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Abstract 
The purpose of this paper is to introduce a new concept of 𝔗�̂�- separation axioms in intuitionistic topological 

spaces. After giving some characterization of 𝔗�̂� 𝑇0 , 𝔗�̂� 𝑇1 , 𝔗�̂� 𝑇2- spaces separation axioms in intuitionistic 

topological spaces. We explore the fundamental properties of separation axioms and counter examples in 

intuitionistic topological spaces. 
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I. Introduction 
The concept of intuitionistic sets in topological spaces was first introduced by Coker [3] in 1996. He also 

introduced the concept of intuitionistic points and investigated some fundamental properties of closed sets in 

intuitionistic topological spaces. Later he[5] defined 𝑇1 and 𝑇2 separation axioms and discussed some 

properties. In this paper, to define a new type of separation axiom based on 𝔗�̂�- open sets in intuitionistic 

topological spaces. We introduce the concepts of 𝔗�̂� 𝑇0- space, 𝔗�̂� 𝑇1- space,𝔗�̂� 𝑇2- spaces using 𝔗�̂�- 

open sets and discuss the relationship between them. 

 

II. Preliminaries 
Definition 2.1 [3]: Let  ℳ be a non-empty set. An  intuitionistic  set ( shortly 𝕿𝑺 ) 𝒜 is an   object having the form  

𝒜  =  < ℳ, 𝒜1, 𝒜2>  Where 𝒜1, 𝒜2 are subsets of ℳ satisfying   𝒜1 ∩ 𝒜2 = 𝜑. The set 𝒜1 called the set of 

members of 𝒜, while 𝒜2 is called set of nonmembers of 𝒜. 

Definition 2.2 [4]: Let ℳ be a nonempty set and 𝑝 ∈ ℳ be a fixed element. Then  the  𝔗𝑆𝑝  defined  by   𝑝  =
  < ℳ, {p}, {𝑝}𝑐 >  is  called  an  intuitionistic  point  ( shortly 𝔗𝑃). 

Definition 2.3 [1] : An intuitionistic topological space  (ℳ, 𝔗𝜏1) is said to be 

i. 𝕿𝑻𝟏(𝒊)- space if  for  all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist an 𝔗- open set 𝒱, 𝒲 such that  𝒷 ∈ 𝒱 , �̃� ∉ 𝒱 

and �̃� ∈ 𝒲 , 𝒷 ∉ 𝒲 . 

ii. 𝕿𝑻𝟏(𝒊𝒊)- space if  for  all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist an 𝔗- open set 𝒱, 𝒲 such that  𝒷 ∈ 𝒱 , �̃̃� ∈ 𝒱 

and �̃̃� ∈ 𝒲, 𝒷 ∉ 𝒲. 

iii. 𝕿𝑻𝟏(𝒊𝒊𝒊)- space if  for  all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist an 𝔗- open set 𝒱, 𝒲 such that  𝒷 ∈ 𝒱 ⊆ �̅̃�  

and  �̃� ∈ 𝒲  ⊆  𝒷. 

iv. 𝕿𝑻𝟏(𝒊𝒗)- space if  for  all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist an 𝔗 - open set 𝒱, 𝒲 such that  𝒷 ∈ 𝒱 ⊆  �̃̃�
̅
, 

�̃̃� ∈ 𝒲 ⊆ 𝒷
̅

. 

v. 𝕿𝑻𝟏(𝒗)- space if  for  all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist an 𝔗- open set 𝒱, 𝒲 such that   �̃�  ∉  𝒱 and  𝒷 

∉ 𝒲. 

vi. 𝕿𝑻𝟏(𝒗𝒊)- space  if  for  all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist an 𝔗- open set 𝒱, 𝒲 such that �̃̃� ∉  𝒱 and  

𝒷 ∉ 𝒲. 

 

Definition 2.4 [1] : An intuitionistic topological space  (ℳ, 𝔗𝜏1) is said to be 

i. 𝕿 𝑻𝟐(𝒊)- space if  for  all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist 𝔗- open set 𝒱, 𝒲 such that  𝒷 ∈ 𝒱 , �̃� ∈ 𝒲 

and 𝒱 ∩ 𝒲 =  �̃� . 
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ii. 𝕿 𝑻𝟐(𝒊𝒊)- space if  for  all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist 𝔗- open set 𝒱, 𝒲 such that  𝒷 ∈ 𝒱 , �̃̃� ∈ 𝒲 

and 𝒱 ∩ 𝒲 =  �̃� . 

iii. 𝕿 𝑻𝟐(𝒊𝒊𝒊)- space if  for  all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist 𝔗- open set 𝒱, 𝒲 such that  𝒷 ∈ 𝒱 , �̃� ∈ 𝒲 

and 𝒱 ⊆  �̅�. 

iv. 𝕿 𝑻𝟐(𝒊𝒗)- space if  for  all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist 𝔗- open set 𝒱, 𝒲 such that  𝒷 ∈ 𝒱 , �̃̃� ∈ 𝒲 

and 𝒱 ⊆  �̅�. 

v. 𝕿 𝑻𝟐(𝒗)- space if  for  all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist 𝔗- open set 𝒱, 𝒲 such that  𝒷 ∈  𝒱  ⊆  �̅̃�,  �̃� 

∈ 𝒲 ⊆  𝒷 and 𝒱 ⊆  �̅� . 

vi. 𝕿 𝑻𝟐(𝒗𝒊)- space  if  for  all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist 𝔗- open set 𝒱, 𝒲 such that   𝒷 ∈ 𝒱 ⊆  �̃̃�
̅
, �̃̃� 

∈ 𝒲 ⊆ 𝒷
̅

 and 𝒱 ⊆  �̅�. 
Definition 2.5 [6]:  An intuitionistic topological space (ℳ, 𝔗𝜏1) is called 𝕿𝑻𝟏- space if for all 𝑎 , 𝑏 ∈  ℳ  (𝑎 ≠
𝑏 ) there exist 𝔗- open set  𝕌, 𝕍 such that 𝑎 ∈ 𝕌1, 𝑏 ∉  𝕌1  and  𝑏 ∈  𝕍1 , 𝑎 ∉  𝕍1. 

Definition 2.6 [6]:  An intuitionistic topological space  (ℳ, 𝔗𝜏1) is called 𝕿𝑻𝟐- space  if  for  all  𝒷, 𝓀 ∈ ℳ with  

( 𝒷 ≠ 𝓀 ) there exist 𝔗- open set  𝒱, 𝒲 such that  𝒷 ∈ 𝒱1 , 𝓀 ∉ 𝒱1 and 𝓀 ∈ 𝒲1, 𝒷 ∉  𝒲1 and 𝒱 ∩ 𝒲 =  �̃�. 

 

III. 𝕿�̂�-  Separation Axioms 
Definition 3.1: An  intuitionistic  topological  space  (ℳ, 𝔗𝜏1) is said  to be 

a) 𝕿�̂� 𝑻𝟎(𝒊)- space if for all 𝑎 , 𝑏 ∈ ℳ (𝑎 ≠ 𝑏 ) there exist 𝔗�̂�- open set 𝑈 such that �̃�  ∈  𝑈 and  �̃� ∉ 𝑈 or  

�̃� ∈ 𝑈 and  �̃� ∉ 𝑈. 

b) 𝕿�̂� 𝑻𝟎(𝒊𝒊)- space if for all 𝑎 , 𝑏 ∈ ℳ (𝑎 ≠ 𝑏 ) there exist 𝔗�̂�- open set 𝑈 such that �̃̃�  ∈ 𝑈 and  �̃̃� ∉ 𝑈 and  

�̃̃� ∈ 𝑈 and  �̃̃� ∉ 𝑈. 
Definition 3.2: An intuitionistic topological space (ℳ, 𝔗𝜏1) is called 𝕿�̂� 𝑻𝟎- space if for all 𝑎, 𝑏 ∈ ℳ  with 

(𝑎 ≠ 𝑏) there exist 𝔗�̂�- open set 𝑈 such that 𝑎 ∈  𝑈1, 𝑏 ∈ 𝑈2  or  𝑏 ∈  𝑈1, 𝑎 ∈  𝑈2. 

Theorem  3.3 : Every intuitionistic 𝑇0 space is 𝔗�̂� 𝑇0- space but not conversely. 

Proof: Since every intuitionistic open is 𝔗�̂�- open, the proof follows. 

Example 3.4 : Let  ℳ = {𝒶, 𝒷} with the family 𝔗𝜏1 = {�̃�, ℳ̃, < ℳ, 𝜑, 𝜑 >, < ℳ, {𝒷}, 𝜑 > }. 𝔗�̂�- 𝑂𝑆 

(ℳ, 𝔗𝜏1) =  {�̃�, ℳ̃,  < ℳ, 𝜑, 𝜑 >, < ℳ, {𝒶}, 𝜑 >, < ℳ, 𝜑, {𝒶} >, < ℳ, {𝒷}, 𝜑 >,   < ℳ, {𝒷}, {𝒶} >}. Here 

𝒷 ∈ < ℳ, {𝒷}, {𝒶} > and 𝒶 ∉ < ℳ, {𝒷}, 𝜑 >. Hence (ℳ, 𝔗𝜏1) is 𝔗�̂� 𝑇0- space. But there exist no  

intuitionistic open set  𝑈 such that  𝒶 ∈ 𝑈 and  𝒷 ∉ 𝑈  or   𝒷 ∈ 𝑈 and  𝒶 ∉ 𝑈.  Hence (ℳ, 𝔗𝜏1) is not an 

intuitionistic 𝑇0 space . 

Theorem 3.5: Let (ℳ, 𝔗𝜏1) and (𝕐, 𝔗𝜏2) be two  intuitionistic topological spaces. Let 𝔉 ∶ (ℳ, 𝔗𝜏1) → (𝕐, 𝔗𝜏2) 

be a one-one, onto and 𝔗�̂�- open map. If (ℳ, 𝔗𝜏1) is a  𝔗𝑇0 space then (𝕐, 𝔗𝜏2) is 𝔗�̂� 𝑇0- space. 

Proof : Suppose 𝑎 , 𝑏 ∈ 𝕐  with  𝑎 ≠ 𝑏. Since 𝔉 is onto, then there exist  𝓅, 𝓇 ∈  ℳ such that 𝔉 (𝓅) =  𝑎 and  

𝔉 (𝓇) =  𝑏. Then  𝔉 (𝓅)  ≠  𝔉 (𝓇)  ⇒ 𝓅 ≠ 𝓇 as 𝔉  is one-one. Since 𝓅, 𝓇 ∈  ℳ, 𝓅 ≠ 𝓇 and (ℳ, 𝔗𝜏1) is 𝔗 𝑇0 

space, there exist 𝔗 -open set 𝑈 in ℳ such that  𝓅 ∈ 𝑈1,  𝓇 ∉ 𝑈1. As 𝔉 is 𝔗�̂�- open,  𝐹 (𝑈)  is 𝔗�̂�- open in 

(𝕐, 𝔗𝜏2).  Since 𝔉 (𝑈) = < 𝕐, 𝔉 (𝑈1), 𝔉 (𝑈2) >, 𝑎 =  𝔉 (𝓅) ∈ 𝔉 (𝑈1)  and  𝑏 =  𝔉 (𝓇) ∉  𝔉(𝑈1). Finally, we 

get 𝑎 , 𝑏 ∈ 𝕐 with 𝑎 ≠ 𝑏 there exist 𝔗�̂�- open set 𝔉 (𝑈) ∈ (𝕐, 𝔗𝜏2) such that 𝑎 =  𝔉 (𝓅) ∈  𝔉 (𝑈1),  𝑏 =
 𝔉 (𝓇)  ∉  𝔉 (𝑈1). Hence (𝕐, 𝔗𝜏2) is  𝔗�̂� 𝑇0- space. 

Theorem 3.6: Let (ℳ, 𝔗𝜏1) and (𝕐, 𝔗𝜏2) be two intuitionistic topological spaces. Let  𝔉 ∶ (ℳ, 𝔗𝜏1) → (𝕐, 𝔗𝜏2) 

be a one-one, onto and 𝔗�̂�- continuous map. If  (𝕐, 𝔗𝜏2)  is a 𝑇𝑇0 space then (ℳ, 𝔗𝜏1) is 𝔗�̂� 𝑇0- space. 

Proof :  Let 𝒳, 𝒴 ∈ ℳ with 𝒳 ≠   𝒴 implies 𝔉 (𝒳), 𝔉 (𝒴) ∈ 𝕐 with 𝔉 (𝒳) ≠ 𝔉 (𝒴) as  𝔉 is one-one. Since 

𝔉 (𝒳), 𝔉 (𝒴) ∈ 𝕐 and (𝕐, 𝔗𝜏2) is 𝔗𝑇0 space, there exist a 𝑇- open set 𝑈 in 𝕐 such that 𝔉 (𝒳) ∈ 𝑈1, 𝔉 (𝒴) ∉ 𝑈1 

or   𝔉 (𝒴) ∈ 𝑈1, 𝔉 (𝒳) ∉ 𝑈1. Since 𝔉 is 𝔗�̂�- continuous map, 𝔉−1(𝑈) is 𝔗�̂�- open in (ℳ, 𝔗𝜏1). Now,  𝔉 (𝒳) 

∈ 𝑈1 implies 𝔉−1(𝔉 (𝒳))  ∈ 𝔉−1(𝑈1) which implies 𝒳 ∈ 𝔉−1(𝑈1)  and 𝔉 (𝒴) ∈ 𝑈1 implies 𝔉−1(𝔉 (𝒴)) ∈  

𝔉−1(𝑈1) which implies 𝒴 ∈  𝔉−1(𝑈1). Similarly, 𝒴 ∉ 𝔉−1(𝑈1), 𝒳 ∉ 𝔉−1(𝑈1). Thus if 𝒳, 𝒴 ∈ ℳ  with 𝒳 ≠
  𝒴, there exist 𝔗�̂�- open set 𝔉−1(𝑈) such that 𝒳 ∈  𝔉−1(𝑈1), 𝒴 ∉ 𝔉−1(𝑈1) or 𝒴 ∈ 𝔉−1(𝑈1),  𝒳 ∉ 𝔉−1(𝑈1). 

Hence (ℳ, 𝔗𝜏1) is 𝔗�̂�-𝑇0- space. 

Definition 3.7 : An  intuitionistic  topological  space   (ℳ, 𝔗𝜏1)  is  said  to  be 

i.𝕿�̂� 𝑻𝟏(𝒊)- space if for all 𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist  𝔗�̂�- open set 𝒱, 𝒲 such that  𝒷 ∈ 𝒱, �̃� ∉ 𝒱 and 

�̃� ∈ 𝒲, 𝒷 ∉ 𝒲 . 

ii. 𝕿�̂� 𝑻𝟏(𝒊𝒊)- space if for all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist 𝔗�̂�- open set 𝒱, 𝒲 such that  𝒷 ∈ 𝒱, �̃̃� ∉ 𝒱 and 

�̃̃� ∈ 𝒲, 𝒷 ∉ 𝒲. 

iii. 𝕿�̂� 𝑻𝟏(𝒊𝒊𝒊)- space if for all 𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist 𝔗�̂�- open set 𝒱, 𝒲 such that 𝒷 ∈ 𝒱 ⊆ �̅̃�  and  

�̃� ∈ 𝒲  ⊆  𝒷. 
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iv.𝕿�̂� 𝑻𝟏(𝒊𝒗)- space if  for all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist 𝔗�̂�- open set 𝒱, 𝒲 such that 𝒷 ∈ 𝒱 ⊆  �̃̃�
̅
, �̃̃� ∈ 

𝒲 ⊆ 𝒷
̅

. 

v.𝕿�̂� 𝑻𝟏(𝒗)- space if for all 𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist 𝔗�̂�- open set 𝒱, 𝒲 such that �̃�  ∉  𝒱 and 𝒷 ∉ 

𝒲. 

vi.𝕿�̂� 𝑻𝟏(𝒗𝒊)- space  if for all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist 𝔗�̂�- open set 𝒱, 𝒲 such that �̃̃� ∉  𝒱 and 𝒷 ∉ 

𝒲. 

 

Theorem 3.8 : Let  (ℳ, 𝔗𝜏1) be intuitionistic topological spaces. Then the following implications are valid but 

not conversely. 

 

 
Fig. 3.1 

Proof :  Obvious. 

Example 3.9:  Let  ℳ = { ℊ, ℓ} with the family 𝔗𝜏 = {ℳ̃, �̃�, < ℳ, {ℓ}, 𝜑 >,   < ℳ, 𝜑, 𝜑 > }. 𝔗�̂� -𝑂𝑆(ℳ, 𝔗𝜏) 

= {ℳ̃, 𝜑,̃  < ℳ, 𝜑, 𝜑 >,  < ℳ, 𝜑, {ℊ} >, < ℳ, {ℊ}, 𝜑 >,   < ℳ, {ℓ}, 𝜑 >, < ℳ, {ℓ}, {ℊ} >}.Here (ℳ, 𝔗𝜏) is 

𝔗�̂� 𝑇1(𝑖)- space but not  𝔗�̂� 𝑇1(𝑖𝑖)- space. 

Example 3.10:  Let  ℳ = { ℊ, ℓ} with the family  𝔗𝜏 = {ℳ̃, �̃�, < ℳ, {ℊ}, {ℓ}  >}.    𝔗�̂� -𝑂𝑆(ℳ, 𝔗𝜏) = {ℳ̃, 𝜑,̃ 
 < ℳ, 𝜑, 𝜑 >, < ℳ, 𝜑, {ℊ} >, < ℳ, {ℊ}, 𝜑 >,  < ℳ, 𝜑, {ℓ} >,   < ℳ, {ℊ}, {ℓ} >}.  Here (ℳ, 𝔗𝜏) is 𝔗�̂� 𝑇1(𝑖𝑣)- 

space  but  not  𝔗�̂� 𝑇1(𝑖𝑖𝑖)- space. 

Example 3.11 :  Let  ℳ = { ℊ, ℓ} with the family 𝔗𝜏 = { ℳ̃, �̃�, < ℳ, {ℊ}, {ℓ} >, < ℳ, {ℊ}, 𝜑 >,   < ℳ, 𝜑, 𝜑 >
,   < ℳ, 𝜑, {ℓ} >}. 𝔗�̂� - 𝑂𝑆 (ℳ, 𝔗𝜏) = 𝔗𝜏. Here (ℳ, 𝔗𝜏)  is  𝔗�̂� 𝑇1(𝑣)- space  but  not  𝔗�̂� 𝑇1(𝑖𝑖)- space. 

Example 3.12 :  The above example, satisfied 𝔗�̂� 𝑇1(𝑖𝑣)- space but not 𝔗�̂� 𝑇1(𝑖𝑖)- space. 

Example 3.13 :  Let  ℳ = { ℊ, ℓ} with the family  𝔗𝜏 = { ℳ̃, �̃�, < ℳ, {ℊ}, { 𝑙} >, < ℳ, {ℊ}, 𝜑 >}.   𝔗�̂� - 𝑂𝑆 

(ℳ, 𝔗𝜏) = {ℳ̃, 𝜑,̃  < ℳ, 𝜑, {ℓ} >, < ℳ, {ℊ}, 𝜑 >,  ℳ, {ℊ}, {ℓ} >}.Here(ℳ, 𝔗𝜏) is 𝔗�̂� 𝑇1(𝑖𝑣)- space but not 

𝔗�̂� 𝑇1(𝑖𝑖𝑖)- space. 

Example 3.14 :  Let  ℳ = { ℊ, ℓ} with the family  𝔗𝜏 = { ℳ̃, �̃�, < ℳ, {ℊ}, {ℓ} >, < ℳ, {ℊ}, 𝜑 >,   < ℳ, 𝜑, 𝜑 >
,  < ℳ, 𝜑, {ℓ} >}.  𝔗�̂� - 𝑂𝑆 (ℳ, 𝔗𝜏) =  𝔗𝜏. Here (ℳ, 𝔗𝜏) is 𝔗�̂� 𝑇1(𝑣)- space but not  𝔗�̂� 𝑇1(𝑖𝑖)- space. 

Example 3.15 : The  above example satisfied 𝔗�̂� 𝑇1(𝑖𝑣)- space but not  𝔗�̂� 𝑇1(𝑖𝑖)- space. 

Example 3.16 :  Let  ℳ = { ℊ, ℓ} with the family  𝔗𝜏 = { ℳ̃, �̃�, < ℳ, {ℊ}, { 𝑙} >,  < ℳ, {ℊ}, 𝜑 >}. 𝔗�̂� -
𝑂𝑆(ℳ, 𝔗𝜏) = {ℳ̃, 𝜑,̃  < ℳ, 𝜑, {ℓ} >, < ℳ, {ℊ}, 𝜑 >,  ℳ, {ℊ}, {ℓ} >}. Here (ℳ, 𝔗𝜏) is 𝔗�̂� 𝑇1(𝑣𝑖)- space but 

not  𝔗�̂� 𝑇1(𝑖𝑖)- space. 

Example 3.17:  In example 5.1.16, 𝔗�̂�𝑇1(𝑖)- space is satisfied but not  𝔗�̂� 𝑇1(𝑖𝑖𝑖)- space. 

Definition 3.18: An intuitionistic topological space (ℳ, 𝔗𝜏1) is called  𝕿�̂�𝑻𝟏- space if for all 𝑎 , 𝑏 ∈  ℳ  (𝑎 ≠
𝑏 ) there exist 𝔗�̂�- open set 𝕌, 𝕍  such that 𝑎 ∈  𝕌1 , 𝑏 ∉  𝕌1  and  𝑏 ∈  𝕍1 , 𝑎 ∉  𝕍1. 

Theorem3.19: Every  𝔗𝑇1- space  is 𝔗�̂� 𝑇1- space but not conversely. 

Proof: Since every intuitionistic open is 𝔗�̂�- open, the proof follows. 

Example 3.20:  Let  ℳ = { 𝒹, 𝒻} with the family  𝔗𝜏 = { ℳ̃, �̃�, < ℳ, {𝒻}, 𝜑 >}. Then  𝒹 ∈ < ℳ, {𝒹}, 𝜑 >,  𝒻  

∉ < ℳ, {𝒹}, 𝜑 > and  𝒻 ∈ < ℳ, {𝒻}, {𝒹} >,  𝒹 ∉ < ℳ, {𝒻}, {𝒹} >. Here (ℳ, 𝔗𝜏1) is 𝔗�̂� 𝑇1(𝑖)- space. But 

there exist no intuitionistic open set 𝕌 and 𝕍  such that  𝒹 ∈ 𝕌 and  𝒻 ∉ 𝕌  and  𝒻 ∈ 𝕍 and  𝒹 ∉ 𝕍. Hence  

(ℳ, 𝔗𝜏1) is not 𝔗𝑇1- space  . 

Theorem 3.21: Let  (ℳ, 𝔗𝜏1)  and  (𝕐, 𝔗𝜏2) be two intuitionistic topological spaces. Let 𝔉 ∶ (ℳ, 𝔗𝜏1) →
(𝕐, 𝔗𝜏2)  be a one- one, onto and 𝔗�̂�- open map. If (ℳ, 𝔗𝜏1) is a 𝔗𝑇1 space then (ℳ, 𝔗𝜏1) is 𝔗�̂� 𝑇1- space. 

Proof :  Suppose 𝓇, 𝓊 ∈  𝕐  with  𝓇 ≠ 𝓊. Since 𝔉  is onto,  then there exist  𝒷, 𝒻  ∈  ℳ such that  𝔉(𝒷) =  𝓇  
and   𝔉(𝒻) =  𝓊. Then  𝔉(𝒷) ≠ 𝔉(𝒻) ⇒ 𝒷 ≠ 𝒻, as  𝔉  is one - one. Since  𝒷, 𝒻  ∈  ℳ,  𝒷 ≠ 𝒻 and  (ℳ, 𝔗𝜏1) is  

a 𝔗𝑇1 space, then there exist  𝑇- open set 𝕌 and 𝕍 in ℳ such that 𝒷 ∈ 𝕌1,  𝒻 ∉ 𝕌1 and 𝒷 ∈ 𝕍1,  𝒻 ∉ 𝕍1. As 𝔉 is 
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𝔗�̂�- open, 𝔉(𝕌) is 𝔗�̂�- open in (𝕐, 𝔗𝜏2).  Since  𝔉(𝕌) = < 𝕐, 𝔉(𝕌1), 𝔉(𝕌2) >, 𝓇 =  𝔉(𝒷) ∈  𝔉(𝕌1) and  𝓊 =  
𝔉(𝒻)  ∉  𝔉(𝕌1). Finally, we get 𝓇, 𝓊 ∈ 𝕐  with 𝓇 ≠ 𝓊 there exist 𝔗�̂�- open set  𝔉(𝕌) ∈ (𝕐, 𝔗𝜏2) such that 𝓇 =  
𝔉(𝒷) ∈  𝔉(𝕌1),  𝓊 = 𝔉(𝒻) ∉ 𝔉(𝕌1). Hence (𝕐, 𝔗𝜏2) is 𝔗�̂� 𝑇1- space. 

Theorem 3.22 : Let (ℳ, 𝔗𝜏1) and (𝕐, 𝔗𝜏2) be two  intuitionistic topological spaces. Let  𝔉 ∶ (ℳ, 𝔗𝜏1) →
(𝕐, 𝔗𝜏2) be a one- one, onto and 𝔗�̂�- continuous map. If (𝕐, 𝔗𝜏2) is a 𝔗𝑇1 space then (ℳ, 𝔗𝜏1) is  𝔗�̂� 𝑇1- space. 

Proof: Let  𝒹, 𝒽  ∈  ℳ with 𝒹 ≠  𝒽  implies  𝔉(𝒹), 𝔉(𝒽) ∈ 𝕐 with  𝔉(𝒹) ≠   𝔉(𝒽) as 𝔉 is one- one. Since 

𝔉(𝒹), 𝔉(𝒽) ∈ 𝕐 and (𝕐, 𝔗𝜏2) is an intuitionistic  𝑇1 space, there exist 𝔗 -open set 𝕌 and 𝕍 in 𝕐 such that  𝔉(𝒹) 

∈ 𝕌1, 𝔉(𝒽)  ∉  𝕌1 or  𝔉(𝒽) ∈ 𝕍1,  𝔉(𝒹) ∉  𝕍1. Now,  𝔉(𝒹) ∈ 𝕌1 implies  𝔉−1(𝔉(𝒹)) ∈ 𝔉−1(𝕌1) which implies 

𝒹  ∈ 𝔉−1(𝕌1). As  𝔉(𝒽) ∈ 𝕍1, 𝔉−1(𝔉(𝒽)) ∈ 𝔉−1(𝕍1) which implies  𝒽 ∈ 𝔉−1(𝕍1). Similarly, 𝒽 ∉  𝔉−1(𝕌1), 

𝒹  ∉  𝔉−1(𝕍1). Finally, we get  𝒹, 𝒽  ∈  ℳ with  𝒹 ≠  𝒽, there exist 𝔗�̂�- open set 𝔉−1(𝕌) and 𝔉−1(𝕍) such that  

𝒹 ∈ 𝔉−1(𝕌1),  𝒽 ∉ 𝔉−1(𝕌1) or  𝒽 ∈ 𝔉−1(𝕍1),  𝒹  ∉  𝔉−1(𝕍1). Hence  (ℳ, 𝔗𝜏1) is  𝔗�̂� 𝑇1- space. 

Definition 3.23 : An intuitionistic topological space  (ℳ, 𝔗𝜏1) is said to be 

vii.𝕿�̂� 𝑻𝟐(𝒊)- space if  for  all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist 𝔗�̂�- open set 𝒱, 𝒲 such that  𝒷 ∈ 𝒱, �̃� ∈ 𝒲 

and 𝒱 ∩ 𝒲 =  �̃� . 

viii.𝕿�̂� 𝑻𝟐(𝒊𝒊)- space if  for  all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist 𝔗�̂�- open set 𝒱, 𝒲 such that  𝒷 ∈ 𝒱,  �̃̃� ∈ 𝒲 

and 𝒱 ∩ 𝒲 =  �̃� . 

ix.𝕿�̂� 𝑻𝟐(𝒊𝒊𝒊)- space if  for  all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist 𝔗�̂�- open set 𝒱, 𝒲 such that  𝒷 ∈ 𝒱, �̃� ∈ 𝒲 

and 𝒱 ⊆  �̅�. 

x.𝕿�̂� 𝑻𝟐(𝒊𝒗)- space if  for  all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist 𝔗�̂�- open set 𝒱, 𝒲 such that  𝒷 ∈ 𝒱,  �̃̃� ∈ 𝒲 

and 𝒱 ⊆  �̅�. 

xi.𝕿�̂� 𝑻𝟐(𝒗)- space if  for  all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist 𝔗�̂�- open set 𝒱, 𝒲 such that  𝒷 ∈  𝒱  ⊆  �̅̃�,  

�̃� ∈ 𝒲 ⊆  𝒷 and 𝒱 ⊆  �̅� . 

xii.𝕿�̂� 𝑻𝟐(𝒗𝒊)- space  if  for  all  𝒷, 𝓀 ∈ ℳ ( 𝒷 ≠ 𝓀 ) there exist 𝔗�̂�- open set 𝒱, 𝒲 such that   𝒷 ∈ 𝒱 ⊆  �̃�,̃̅  

�̃̃� ∈ 𝒲 ⊆ 𝒷
̅

 and 𝒱 ⊆  �̅�. 
Definition 3.24: An intuitionistic topological space (ℳ, 𝔗𝜏1) is called   𝕿�̂� 𝑻𝟐- space if for  all  𝒷, 𝓀 ∈ ℳ with  

( 𝒷 ≠ 𝓀 ) there exist 𝔗�̂�- open set  𝒱, 𝒲 such that  𝒷 ∈ 𝒱1 , 𝓀 ∉ 𝒱1 and 𝓀 ∈ 𝒲1,  𝒷 ∉  𝒲1 and 𝒱 ∩ 𝒲 =  �̃� 

Theorem  3.25 : Every intuitionistic  𝑇2- space  is  𝔗�̂� 𝑇2- space but not conversely. 

Proof:  Since every intuitionistic open is 𝔗�̂�- open, the proof follows. 

Example 3.26: Let ℳ = {𝒶, 𝒷} with the family 𝔗𝜏 = { ℳ̃, �̃�, < ℳ, 𝜑, 𝜑 >}.Then 𝒶 ∈  𝒱 =  < ℳ, {𝒶}, {𝒷} >, 
𝒷 ∉  𝒱 and  𝒷 ∈ 𝒲 = < ℳ, {𝒷}, {𝒶} >, 𝒶 ∉  𝒲. Also, 𝒱 ∩ 𝒲 =  �̃�. Here (ℳ, 𝔗𝜏1) is  𝔗�̂� 𝑇2- space. But there 

exist not an intuitionistic open set 𝒱, 𝒲 such  that  𝒷 ∈ 𝒱1, 𝓀 ∉ 𝒱1 and 𝓀 ∈ 𝒲1, 𝒷 ∉  𝒲1 and 𝒱 ∩ 𝒲 =  �̃�. 

Theorem 3.27: Let  (ℳ, 𝔗𝜏1) and (𝕐, 𝔗𝜏2) be two intuitionistic topological spaces. Let 𝔉 ∶ (ℳ, 𝔗𝜏1) →
(𝕐, 𝔗𝜏2) be one- one, onto and 𝔗�̂�- open map. If (ℳ, 𝔗𝜏1) is 𝔗𝑇2- space then (𝕐, 𝔗𝜏2) is 𝔗�̂� 𝑇2- space. 

Proof: Suppose 𝒷, 𝓀 ∈ 𝕐 with ( 𝒷 ≠ 𝓀 ). Since 𝔉 is onto, then there exist 𝔤 , 𝔪 ∈ ℳ such that 𝔉 (𝔤) =  𝒷 and 

𝔉 (𝔪) =  𝓀. Then 𝔉 (𝔤) ≠  𝔉 (𝔪) which implies 𝔤 ≠ 𝔪, as 𝔉 is one-one. Since 𝔤, 𝔪 ∈ ℳ, 𝔤 ≠ 𝔪 and (ℳ, 𝔗𝜏1) 

is 𝔗𝑇2- space, then there exist  𝔗- open set 𝒱 in ℳ such that 𝔤 ∈ 𝒱1, 𝔪 ∉ 𝒱1 and 𝔪 ∈ 𝒲1, 𝔤  ∉ 𝒲1 and 𝒱 ∩
𝒲 =  �̃�. Since, 𝔉 is 𝔗�̂�- open,  𝒱 and 𝒲 ∈ (ℳ, 𝔗𝜏1) implies  𝔉 (𝒱) and  𝔉 (𝒲) is 𝔗�̂�- open in (𝕐, 𝔗𝜏2). As 

𝔉 (𝒱) = < 𝕐, 𝔉(𝒱1), 𝔉(𝒱1) >, 𝔉 (𝒲) =< 𝕐, 𝔉(𝒲1), 𝔉(𝒲1) >, 𝒷 =   𝔉 (𝔤) ∈ 𝔉(𝒱1) and 𝓀 =  𝔉 (𝔪) ∈
𝔉(𝒲1). Also, 𝔪 ∉  𝒱1 implies 𝓀 = 𝔉 (𝔪)) ∉ 𝔉(𝒱1) and 𝔤 ∉  𝒲1 implies 𝒷 = 𝔉(𝑝) ∉ 𝔉(𝒲1) . Consider 

𝔉(𝒱) ∩ 𝔉(𝒲)  ≠ �̃� which implies 𝔉(𝒱1) ∩ 𝔉(𝒲1) ≠ 𝜑 then there exists at least one 𝑐 ∈  𝕐 for which 𝑐 ∈ 

𝔉(𝒱1) ∩ 𝔉(𝒲1) which implies 𝑐 ∈ 𝔉(𝒱1) and 𝑐 ∈ 𝔉(𝒲1). Then there exists 𝑢 ∈ 𝒱1 and 𝑣 ∈  𝒲1 such that 

𝔉(𝑢)  =  𝔉(𝑣)  =  𝑐 ⇒  𝑢 =  𝑣 as 𝔉 is one-one ⇒ 𝑢 =  𝑣 ∈ 𝒱1 ∩ 𝒲1 which is a contradiction to the fact that 

𝒱 ∩  𝒲 = �̃�. Therefore, we get 𝔉 (𝒱) ∩ 𝔉 (𝒲)  = �̃�. Finally, we get 𝒷, 𝓀  ∈  𝕐 with ( 𝒷 ≠ 𝓀 ) there exist 𝔗�̂�- 

open set 𝔉 (𝒱),  𝔉 (𝒲) ∈ (𝕐, 𝔗𝜏2) such that 𝒷 =  𝔉 (𝔤) ∈  𝔉(𝒱1), 𝓀 =  𝔉 (𝔪) ∉ 𝔉(𝒱1) and 𝓀 = 𝔉 (𝔪)  ∈
 𝔉(𝒲1), 𝒷 =  𝔉 (𝔤) ∉  𝔉(𝒲1) and  𝔉(𝒱) ∩  𝔉(𝒲)  = �̃�. Hence (𝕐, 𝔗𝜏2) is 𝔗�̂� 𝑇2- space. 

Theorem 3.28: Let  (ℳ, 𝔗𝜏1) and (𝕐, 𝔗𝜏2) be two intuitionistic topological spaces. Let 𝔉 ∶ (ℳ, 𝔗𝜏1) →
(𝕐, 𝔗𝜏2) be a one- one, onto and 𝔗�̂�- continuous map. If (𝕐, 𝔗𝜏2) is  𝔗𝑇2- space then (ℳ, 𝔗𝜏1) is 𝔗�̂� 𝑇2- space. 

Proof: Let  𝒹, 𝒽  ∈  ℳ with  𝒹 ≠  𝒽  implies  𝔉(𝒹), 𝔉(𝒽) ∈ 𝕐  with  𝔉(𝒹) ≠  𝔉(𝒽) as 𝔉 is one- one. Since 

𝔉(𝒹), 𝔉(𝒽) ∈ 𝕐 and (𝕐, 𝔗𝜏2) is 𝔗𝑇2- space, then there exist an intuitionistic open set 𝒱 and 𝒲 in 𝕐 such that  

𝔉(𝒹) ∈ 𝒱1, 𝔉(𝒽)  ∉  𝒱1 or  𝔉(𝒽) ∈ 𝒲1,  𝔉(𝒹) ∉  𝒲1 and 𝒱 ∩  𝒲 = �̃� which implies 𝒱1 ∩ 𝒲1 = �̃�. Now, 

𝔉(𝒹) ∈ 𝒱1 implies 𝔉−1(𝔉(𝒹)) ∈ 𝔉−1(𝒱1) which implies 𝒹 ∈ 𝔉−1(𝒱1). And  𝔉(𝒽) ∈ 𝒱1 implies 𝔉−1(𝔉(𝒽)) ∈ 

𝔉−1(𝒱1) which implies 𝒽 ∈ 𝔉−1(𝒱1). As 𝔉(𝒽) ∈  𝒲1,  𝔉−1(𝔉(𝒽))  ∈  𝔉−1(𝒲1) which implies 𝒽 ∈  𝔉−1(𝒲1). 

Similarly, 𝒽 ∉  𝔉−1(𝒱1), 𝒹 ∉  𝔉−1(𝒲1). Suppose 𝔉−1(𝒱) ∩ 𝔉−1(𝒲)  ≠  �̃� which implies 𝔉−1(𝒱1) ∩
𝔉−1(𝒲1)  ≠  𝜑  which implies 𝔉(𝔉−1(𝐺1)) ∩ 𝔉(𝔉−1(𝐻1))  ≠ 𝜑 which implies 𝒱1 ∩ 𝒲1  ≠  𝜑  which is a 

contradiction. Therefore  𝔉−1(𝒱) ∩ 𝔉−1(𝒲) =  �̃�. Finally, we get  𝒹, 𝒽 ∈ ℳ with  𝒹 ≠  𝒽  there exist 𝔗�̂�- open 
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set 𝔉−1(𝒱) such that  𝒹 ∈ 𝔉−1(𝒱1),  𝒽 ∉ 𝔉−1(𝒱1) or 𝒽 ∈ 𝔉−1(𝒲1), 𝒹 ∉ 𝔉−1(𝒲1) and  𝔉−1(𝒱) ∩ 𝔉−1(𝒲)  =
�̃�.  Hence (ℳ, 𝔗𝜏1) is  𝔗�̂� 𝑇2- space. 

Theorem 3.29 : Let  (ℳ, 𝔗𝜏1) be intuitionistic topological spaces. Then the following implications are valid but 

not conversely. 

 

 
Fig. 3.2 

 

Proof:   Obvious. 

Example  3.30:  Let  ℳ = { ℊ, ℓ} with the family 𝔗𝜏 = { ℳ̃, �̃�, < ℳ, {ℊ}, { 𝑙} >}.    𝔗�̂� -𝑂𝑆(ℳ, 𝔗𝜏) = {ℳ̃, 
𝜑,̃  < ℳ, 𝜑, 𝜑 >,   < ℳ, 𝜑, {ℊ} >, < ℳ, {ℊ}, 𝜑 >,  < ℳ, 𝜑, {ℓ} >, < ℳ, {ℊ}, {ℓ} >}. Here  (ℳ, 𝔗𝜏) is 𝔗�̂� 

𝑇2(𝑖𝑖)- space but not 𝔗�̂� 𝑇2(𝑖)- space. 

Example 3.31 :  In example 3.30, 𝔗�̂�𝑇2(𝑖𝑖)- space is satisfied but not 𝔗�̂�  𝑇1(𝑣)- space. 

Example  3.32:  Let  ℳ = { ℊ, ℓ} with the family 𝔗𝜏 = { ℳ̃, �̃�, < ℳ, {ℊ}, { 𝑙} >}.  𝔗�̂� - 𝑂𝑆 (ℳ, 𝔗𝜏)   =   {ℳ̃, 
 𝜑,̃  < ℳ, 𝜑, 𝜑 >,   < ℳ, {ℊ}, 𝜑 >,   < ℳ, 𝜑, {ℓ} >, M, {ℊ}, {ℓ} >}.    𝔗�̂� - 𝑂𝑆 (ℳ, 𝔗𝜏)  =  𝔗𝜏.  Here  (ℳ, 𝔗𝜏) 

is  𝔗�̂� 𝑇2(𝑖𝑣)- space  but  not 𝔗�̂� 𝑇2(𝑖)- space. 

Example 3.33:  The above example satisfies  𝔗�̂� 𝑇2(𝑖𝑣)- space but not 𝔗�̂� 𝑇2(𝑖𝑖)- space and 𝔗�̂� 𝑇2(𝑖𝑖𝑖)- space. 

Example  3.34 :  Let  ℳ = { ℊ, ℓ} with the family 𝔗𝜏 = { ℳ̃, �̃�, < ℳ, {ℊ}, { 𝑙} >}.   𝔗�̂� -𝑂𝑆(ℳ, 𝔗𝜏) = {ℳ̃, 𝜑,̃ 
 < ℳ, 𝜑, 𝜑 >,   < ℳ, 𝜑, {ℊ} >,  < ℳ, {ℊ}, 𝜑 >, < ℳ, 𝜑, {ℓ} >, ℳ, {ℊ}, {ℓ} >}. Here  (ℳ, 𝔗𝜏) is  𝔗�̂� 𝑇2(𝑣𝑖)- 

space  but  not 𝔗�̂� 𝑇2(𝑣)- space. 
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