup of 𝐺 and 𝑆′ ≅ 𝑆/𝑁 

∴ 𝑜(𝑆′) = 𝑜(𝑆/𝑁) =
𝑜(𝑆)

𝑜(𝑁)
  

Therefore 𝑆 is a subgroup of 𝐺 of order 𝑃𝑚 . The theorem's proof is now complete. 

Lemma 3.1:  

Let 𝐻 ≤ 𝐺 and let 𝐺 be a group. Consequently, each right cost of 𝐻 in 𝐺 has the same cardinality as 𝐻. 
Proof: 

Let 𝐻𝑔 𝑏𝑒 𝑎  𝑟𝑖𝑔ℎ𝑡 𝑐𝑜𝑠𝑒𝑡 𝑜𝑓 𝐻 𝑖𝑛 𝐺 and define 𝜑:𝐻 ⟶ 𝐻𝑔by 𝜑(ℎ) = ℎ𝑔 then 𝜑(ℎ1) = 𝜑(ℎ2), 
⟹ ℎ1𝑔 = ℎ2𝑔 

(𝑏𝑦 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑤) 
ℎ1 = ℎ2 

ℎ𝑒𝑛𝑐𝑒 𝜑 𝑖𝑠 1 − 1 

Now we have to show that 𝜑 is onto. 

Take 𝑦 ∈ 𝐻𝑔 then 𝑦 = ℎ𝑔 for some ℎ ∈ 𝐻. 
Then 𝜑(ℎ) = ℎ𝑔 = 𝑦. 
Consequently, φ is onto.  
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Since 𝜑 is 1 − 1 and onto then 𝜑 is a bijection. 

Thus |𝐻| = |𝐻𝑔|. 
Theorem 3.6: 

Assume that G is an order finite group say 𝑛, and 𝐻 a subgroup of 𝐺. Then |𝐻| divides |𝐺| 
Proof: 

Let 𝐻𝑎1, 𝐻𝑎2, … , 𝐻𝑎𝑘 be the right cosets of H in G.  

𝐺 = 𝐻𝑎1 ∪ 𝐻𝑎2 ∪ 𝐻𝑎3 ∪,… ,∪ 𝐻𝑎𝑘 

𝑎𝑛𝑑 𝑢𝑛𝑖𝑜𝑛 𝑖𝑠 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡. 
⟹ |𝐺| = |𝐻𝑎1 ∪ 𝐻𝑎2 ∪ 𝐻𝑎3 ∪,… ,∪ 𝐻𝑎𝑘| 
= |𝐻𝑎1| + |𝐻𝑎2| + ⋯+ |𝐻𝑎𝑘| 
∵ 𝑡ℎ𝑒 𝑢𝑛𝑖𝑜𝑛 𝑖𝑠 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 
= |𝐻| + |𝐻| + ⋯+ |𝐻| 
By cosets lemma 

𝑘|𝐻| 
So |𝐻| ∣ |𝐺|. 
Where 𝑘 is the quantity of unique rights coset of 𝐻 𝑖𝑛 𝐺. 
Theorem 3.7: 

Every element 𝑥 of a finite group of order 𝑔 satisfy the equation 𝑥𝑔 = 𝑒 

Proof: 

The order 𝑚 of 𝑥 is a divisor of 𝑔 say 𝑔 = 𝑚𝑞. 
This gives 𝑥𝑔 = 𝑥𝑚𝑞 = (𝑥𝑚)𝑞 

𝑒𝑞 = 𝑒 
This complete the proof. 

Theorem 3.8: 

Every group of cyclics is abelian.  

Proof: 

Let 𝐺 be a group of cycles. and 𝑎 be a generator of G. 

Then 𝐺 = 〈𝑎〉 = {𝑎𝑛 ∣ 𝑛 ∈ ℤ}. 
 (By the definition 1.10) 

Let 𝑔 𝑎𝑛𝑑 𝑔̂ be any two elements of G. 

Then 𝑔 = 𝑎𝛼  𝑎𝑛𝑑 𝑔̂ = 𝑎𝛽 for some integer 𝛼 𝑎𝑛𝑑 𝛽 

So 𝑔𝑔̂ = 𝑎𝛼𝑎𝛽 

= 𝑎𝛼+𝛽 = 𝑎𝛽+𝛼 

= 𝑎𝛽𝑎𝛼 = 𝑔̂𝑔 

∴ 𝑔𝑔̂ = 𝑔̂𝑔 

Therefore G is abelian. 

 

Results and Discussion: 

We present here some results which show clearly the relationship between musical notes and cyclic groups.  

1st we consider a group of integer modulo 12 in real numbers.  

Let 𝐺 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, hence the |𝐺| = 12. 
 

 
𝑴𝒖𝒔𝒊𝒄𝒂𝒍 𝒄𝒍𝒐𝒄𝒌 = 𝒄𝒚𝒄𝒍𝒊𝒄 𝒈𝒓𝒐𝒖𝒑 𝒐𝒇 𝒐𝒓𝒅𝒆𝒓 𝟏𝟐. (ℤ𝟏𝟐). 
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This group satisfies all the axioms of group theory. In the other hand, the numbering of the musical notes are 

also listed in the table below;  

 

Name 𝐶  𝐶# 𝐷 𝐷# 𝐸 𝐹 𝐹# 𝐺 𝐺# 𝐴 𝐴# 𝐵 

Number   0 1 2 3 4 5 6 7 8 9 10 11 

 

Note that 𝐵# = 𝐶.  
It also demonstrates how the notes in the song form an integer group with a 12-member modulus.  

In other words; 

ℤ12 = {C, C#, D, D#, E, F, F#, G, G#, A, A#, B} = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} 
Let the operation be ∗= # = + 

Next, the connection between group axioms and musical notes 

i. ∀ E, F ∈ ℤ12 Then ∗ 𝐹 = 𝐴 ∈ ℤ12 : Closure law 

 ii. ∀ E, F, F# ∈ ℤ12  

Then (𝐸 ∗ 𝐹) ∗ F# = 𝐸 ∗ (𝐹 ∗ F#) = 𝐴 ∗ F# = E ∗ B = D# ∈ ℤ12 : Associative law 

iii. F ∈ ℤ12  

There exists an element 𝐶 ∈ ℤ12 s.t.  ∗ 𝐶 = 𝐶 ∗ 𝐹 = 𝐹 ∈ ℤ12 : Identity law 

iv. F ∈ ℤ12 There exists an element 𝐺 ∈ ℤ12 s.t. 𝐹 ∗ 𝐺 = 𝐺 ∗ 𝐹 = 𝐶 ∈ ℤ12  

: Inverse law 

v. F, G ∈ ℤ12 s.t. 𝐹 ∗ 𝐺 = 𝐺 ∗ 𝐹 = 𝐶 ∈ ℤ12 : Commutative law.  

Hence in addition a group is said to be abelian (or commutative) if 

  𝑎 ∗  𝑏 =  𝑏 ∗  𝑎  ∀ 𝑎, 𝑏 ∈  𝐺. i.e. the operation does not change the result.  

For instance; 3 + 5 = 5 + 3. 

Proposition (Dido’s theorem) 

There must be at least one unique element in 𝐺 if it is cyclic with its inverse. 

Proof; 

Suppose 𝐺 is cyclic ⟹ ∀ 𝑥 ∈ 𝐺, each 𝑥 ∈ 𝐺 can be written in the form 𝑥 = 𝑔𝑚 

for some 𝑔 ∈ 𝐺 where 𝑚 ∈ ℤ there exist 𝑦 ∈ 𝐺 𝑠. 𝑡. 𝑥 ∗ 𝑦 = 𝑒 ∈ 𝐺  

⟹ 𝑥 = 𝑦 where 𝑒 is the identity element 𝑦 = 𝑥−1 ⟹ 𝑥 = 𝑥−1. 

Hence the proof. 

Result of Theorem  

ℤ12 = {C, C#, D, D#, E, F, F#, G, G#, A, A#, B}.  
𝐻 = {C, C#, B} ⟹ 𝐻 ≤ ℤ12  

𝐷𝐻 = {D ∗ C, D ∗ C#, D ∗ B}.  
𝐷𝐻 = {D, D#, C#}.  
Clearly, 𝐷 ∈ 𝐷𝐻 and |𝐻| = |𝐷𝐻| = 3.  
Furthermore, for some 𝐴, 𝐹 ∈ ℤ12 (𝐴 ∗ 𝐹)𝐻 = 𝐷𝐻  

⟹ In this instance, two left cosets are the same for some 𝐴, 𝐺 ∈ ℤ12 

𝐴 ∗ 𝐺 ∈ ℤ12 but 𝐴 ∗ 𝐺 = 𝐸 ≠ 𝐷, 𝐸𝐻 ≠ 𝐷𝐻. Here, two left cosets are disjoint. 

Results of theorem 3.1; 3. 

|ℤ12| = 12 Since |ℤ12| = 12; |𝐻| = 3  
⟹ |ℤ12|/|𝐻| = 12/3 = 4.  
It is true that a group's order is divided by a subgroup's order. 

The result of theorem 3.3;8. 

From ℤ12 = {𝐶, 𝐶#, 𝐷, 𝐷#, 𝐸, 𝐹, 𝐹#, 𝐺, 𝐺#, 𝐴, 𝐴#, 𝐵}  for 𝐶 ∈ ℤ12 we have 

𝐶0 = 𝐶; 𝐶1 = 𝐶#; 𝐶2 = 𝐷; 𝐶3 = 𝐷#;… 𝐶11 = 𝐵; 𝐶12 = 𝐶  

Musical notes are cyclic.  

Hence we can write ℤ12 = 〈𝐶〉 
From the subgroup 𝐻 = {𝐶, 𝐶#, 𝐵}; 𝐵 ∈ 𝐻 ≤ ℤ12  

We have 𝐵0 = 𝐵; 𝐵1 = 𝐶; 𝐵2 = 𝐶#; 𝐵3 = 𝐵. 

Clearly, 𝐻 is cyclic. 

We are content with the theorem that says "every subgroup of a cyclic group is also cyclic" when it comes to 

musical notes. 

Proposition: Each note in a song is a source of  ℤ12 

The proof of this proposition follows from the theorem 3.3; 

𝐶0 = 𝐶; 𝐶1 = 𝐶#; 𝐶2 = 𝐶 ∗ 𝐶 = 𝐷; 𝐶3 = 𝐶2 ∗ 𝐶 = 𝐷 ∗ 𝐶 = 𝐷#;   
𝐶4 = 𝐶3 ∗ 𝐶 = 𝐷# ∗ 𝐶 = 𝐸;  𝐶5 = 𝐶4 ∗ 𝐶 = 𝐸 ∗ 𝐶 = 𝐹;  
𝐶6 = 𝐶5 ∗ 𝐶 = 𝐹 ∗ 𝐶 = 𝐹#; 𝐶7 = 𝐶6 ∗ 𝐶 = 𝐹# ∗ 𝐶 = 𝐺;   
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𝐶8 = 𝐶7 ∗ 𝐶 = 𝐺 ∗ 𝐶 = 𝐺#; 𝐶9 = 𝐶8 ∗ 𝐶 = 𝐺 ∗ 𝐶 = 𝐴;  
 𝐶10 = 𝐶9 ∗ 𝐶 = 𝐴 ∗ 𝐶 = 𝐴#; 𝐶11 = 𝐶10 ∗ 𝐶 = 𝐴# ∗ 𝐶 = 𝐵;   
𝐶12 = 𝐶11 ∗ 𝐶 = 𝐵 ∗ 𝐶 = 𝐶. 

Hence ℤ12 = 〈𝐶〉. In the same way every other note can behave same. 

In the set  ℤ12 = {𝐶, 𝐶#, 𝐷, 𝐷#, 𝐸, 𝐹, 𝐹#, 𝐺, 𝐺#, 𝐴, 𝐴#, 𝐵} 
𝐶12 = {0,1,2,3,4,5,6,7,8,9,10,11}.  The number 0 𝑡𝑜 11  as representing musical intervals in multiple of 

semitones. The identity 0  may be defined to be any of the set {𝐶, 𝐶#, 𝐷, 𝐷#, 𝐸, 𝐹, 𝐹#, 𝐺, 𝐺#, 𝐴, 𝐴#, 𝐵}  the 

remaining elements correspond to the remaining pitch classes in cyclic order. ℤ12 The generators that could be 

used are 1, 5, 7, and 11. By continuously increasing by a fifth, all notes can be obtained from the given notes. 

The circle of fifths is the unique method for creating all musical intervals. To get back to the starting pitch class, 

one must possess all twelve tones clockwise, starting at any pitch and climbing by the interval of an equal 

tempered fifth.. 

 

The result of theorem 3.5: Recall that |ℤ12| = 12; 12 = 2 × 2 × 3 = 22 × 3 

∃ 𝐻 ≤  ℤ12 𝑠. 𝑡. |𝐻| = 2
2 which is sylow p-subgroup of ℤ12. It is true that a sylow p-subgroup exists for every 

finite group. It is consistent with Sylow's first theorem. 

Eight-note intervals followed by ones that are half or double as frequent make up the octave. Two notes with 

frequencies of 2:1 on an octave. A note's octaves occur at a frequency twice that of the note. The ear perceives 

both notes as being the same when there is octave equivalency. An eight-note interval followed by a half- or 

double-frequency interval, modulo arithmetic becomes octave equivalency. If there is a complete octave 

difference between two notes, then they are in the same pitch class. After that, every element of 𝑍𝑛  is 

represented by a distinct combination of the eight pitch classes. 

 

The twelve chromatic pitches are arranged according to a perfect fifth sequence in music theory using the circle 

of fifths. (This is accurate in the conventional 12-tone equal temperament system; if one uses an alternative 

system, one decreased sixth interval must be regarded as a fifth.). If C is chosen as a starting point, the sequence 

is: C, G, D, A, E, B (=C♭), F♯ (=G♭), C♯ (=D♭), A♭, E♭, B♭, F. Resuming the sequence at point C is the result of 

continuing the pattern from F. The key signatures that are most closely related to one another are arranged in 

this sequence. Typically, a circle is used to depict it. 

 
Cycle of fift. 

Pitch organization using the circle of fifths results in a series of perfect fifths. The pitches (together with the 

matching keys) are typically displayed as a circle with a clockwise progression. The circle is a circle of fourths 
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since it is frequently utilized in a counterclockwise way. Adjacent keys in this system are frequently used in 

Western music harmonic progressions, making it a helpful tool for harmony and musical composition.. 

 

A perfect fifth is made up of two pitches with a frequency ratio of 3:2 using the system of just intonation; 

nevertheless, producing twelve consecutive perfect fifths in this manner does not return to the pitch class of the 

initial note. Instruments are typically tuned using the equal temperament system to account for this. A perfect 

fifth is equal to seven equal-temperament semitones, and twelve equal-temperament fifths result in a note that is 

precisely seven octaves above the original tone. 

 

The C Major key, without any flats or sharps, is displayed at the top of the circle. The pitches rise by fifths as 

one moves clockwise. Additionally, the key signatures connected to certain pitches vary: The key of G has one 

sharp, the key of D has two, and so on. Similar to how the key signatures shift in response to the notes' changing 

by descending fifths, going counterclockwise from the circle's top: There is one flat in the key of F, two flats in 

the key of B♭, and so on. Certain keys (located at the bottom of the circle) have the option of being notated in 

flats or sharps. 

 

A pitch class is made up among all the notes denoted by a particular letter, independent of octave; all "C"s, for 

example, belong to the same pitch class. Starting at any pitch and climbing by a fifth produces all twelve tones 

before going back to the beginning pitch class. Pitch descent occurs by a fifth when moving counterclockwise; 

however, pitch class remains unchanged if one ascends by a perfect fourth, as this will result in an octave higher 

note. One could think of moving counter-clockwise from C as either ascending by a fourth to F or dropping by a 

fifth. 

Organization and application 

Diatonic key signatures 

There is a diatonic scale connected with each of the twelve pitches, which can be used as the tonic of a major or 

minor key. The major key is represented by a capital letter, and the minor key is represented by a lower-case 

letter, in the circle diagram, which displays the number of sharps or flats in each key signature. Relative major 

and relative minor of one another are major and minor keys with the same key signature. 

 

Chord progression and modulation 

Tonal music frequently shifts to a new tonal center with a key signature that only varies by one flat or sharp. 

These closely related keys are adjacent in the circle of fifths because they are a fifth apart. The circle of fifths is 

helpful in depicting the "harmonic distance" between chords since chord progressions frequently shift between 

chords whose roots are related by perfect fifth. 

 

The harmonic or tonal function of chords is arranged and explained using the circle of fifths. Chords can follow 

a pattern known as "functional succession" that progresses in ascending perfect fourths (or, alternatively, 

descending perfect fifths). It's possible to demonstrate "...by the circle of fifths (in which, therefore, scale degree 

II is closer to the dominant than scale degree IV)".  According to this perspective, a chord progression generated 

from the circle of fifths ends at the tonic, or tonal center." 

Relative Minor Keys 

What about the inner circle, though? We keep our relative minor keys in this location. 

There is a relative minor key for each major key. Because they are related, related minors share the same key 

signature as their major key sister. The sole distinction is that you use a different note to begin and conclude 

your scale. Three half-steps separate this note from the relative major key's beginning note. For instance, there 

are no flats or sharps in C Major. A is three half steps below C. As a result, A Minor is C Major's relative minor 

key, and it likewise lacks sharps and flats. 

 

SUMMARY   

This research has the potential to revolutionize the way musicians conceive, analyze, and communicate 

musical ideas. By exploring alternative notation systems based on finite cyclic groups, this study aims to offer 

new perspectives on music theory and composition, foster creativity and experimentation in musical practice, 

and enhance music education by introducing novel pedagogical tools.  And has investigate the theoretical 

foundations of finite cyclic groups and their applicability to musical notations. 

 

CONCLUSION 
By exploring the application of finite cyclic groups to musical notations, this research seeks to bridge 

the gap between mathematical theory and musical practice, explore potential practical applications of finite 

cyclic group-based notations in music composition, analysis, and education. Offering innovative solutions to 
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age-old challenges in music representation and analysis. Through interdisciplinary collaboration and empirical 

validation, this study aims to contribute to the advancement of both music theory and computational musicology, 

with potential implications for a wide range of musical endeavors. 

We propose that musicians may write the best music and satisfy their audiences while also curing people's 

brains if they have a solid understanding of group theory. 
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