Reversible pebbling number of Kragujevac Trees

C. Muthulakshmi@Sasikala ${ }^{1}$ and A. Arul Steffi ${ }^{2}$
${ }^{1}$ Department of Mathematics,
Sri Paramakalyani Cöllege, Alwarkurichi - 627412 kalasasispkc@gmail.com
2 Department of Mathematics,
St. Xavier's College (Autonomous),
Palayamkottai- 627002

Abstract

: Starting with a pebble free graph, our aim is to pebble the target vertex t of any DAG G, and pebbles can be placed or removed from any vertex according to certain rules. In this paper we find the reversible pebbling number of Krajgujevac trees with a fixed number of branches.

Keywords: Kragujevac tree, reversible pebbling number, root, branch.

I. Introduction.

Here the vertex set V is the union of source vertices S, target vertices T, and intermediate vertices I, that is $V=S \cup T \cup I$ and the set E is a set of ordered pairs of vertices $\left(v_{i}, v_{j}\right)$ such that $i \neq$
j and $v_{i}, v_{j} \in V$. We say that a vertex v_{i} is a direct predecessor or in-neighbour of a vertex v_{j}, if there is a directed edge from v_{i} to v_{j} and the edge $v_{i} v_{j}$ is called the incoming edge of v_{j} and outgoing edge of v_{i}. A vertex in a DAG with no incoming edges is called a source vertex and a vertex with no outgoing edges is called a target vertex.

A connected acyclic graph is called a tree. The number of vertices of a tree T is its order, denoted by $n(T)$. A rooted tree is a tree in which one particular vertex is distinguished this vertex is referred to as the root of the rooted tree. Bennett introduced the reversible pebble game.

Given any DAG G, with a source vertex s, the reversible pebble game starts with no pebbles on G and terminates with a pebble (only) on the target vertex r. Pebbles can be placed or removed from any vertex according to the following rules:

1. At any time source vertex can be pebbled. That is, a pebble can always be placed on an empty source vertex.
2. To pebble v, all in-neighbours of v must be pebbled.
3. \quad To unpebble v, all in-neighours of v must be pebbled.
4. At any time, source vertex can be unpebbled, that is a pebble can always be removed from a source vertex.
The goal of the game is to pebble the targe vertex r (only) using the minimum number of pebbles (also using the minimum number of steps). Minimum number of pebbles needed to place a pebble on the targe vertex r is called the reversible pebbling number of a graph G and is denoted by $R(G)$.

Let P_{3} be the 3-vertex path rooted at one of its terminal vertices. For $k=2,3, \ldots$ construct the rooted tree B_{k} by identifying the roots of k copies of P_{3}. The vertex obtained by identifying the roots of P_{3} trees is the root of B_{k}.
A Kragujevac tree T is a tree possessing a vertex of degree $d \geq 2$, adjacent to the roots of $B_{p_{1}}, B_{p_{2}}, \ldots, B_{p_{d}}$ where $p_{1}, p_{2}, \ldots, p_{d} \geq 2$. This vertex is said to be the central vertex of T, whereas d is the degree of T. The subgraphs $B_{p 1}, B_{p 2}, \ldots, B_{p_{d}}$ are the branches of T. We denote the Kragujevac tree of degree d with branches $B_{p_{1}}, B_{p 2}, \ldots, B_{p_{d}}$ by $K_{g}\left(p_{1}, p_{2}, \ldots, p_{d}\right)$.

II. Reversible Pebbling Number.

Definition 2.1. The reversible pebble game on G is the following one player game. At any time i of the game, we have a pebble configuration $p_{i} \subseteq V$. A pebble configuration p_{i-1} can be changed to p_{i} by applying
exactly one of the following rules:

Pebble placement on \boldsymbol{v} :

If all direct predecessors of an empty vertex v have pebbles on them, a pebble may be placed on v. In particular, a pebble can always be placed on an empty source vertex s, since predecessors of s in G is \emptyset.

Reversible pebble removal from \boldsymbol{v} :

If all direct predecessors of a pebbled vertex v have pebbles on them, the pebble on v may be removed. In particular, a pebble can always be removed from a source vertex s.
A reversible pebbling of G is a sequence of pebble configurations $p=\left\{p_{0}, p_{1}, \ldots, p_{t}\right\}$ such that
$p_{0}=\emptyset$ and $p_{t}=\{r\}$ and for all $i=1,2,3, \ldots, t-1$, it holds that p_{i} can be obtained from p_{i-1} by applying exactly one of the above stated rules.
Definition 2.2. The time of a reversible pebbling $p=\left\{p_{0}, p_{1}, \ldots, p_{t}\right\}$ is time $(\mathrm{p})=\mathrm{t}$ and the space of it
is space $(p)=\max \quad\left|p_{i}\right|$.
$i \in\{1,2,3, \ldots, t-1\}$

III. Reversible Pebbling number of Kragujevac tree. Theorem 3.1.

Reversible pebbling number of path on 3 vertices, $R\left(P_{3}\right)=3$.
Three pebbles are needed to pebble the target vertex and unpebbled the other vertices of P_{3}.
Theorem 3.2.
Reversible pebbling number of the rooted tree B_{2} obtained by identifying the roots of 2 copies of P_{3} is $R\left(B_{2}\right)=4$.
Proof. B_{2} is the rooted tree obtained by identifying the roots of 2 copies of P_{3}.

$$
\begin{gathered}
V\left(B_{2}\right)=\left\{s_{1}, s_{2}, x_{1}, x_{2}, t\right\} \\
E\left(B_{2}\right)=\left\{s_{1} x_{1}, x_{1} t, s_{2} x_{2}, x_{2} t\right\}
\end{gathered}
$$

s_{1}, s_{2} are the source vertices, t is the target vertex, x_{1} and x_{2} are the intermediate vertices.
Consider the following pebble configurations p_{i} of 3 pebbles.
$p_{0}: \emptyset$
$p_{1}:\left\{s_{1}\right\}$ (s_{1} is pebbled)
$p_{2}:\left\{s_{1}, x_{1}\right\} \quad$ (since s_{1} is pebbled, x_{1} can also be pebbled
since s_{1} is the predecessor of x_{1})
$p_{3}:\left\{s_{2}, x_{1}\right\} \quad$ (s_{1} is unpebbled and place that freed pebble in s_{2})
$p_{4}:\left\{s_{2}, x_{1}, x_{2}\right\}$ (since predecessor of x_{2} say s_{2} is pebbled,
a pebble can be placed at x_{2})
$p_{5}:\left\{x_{1}, x_{2}, t\right\} \quad$ (free the pebble from x_{1} and place this pebble in t)
A pebble at x_{1} cannot be freed since its predecessor s_{1} has no pebble. Similarly a pebble at x_{2}
cannot be freed. Hence $R\left(B_{2}\right) \geq 4$.
Consider the following pebble configurations p_{i} of 4 pebbles.
$p_{0}: \emptyset, p_{1}:\left\{s_{1}\right\}, p_{2}:\left\{s_{1}, x_{1}\right\}, p_{3}:\left\{s_{2}, x_{1}\right\}, p_{4}:\left\{s_{2}, x_{1}, x_{2}\right\}, p_{5}:\left\{s_{2}, x_{1}, x_{2}, t\right\}$,
$p_{6}:\left\{s_{2}, x_{1}, s_{1}, t\right\}, \quad p_{7}:\left\{s_{2}, s_{1}, t\right\}, \quad p_{8}:\left\{s_{1}, t\right\}, p 9:\{t\}$.
So $R\left(B_{2}\right) \leq 4$. Hence $R\left(B_{2}\right)=4$.

Theorem 3.3.

Reversible pebbling number of B_{k}, a rooted tree obtained by identifying the roots of k copies of
P_{3} is $R\left(B_{k}\right)=k+2$.
Proof. Consider $V\left(B_{k}\right)=\left\{s_{1}, s_{2}, \ldots, s_{k}, x_{1}, x_{2}, \ldots, x_{k}, t\right\}$
$E\left(B_{k}\right)=\left\{s_{1} x_{1}, x_{1} t, s_{2} x_{2}, x_{2} t, \ldots, s_{k} x_{k}, x_{k} t\right\}$
Let the source vertices be $s_{1}, s_{2}, \ldots, s_{k}$ and intermediate vertices be $x_{1}, x_{2}, \ldots, x_{k}$ and target vertex be t.
Consider the following pebbling configurations p_{i} on $k+2$ pebbles.
$p_{0}: \emptyset, p_{1}:\left\{s_{1}\right\}, p_{2}:\left\{s_{1}, x_{1}\right\}, p_{3}:\left\{s_{2}, x_{1}\right\}, p_{4}:\left\{s_{2}, x_{2}, x_{1}\right\}, p_{5}:\left\{s_{3}, x_{2}, x_{1}\right\}$,
$p_{6}:\left\{s_{3}, x_{1}, x_{2}, x_{3}\right\}, \ldots, p_{2 k}:\left\{s_{k}, x_{1}, x_{2}, \ldots, x_{k}\right\}, p_{2 k+1}:\left\{s_{k}, x_{1}, x_{2}, \ldots, x_{k}, t\right\}$,
$p_{2 k+2}:\left\{s_{k}, x_{1}, x_{2}, \ldots, x_{k-1}, s_{k-1}, t\right\}, p_{2 k+3}:\left\{s_{k}, s_{k-1}, s_{k-2}, x_{1}, x_{2}, \ldots, x_{k-2}, t\right\}$,
$p_{2 k+4}:\left\{s_{k}, s_{k-1}, s_{k-2}, s_{k-3}, x_{1}, x_{2}, \ldots, x_{k-2}, x_{k-3}, t\right\}, \ldots$,
$p_{3 k-2}:\left\{s_{k}, s_{k-1}, \ldots, s_{3}, x_{1}, x_{2}, x_{3}, t\right\}, p_{3 k-1}:\left\{s_{k}, s_{k-1}, \ldots, s_{3}, s_{2}, x_{1}, x_{2}, t\right\}$,
$p_{3 k}:\left\{s_{k}, s_{k-1}, \ldots, s_{3}, s_{2}, s_{1}, x_{1}, t\right\}, p_{3 k+1}:\left\{s_{k}, s_{k-1}, \ldots, s_{3}, s_{2}, s_{1}, t\right\}$.
Retaining one pebble at the target vertex and then removing the pebble from the source vertices s_{k}, followed by s_{k-1} and so on until s_{1}. So $R\left(B_{k}\right) \leq k+2$.
Put the first pebble in the source vertex s_{1}. Since s_{1} is pebbled we can place a second pebble in x_{1}.
Free the pebble in s_{1} and place this freed pebble in s_{2}, since s_{2} is pebbled, we can place a third pebble in x_{2} and so on, continuing like this, after pebbling x_{k-1}, leave the pebble in s_{k-1} and place this pebble in s_{k}. Since s_{k} is pebbled, x_{k} is pebbled with $(k+1)^{t h}$ pebble. If we free the pebble in s_{k} and place this freed pebble in t, we are unable to free the pebbles in $x_{1}, x_{2}, \ldots, x_{k}$ since its predecessors s_{1}, s_{2}, \ldots, s_{k} are unpebbled.
Hence $R\left(B_{k}\right) \geq k+2 . \quad R\left(B_{k}\right)=k+2$.

Theorem 3.4.

The reversible pebbling number of $k_{g}(2,2,2, \ldots, 2)$ is $R\left(k_{g}(2,2,2, \ldots, 2)\right)=n+3$ where $n \geq 2$.
Proof. $s_{1}, s_{2}, \ldots, s_{2 n}$ be the source vertices t be our target. Any $k_{g}(2,2,2, \ldots, 2)$ consists of $n B^{\prime} s$ namely $\left(B_{2}\right)_{1},\left(B_{2}\right)_{2}, \ldots,\left(B_{2}\right)_{n}$. Each $\left(B_{2}\right)_{i}$ has $x_{i 1}$ as the root vertex where $i=1,2, \ldots, n$ and 2 $x_{i 2}, x_{i 3}$ where $i=1,2, \ldots, n$ are the intermediate vertices.
Consider ($\left.B_{2}\right)_{1}$.
By placing one pebble on each of the source vertices s_{1} and s_{2}, we can pebble intermediate vertices x_{12} and x_{13}. Since x_{12} and x_{13} are pebbled, place a pebble on the root vertex x_{11} of $\left(B_{2}\right)_{1}$. Retaining one pebble on x_{11}. Freeing the pebbles from $\left(B_{2}\right)_{1}$ and placing the pebbles in $\left(B_{2}\right)_{2}$.
Now freeing the pebble at x_{12} of $\left(B_{2}\right)_{1}$ and place it on s_{3} of $\left(B_{2}\right)_{2}$ and freeing the pebble at x_{13} and place this freed pebble in s_{4} of $\left(B_{2}\right)_{2}$ unpebble the vertex s_{1} and pebble it on vertex x_{22} of
$\left(B_{2}\right) 2$ and unpebble the vertex s_{2} and pebble it on x_{23}. Now placing sixth pebble on root vertex x_{21} of $\left(B_{2}\right) 2$ and keep it as fixed.
Similarly, freeing the pebble at x_{22} and place it on s_{5} and freeing the pebble at x_{23} and place it on
s_{6}. Removing the pebble at s_{3} and place it on x_{32} and removing the pebble at s_{4} and place it on x_{33} and place seventh pebble at x_{31} and keep it as fixed. Continuing like this, from $\left(B_{2}\right)_{n-1}$ free the pebble at $x(n-1) 2$ and place it on $s_{2 n-1}$ and free the pebble at $x_{(n-1) 3}$ and place it on $s_{2 n}$.
Free the pebble at $s_{2 n-3}$ and place it on $x_{n 2}$ and free the pebble at $s_{2 n-2}$ and place it on $x_{n 3}$.
Free the pebble from $s_{2 n-1}$ and place it on $x_{n 1}$, and remove a pebble from $s_{2 n}$ and place it on the target vertex t. Since $x_{11}, x_{21}, \ldots, x_{n 1}$ are pebbled, we are able to place a pebble on the target vertex.
Free the pebble at $x_{n 1}$ and place it on $s_{2 n-1}$. Free the pebble at $x(n-1) 1$ and place it on $s 2 n$. Now we are able to free the pebble at $x(n-1) 2$ and place it on $x(n-2) 1$. Free the pebble at $s_{2 n-1}$ and place it on $s_{2 n-2}$. Free the pebble at $s 2 n$ and place it on $x(n-2) 2$.
Free the pebble at $x(n-2) 1$ and place it on $s 2 n-3$. Free the pebble at $x(n-2) 2$ and place it on
$x(n-3) 2$. And proceeding like this until pebbles are freed from intermediate vertices and source vertices, keeping the pebble at the target vertex fixed.

IV. Conclusion:

In this paper we find the reversible pebbling number of Kragujevac trees $k g(2,2,2, \ldots, 2)$. To find $R\left(k_{g}(2,3, \ldots, n)\right.$ is an open problem.

References:

[1]. Bhattacharjee Debjyoti, Mathias Soeken, Srijit Dutta, Anupam Chattopadhyay, and Giovanni De Micheli. "Reversible pebble games for reducing qubits in hierarchical quantum circuit synthesis."
[2]. In 2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL), pp. 102-107. IEEE, 2019.
[3]. Gutman Ivan. "Kragujevac trees and their energy." Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics 6, no. 2 (2014): 71-79.
[4]. Komarath Balagopal, Jayalal Sarma, and Saurabh Sawlani. "Pebbling meets coloring: Reversible pebble game on trees." arxiv:1604:05510v1 [cs.cc]19 April 2016.

