Arithmetic Sequential Graceful Labeling For Arrow Graphs

P. Sumathi¹, G. Geetha Ramani²

¹Department Of Mathematics, C. Kandaswami Naidu College For Men, Chennai, Tamil Nadu, India. ²Department Of Mathematics, New Prince Shri Bhavani College Of Engineering And Technology, Chennai, Tamil Nadu, India.

Abstract:

Let G be a simple, finite, connected, undirected, non-trivial graph with p vertices and q edges. V(G) be the vertex set and E(G) be the edge set of G. Let $f:V(G) \rightarrow \{a, a + d, a + 2d, a + 3d, ..., a + 2qd\}$ where $a \ge 0$ and $d \ge 1$ is an injective function. If for each edge $uv \in E(G)$, $f^*: E(G) \rightarrow \{d, 2d, 3d, 4d, ..., qd\}$ defined by $f^*(uv) = |f(u) - f(v)|$ is a bijective function then the function f is called arithmetic sequential graceful labeling. The graph with arithmetic sequential graceful labeling is called arithmetic sequential graceful graph. In this paper, we prove that one side arrow graphs $AR_{\eta}^2, AR_{\eta}^3, AR_{\eta}^5$ and double-sided arrow graphs $D(AR_{\eta}^2), D(AR_{\eta}^3)$ are arithmetic sequential graceful graph.

Keywords: Graceful labeling, Arithmetic sequential graceful labeling, Grid graph, one side arrow graph, double-sided arrow graph.

Date of Submission: 10-09-2024

Date of Acceptance: 20-09-2024

I. Introduction

A fascinating area of research in graph theory is labeling. Giving values to edges or vertices is the process of labeling. It was Alexander Rosa [2] who first proposed the idea of graceful labeling. Later, a few labeling techniques were presented. See Gallian's dynamic survey [3] for further details. V J Kaneria , Meera Meghpara , H M Makadia Pasaribu[4] proved that grid graph is graceful graph . V. J. Kaneria, H. M. Makadia and M. M. Jariya [5] proved that arrow and double arrow graph is graceful graph. Here are the some of the definitions which are helpful in this article.

II. Definitions

Definition 2.1:

A function *f* is called graceful labeling of graph G = (V.E) if $f: V \to \{0, 1, ..., q\}$ is injective and the induced function $f^*: E \to \{1, 2, ..., q\}$ defined as $f^*(e) = |f(u) - f(v)|$ is bijective for every edge $e = (u, v) \in E$. A graph G is called graceful graph if it admits a graceful labeling.

Definition 2.2:

An arrow graph AR_{η}^{t} with width t and length η is formed by connecting a vertex v to the superior vertices of $P_{m} \times P_{n}$ by m new edges from one end.

Definition 2.3:

A double arrow graph $D(AR_{\eta}^{t})$ with width t and length η is formed by connecting two vertices v & w to the superior vertices of $P_m \times P_n$ by (m + m) new edges from both the ends.

Definition 2.4:

Let G be a simple, finite, connected, undirected, non-trivial graph with p vertices and q edges. V(G) be the vertex set and E(G) be the edge set of G. Let $f:V(G) \rightarrow \{a, a + d, a + 2d, a + 3d, ..., a + 2qd\}$ where $a \ge 0$ and $d \ge 1$ is an injective function. If for each edge $uv \in E(G)$, $f^*: E(G) \rightarrow \{d, 2d, 3d, 4d, ..., qd\}$ defined by $f^*(uv) = |f(u) - f(v)|$ is a bijective function then the function f is called arithmetic sequential graceful labeling. The graph with arithmetic sequential graceful labeling is called arithmetic sequential graceful graph.

III. **Main Results**

Theorem 3.1:

Arrow graph AR_{η}^2 is arithmetic sequential graceful graph, when $\eta \ge 1$.

Proof:

Let $G = AR_n^2$ be an arrow graph obtained by connected a vertex v with superior vertices of $P_2 \times P_n$ by two new edges. Let $v_{i,i} (1 \le i \le 2, 1 \le j \le \eta)$ be the vertices of $P_2 \times P_{\eta}$. Join *v* with $v_{i,1} (1 \le i \le 2)$ by two new edges to get *G*. $V(G) = \{v_{i,j} : 1 \le i \le 2 ; 1 \le j \le \eta\} \cup \{v\}$ $E(G) = \{v_{i,j}, v_{i,j+1}: 1 \le i \le 2; 1 \le j \le \eta - 1\} \cup \{v, v_{i,1}: 1 \le i \le 2\}$ Here $|V| = 2\eta + 1$, $|E| = 3\eta$. We define a function $f: V(G) \rightarrow \{a, a + d, a + 2d, a + 3d, \dots, a + 2qd\}$. The vertex labeling are as follows, $f(v) = a, f(v_{2,1}) = a + d$ $f(v_{1,j}) = a + \left[3n - \frac{3(j-1)}{2}\right]d$, when $j \equiv 1 \pmod{2}$ for all $j = 1, 2, ..., \eta$ $f(v_{1,j}) = a + \left[\frac{3j}{2} - 1\right] d, when j \equiv 0 \pmod{2} \text{ for all } j = 1, 2, ..., \eta$ $f(v_{2,j}) = a + \left[f(v_{1,j-1}) - 2(-1)^j\right] d, \quad \text{for all } j = 1, 2, ..., \eta$ From the function $f^* : F(G) \Rightarrow (d, 2d, 2d, 4d, ..., d)$ we get the edge

From the function $f^*: E(G)$ -	$\rightarrow \{d, 2d, 3d, 4d, \dots,$	qd} we get the edge	e labels of the arrow	graph AR_n^2 as follows
---------------------------------	---------------------------------------	---------------------	-----------------------	---------------------------

$f^*(u v)$	Edge labels	Value
$f^*(v v_{1,j})$	$\left[3n - \frac{3(j-1)}{2} \right] d$	<i>j</i> = 1
$f^*(v_{1,j}v_{1,k})$	$\left[3n - \frac{3(j-1)}{2} - \frac{3k}{2} + 1 \right] d$	j = 1, k = 2
$f^*(v_{2,j}v_{2,k})$	$\left \left[1 - f(v_{1,k-1}) + 2(-1)^k \right] d \right $	j = 1, k = 2
$f^*(v_{1,j}v_{2,k})$	$\left \left[\frac{3j}{2} - 1 - f(v_{1,k-1}) + 2(-1)^k \right] d \right $	$j \equiv 0(mod2), j = 1, 2,, \eta - 1$ $k \equiv 0(mod2), k = 1, 2,, \eta - 1$
$f^*(v_{1,j}v_{2,k})$	$\left \left[3n - \frac{3(j-1)}{2} - f(v_{1,k-1}) + 2(-1)^k \right] d \right $	$j \equiv 1(mod2), j = 1, 2,, \eta - 1$ $k \equiv 1(mod2), k = 1, 2,, \eta - 1$

Table:1	Edge	labels	of the	graph AR_{π}^2
I apicil	Luge	iaucis	or the	Siaphinn

It is clear that the function f is injective and also table 1 shows that

 $f^*: E \rightarrow \{d, 2d, 3d, 4d, \dots, qd\}$ is bijective. Hence f is arithmetic sequential graceful labeling and the graph AR_{η}^2 is arithmetic sequential graceful graph.

Example 3.1.1: Arrow graph of AR_5^2 and its graceful labeling shown in figure-1.

Figure -1: Arrow graph of AR_5^2 and its graceful labeling.

Theorem 3.2:

Arrow graph AR_n^3 is arithmetic sequential graceful graph, when $\eta \ge 2$.

Proof:

Let $G = AR_{\eta}^3$ be an arrow graph obtained by connected a vertex v with superior vertices of $P_3 \times P_{\eta}$ by 3 new edges. Let $v_{i,j} (1 \le i \le 3, 1 \le j \le \eta)$ be the vertices of $P_3 \times P_{\eta}$.

Join *v* with $v_{i,1}(1 \le i \le 3)$ by 3 new edges to get *G*. $V(G) = \{v_{i,j}: 1 \le i \le 3; 1 \le j \le \eta\} \cup \{v\}$ $E(G) = \{v_{i,j}, v_{i,j+1}: 1 \le i \le 3; 1 \le j \le \eta - 1\} \cup \{v, v_{i,1}: 1 \le i \le 3\}$ Here $|V| = 3\eta + 1$, $|E| = 5\eta$. We define a function $f:V(G) \to \{a, a + d, a + 2d, a + 3d, ..., a + 2qd\}$. The vertex labeling are as follows, $f(v) = a, f(v_{2,1}) = a + 2d$ $f(v_{1,j}) = a + \left[5\eta - \frac{5(j-1)}{2}\right]d$, when $j \equiv 1 \pmod{2}$ for all $j = 1, 2, ..., \eta - 1$ $f(v_{1,j}) = a + \left[\frac{5j}{2} - 1\right]d$, when $j \equiv 0 \pmod{2}$ for all $j = 1, 2, ..., \eta - 1$ $f(v_{2,j}) = a + [f(v_{1,j-1}) - 3(-1)^j]d$ for all $j = 1, 2, ..., \eta - 1$ $f(v_{3,j}) = a + [f(v_{1,j}) + (-1)^j]d$ for all $j = 1, 2, ..., \eta - 1$ $f(v_{2,\eta}) = a + [f(v_{1,\eta-1}) - 5(-1)^{\eta}]d$ $f(v_{2,\eta}) = a + [f(v_{2,\eta-1}) + 4(-1)^{\eta}]d$ $f(v_{3,\eta}) = a + [f(v_{3,\eta-1}) - 6(-1)^{\eta}]d$ From the function $f^*: E(G) \to \{d, 2d, 3d, 4d, ..., qd\}$ we get the edge labels of the graph AR_n^3 as follows

$\mathbf{Labela} = \mathbf{Labela} = La$			
$f^*(u v)$	Edge labels	Value	
$f^*(v v_{i_1,j})$	$\left[5\eta - \frac{5(j-1)}{2}\right]d$	$i_1 = 1, j = 1$	
$f^{*}(v v_{2,j})$	$\left \left[f(v_{1,j-1}) - 3(-1)^{j} \right] d \right $	<i>j</i> = 1	
$f^*(v v_{3,j})$	$ [f(v_{1,j}) + (-1)^{j}]d $	j = 1	
$f^*(v_{i_1,j}v_{i_2,k})$	$\left \left[\frac{5j}{2} - 1 - f(v_{i_1,k-1}) + 3(-1)^k \right] \right d$	$ \begin{split} i_1 &= 1, i_2 = 2, j \equiv 0 (mod2) \\ for \ all \ j &= 1, 2, \dots, \eta - 1, \\ k &\equiv 0 (mod2) for \ all \ k = 1, 2, \dots, \eta - 1 \end{split} $	
$f^*(v_{i_1,j}v_{i_2,k})$	$\left \left[5n - \frac{5(j-1)}{2} - f(v_{i_1,k-1}) + 3(-1)^k \right) \right] d \right $	$ \begin{split} i_1 &= 1, i_2 = 2, j \equiv 1 (mod2) \\ for \ all \ j &= 1, 2, \dots, \eta - 1, \\ k &\equiv 1 (mod2) for \ all \\ k &= 1, 2, \dots, \eta - 1 \end{split} $	
$f^*(v_{i_2,j}v_{i_3,k})$	$\left \left[f(v_{i_1,j-1}) - 3(-1)^j \right) - f(v_{i_1,k}) - (-1)^k \right] \right d$	$ \begin{array}{l} i_1 = 1, i_2 = 2, i_3 = 3, j \equiv \\ 0 (mod2), for all \ j = 1, 2, \dots, \eta - 1, \\ k \equiv 0 (mod2) for all \\ k = 1, 2, \dots, \eta - 1 \end{array} $	
$f^*(v_{i_2,j}v_{i_3,k})$	$ [f(v_{i_1,j-1}) - 3(-1)^j) - f(v_{i_1,k}) - (-1)^k)]d $	$ \begin{split} i_1 &= 1, i_2 = 2, i_3 = 3, j \equiv \\ 1(mod2), for all j = 1, 2, \dots, \eta - 1, \\ k &\equiv 1(mod2) for all \\ k &= 1, 2, \dots, \eta - 1 \end{split} $	

Table:2 Edge labels of the graph AR_n^3

It is clear that the function f is injective and also table 2 shows that

 $f^*: E \to \{d, 2d, 3d, 4d, \dots, qd\}$ is bijective. Hence f is arithmetic sequential graceful labeling and the graph AR_{η}^3 is arithmetic sequential graceful graph.

Example 3.2.1: Arrow graph of AR_6^3 and its graceful labeling shown in figure-2.

Theorem 3.3:

Arrow graph AR_{η}^{5} is arithmetic sequential graceful graph, when $\eta \geq 2$.

Proof:

Let $G = AR_n^5$ be an arrow graph obtained by connected a vertex v with $v_{i,1} (1 \le i \le 5)$ by 5 new edges. Let $v_{i,i} (1 \le i \le 5, 1 \le j \le \eta)$ be the vertices of $P_5 \times P_n$. Join v with $v_{i,1} (1 \le i \le 5)$ by 5 new edges to get G. $V(G) = \{v_{i,j} : 1 \le i \le 5 ; 1 \le j \le \eta\} \cup \{v\}$ $E(G) = \{v_{i,j}, v_{i,j+1}: 1 \le i \le 5; 1 \le j \le \eta - 1\} \cup \{v \ v_{i,1}: 1 \le i \le 5\}$ Here $|V| = 5\eta + 1$, $|E| = 9\eta$. We define a function $f: V(G) \rightarrow \{a, a + d, a + 2d, a + 3d, \dots, a + 2qd\}$. The vertex labeling are as follows, $f(v) = a, f(v_{2,1}) = a + 3d, f(v_{4,1}) = a + 4d$ $f(v_{1,j}) = a + \left[9n - \frac{9(j-1)}{2}\right]d$, when $j \equiv 1 \pmod{2}$ for all $j = 1, 2, ..., \eta - 1$ $f(v_{1,j}) = a + \left[\frac{9j}{2} - 2\right] d$, when $j \equiv 0 \pmod{2}$ for all $j = 1, 2, ..., \eta - 1$ $f(v_{i,j}) = a + \left[f(v_{1,j}) + (-1)^j \frac{(i-1)}{2}\right]d \text{ for all } i = 3,5 \& j = 1,2, \dots, \eta - 1$ $f(v_{i,j}) = a + [f(v_{i-1,j-1}) - 5(-1)^{j}]d \text{ for all } i = 2,4 \& j = 1,2,...,\eta - 1$ $f(v_{1,\eta}) = a + [f(v_{1,n-1}) - 6(-1)^{\eta}]d$ $f(v_{2,n}) = a + [f(v_{2,n-1}) + 7(-1)^{\eta}]d$ $f(v_{3,\eta}) = a + [f(v_{3,\eta-1}) - 8(-1)^{\eta}]d$ $f(v_{4,\eta}) = a + [f(v_{4,\eta-1}) + 10(-1)^{\eta}]d$ $f(v_{5,\eta}) = a + [f(v_{5,\eta-1}) - 11(-1)^{\eta}]d$ From the function $f^*: E(G) \to \{d, 2d, 3d, 4d, \dots, qd\}$ we get the edge labels of the graph AR_{η}^5 as follows

$f^*(u v)$	Edge labels	Value
$f^*(v v_{1,j})$	$\left \left[\frac{9(j-1)}{2} - 9\eta \right] d \right $	<i>j</i> = 1
$f^*(v v_{i,j})$	$\left[\frac{(-1)^{j}(i-1)}{2} - f(v_{1,j}) \right] d$	i = 3,5 & j = 1
$f^*(v_{1,j} v_{i,j})$	$\left \left[24 - \frac{9(j-1)}{2} \right] d \right $	i = 2, j = 1
$f^*(v_{2,j} v_{i,j})$	$\left[3 - f(v_{1,j}) - \frac{(-1)^j(i-1)}{2} \right] d$	i = 3, j = 1
$f^*(v_{i,j} v_{4,j})$	$\left[f(v_{1,j}) + \frac{(-1)^j(i-1)}{2} - 4 \right] d$	i = 3, j = 1
$f^*(v_{4,j}v_{i,j})$	$\left[4 - f(v_{1,j}) - \frac{(-1)^j(i-1)}{2} \right] d$	i = 5, j = 1

Table:3 Edge labels of AR_{η}^5

It is clear that the function f is injective and also table 3 shows that

 $f^*: E \to \{d, 2d, 3d, 4d, \dots, qd\}$ is bijective. Hence f is arithmetic sequential graceful labeling and the graph is arithmetic sequential graceful graph.

Example 3.3.1: Arrow graph of AR_3^5 and its graceful labeling shown in figure-3.

Figure-3: Arrow graph of AR_3^5 and its graceful labeling.

Theorem 3.4:

Double side arrow graph $D(AR_n^2)$ is arithmetic sequential graceful graph, when $\eta \ge 2$.

Proof:

Let $G = D(AR_n^2)$ be double sided arrow graph obtained by connected two vertices v & v' with $P_2 \times P_n$ by 4 new edges in both sides. Let $v_{i,i} (1 \le i < 2, 1 \le j \le \eta)$ be the vertices of $P_2 \times \eta$. Join *v* with $v_{i,1} (1 \le i \le 2)$ and *v'* with $v_{i,n} (1 \le i \le 2)$ by 4 new edges to get *G*. $V(G) = \{v_{i,j} : 1 \le i \le 2 ; 1 \le j \le \eta\} \cup \{v\} \cup \{v'\}$ $E(G) = \{v_{i,j}, v_{i,j+1}: 1 \le i \le 2; 1 \le j \le \eta - 1\} \cup \{v, v_{i,1}: 1 \le i \le 2\} \cup \{v', v_{i,\eta}: 1 \le i \le 2\}$ Here $|V| = 2\eta + 2$, $|E| = 3\eta + 2$. We define a function $f: V(G) \rightarrow \{a, a + d, a + 2d, a + 3d, \dots, a + 2qd\}$. The vertex labeling are as follows, $f(v) = a, f(v_{2,1}) = a + d$ $f(v_{1,j}) = a + \left[3n + 2 - \left(\frac{3(j-1)}{2}\right)\right]d$, when $j \equiv 1 \pmod{2}$ for all $j = 1, 2, ..., \eta - 1$ $f(v_{1,j}) = a + \left[\frac{3j}{2} - 1\right]d, when j \equiv 0 \pmod{2} \text{ for all } j = 1, 2, \dots, \eta - 1$ $f(v_{2,j}) = a + [f(v_{1,j-1}) - 2(-1)^j]d$ for all $j = 2,3, ..., \eta - 1$ $f(v_{1,\eta}) = a + [f(v_{1,\eta-1}) - 4(-1)^{\eta}]d$ $f(v_{2,\eta}) = a + [f(v_{2,\eta-1}) + 6(-1)^{\eta}]d$ $f(v') = a + [f(v_{1,\eta}) - 2(-1)^{\eta}]d$ From the function $f^*: E(G) \to \{d, 2d, 3d, 4d, \dots, qd\}$ we get the edge labels of the graph $D(AR_n^2)$ as follows

$f^*(u v)$	Edge labels	Value
$f^*(v v_{1,j})$	$\left \left[3n+2 - \left(\frac{3(j-1)}{2}\right) \right] d \right $	<i>j</i> = 1
$f^*(v v_{2,1})$	<i>d</i>	
$f^*(v_{i,j} v_{k,j})$	$\left \left[\frac{3j}{2} - 1 - f(v_{1,j-1}) + 2(-1)^j \right] d \right $	i = 1, k = 1, $j \equiv 0 (mod2) for all$ $j = 1, 2,, \eta - 1$
$f^*(v_{i,j} v_{k,j})$	$\left\ \left[3n + 2 - \left(\frac{3(j-1)}{2} \right) - f(v_{1,j-1}) + 2(-1)^j \right] d \right\ $	i = 1, k = 2, $j \equiv 1 \pmod{2}$ for all $j = 1, 2,, \eta - 1$

Table:4 Edge labels of $D(AR_n^2)$

It is clear that the function f is injective and also table 4 shows that

 $f^*: E \to \{d, 2d, 3d, 4d, \dots, qd\}$ is bijective. Hence f is arithmetic sequential graceful labeling and the graph is arithmetic sequential graceful graph.

Example 3.3.1: Double sided arrow graph of $D(AR_4^2)$ and its graceful labeling shown in figure-4.

Figure-4: Double sided arrow graph of $D(AR_4^2)$ and its graceful labeling.

Theorem 3.5:

Double side arrow graph $D(AR_n^3)$ is arithmetic sequential graceful graph, when $\eta \ge 2$.

Proof:

Let $G = D(AR_n^3)$ be double sided arrow graph obtained by connected two vertices v & v' with $P_3 \times P_n$ by 6 new edges in both sides. Let $v_{i,j}$ ($1 \le i \le 3, 1 \le j \le \eta$) be the vertices of $P_3 \times P_n$. Join *v* with $v_{i,1} (1 \le i \le 3)$ and *v'* with $v_{i,\eta} (1 \le i \le 3)$ by 6 new edges to get *G*. $V(G) = \{v_{i,j} : 1 \le i \le 3 ; 1 \le j \le \eta\} \cup \{v\} \cup \{v'\}$ $E(G) = \{v_{i,j}, v_{i,j+1}: 1 \le i \le 3; 1 \le j \le \eta - 1\} \cup \{v, v_{i,1}: 1 \le i \le 3\} \cup \{v', v_{i,\eta}: 1 \le i \le 3\}$ Here $|V| = 3\eta + 2$, $|E| = 5\eta + 3$. We define a function $f: V(G) \rightarrow \{a, a + d, a + 2d, a + 3d, \dots, a + 2qd\}$. The vertex labeling are as follows, $f(v) = a, f(v_{2,1}) = a + 2d$ $f(v_{1,j}) = a + \left[5\eta + 3 - \left(\frac{5(j-1)}{2}\right)\right]d$, when $j \equiv 1 \pmod{2}$ for all $j = 1, 2, ..., \eta - 1$ $f(v_{1,j}) = a + \left[\frac{5j}{2} - 1\right] d, when j \equiv 0 \pmod{2} \text{ for all } j = 1, 2, ..., \eta - 1$ $f(v_{2,j}) = a + \left[f(v_{1,j-1}) - (-1)^j\right] d \text{ for all } j = 2, 3, ..., \eta - 1$ $f(v_{3,j}) = a + [f(v_{1,j}) + (-1)^j]d$ for all $j = 1,2,3,...,\eta - 1$ $f(v_{1,\eta}) = a + [f(v_{1,\eta-1}) - 8(-1)^{\eta}]d$ $f(v_{2,\eta}) = a + [f(v_{2,\eta-1}) + 7(-1)^{\eta}]d$ $f(v_{3,\eta}) = a + [f(v_{3,\eta-1}) - 9(-1)^{\eta}]d$ $f(v') = a + [f(v_{2,n}) - (-1)^{\eta}]d$ From the function $f^*: E(G) \to \{d, 2d, 3d, 4d, \dots, qd\}$ we get the edge labels of the graph $D(AR_n^3)$ as follows

$f^*(u v)$	Edge labels	Value
$f^*(v v_{1,j})$	$\left \left[5\eta + 3 - \left(\frac{5(j-1)}{2} \right) \right] d \right $	<i>j</i> = 1
$f^*(v v_{2,j})$	$\left \left[f(v_{1,j-1}) - (-1)^j \right] d \right $	j = 1
$f^*(v v_{3,j})$	$\left \left[f(v_{1,j}) + (-1)^{j} \right] d \right $	j = 1
$f^*(v_{i,j} v_{i+1,k})$	$\left \left[5\eta + 3 - \left(\frac{5(j-1)}{2} \right) - f(v_{1,k-1}) + (-1)^k \right] d \right $	$i = 1, k = 1, 3,, (\eta - 1)$ $j \equiv 1 (mod2) for all$ $j = 1, 2,, \eta - 1$
$f^*(v_{i,j} v_{i+1,k})$	$\left \left[\frac{5j}{2} - 1 - f(v_{1,j-1}) + (-1)^j \right] d \right $	$i = 1, k = 1, 3,, (\eta - 1),$ $j \equiv 0 (mod2) for all$ $j = 1, 2,, \eta - 1$
$f^*(v_{2,j} v_{3,j})$	$\left \left[f(v_{1,j-1}) - 3(-1)^{j} - f(v_{1,j}) - (-1)^{j} \right] d \right $	$j = 1, 2, \dots, \eta - 1$

Table:5 Edge labels of $D(AR_n^3)$

It is clear that the function f is injective and also table 5 shows that

 $f^*: E \to \{d, 2d, 3d, 4d, \dots, qd\}$ is bijective. Hence f is arithmetic sequential graceful labeling and the graph is arithmetic sequential graceful graph.

Example 3.3.1: Double sided arrow graph of $D(AR_6^3)$ and its graceful labeling shown in figure-5.

Figure-5: Double sided arrow graph of $D(AR_6^3)$ and its graceful labeling.

IV. Conclusion

We showed here arithmetic sequential graceful labeling of arrow graph. Here we proved five new results. we discussed graceful of $AR_{\eta}^2, AR_{\eta}^3, AR_{\eta}^5$ and double-sided arrow graphs $D(AR_{\eta}^2), D(AR_{\eta}^3)$. Labeling pattern is demonstrated by means of illustrations, which provide better understanding of derived results. Analysing arithmetic sequential graceful on other families of graph are our future work.

References

- [1] Barnes, J. A., & Harary, F. (1983). Graph Theory In Network Analysis. Social Networks, 5(2), 235-244.
- [2] Rosa, A. (1967). On Certain Valuations Of The Vertices Of A Graph, Theory Of Graphs (Internat. Symposium, Rome, July 1966).
- [3] Gallian J A, "A Dynamic Survey Of Graph Labeling", The Electronic Journal Of Combinatorics, (2020), Pp. 77-81.
- [4] V J Kaneria1, Meera Meghpara, H M Makadia Pasaribu, Graceful Labeling For Grid Related Graphs, International Journal Of Mathematics And Soft Computing, Vol.5, No.1 (2015), 111 - 117. DOI:10.26708/IJMSC.2015.1.5.13
- [5] V. J. Kaneria, H. M. Makadia And M. M. Jariya, Graceful Labeling Of Arrow Graphs And Double Arrow Graphs, Malaya J. Mat. 3(4)(2015) 382–386.
- [6] Sumathi P, Geetha Ramani G (2022) Arithmetic Sequential Graceful Labeling On Star Related Graphs. Indian Journal Of Science And Technology 15(44): 2356-2362. https://Doi.Org/10.17485/JJST/V15i44.1863
- [7] Sumathi P, Geetha Ramani G,Arithmetic Sequential Graceful Labeling On Grid Related Graphs, Samdarshi, ISSN: 2581-3986, Vol 16 Issue 4 (September 2023).