Contraction And $C(\alpha)$ **- Suboperator Classes**

Awadh Bihari Yadav

Department Of Mathematics, C. M. Science College, Darbhanga, Bihar, India.

Abstract:

In this paper we characterize the generalisation of contraction in Hilbert space and $C(\alpha)$ - *Suboperator class and establish some new result in the class of* $C(\alpha)$ - *Suboperator* [1] *and its contractive extensions of a* $C(\alpha)$ -*Suboperator class in a complex Hilbert space. The characterizations include a quadratic form inequality. The bounded linear operator T in complex Hilbert space which satisfy* $T = \beta I + (1 - \beta)U$ where $\beta \in (0,1)$ and U *is a contraction* ($||U|| \le 1$).

Keywords: Contraction, $C(\alpha)$ *- Suboperator, Contractive extension, Sectorial operator, Hilbert space.* Date of Submission: 26-11-2024 Date of Acceptance: 06-12-2024

I. Introduction:

Let H be a complex Hilbert space with the inner product $(.,.)$ and the norm $\|.\|$. Here an operator in H means a linear map $T: D(T) \subset H \to H$ whose domain $D(T)$ is a linear subspace of H. Also $\sigma(T)$ is the spectrum of T and $R(T)$ is the range, moreover $L(H)$ denotes the space of all bounded linear operator on H. P_{H_0} denote the orthogonal projection in a Hilbert space H on to its subspace H_0 .

Definition 1.1: Let $\alpha \in \left(0, \frac{\pi}{2}\right)$ $\frac{\pi}{2}$ and let a linear operator T in H be defined on the subspace H_0 with the condition $\| T \sin \alpha \pm i \cos \alpha I \| \leq 1$ (1)

If in the case $H_0 = H$, we say that T belongs to the class $C(\alpha)$ and if in the case $H_0 \neq H$, the operator T is called a $C(\alpha)$ - Suboperator. It is clear that if $T \in C(\alpha)$ iff $T^* \in C(\alpha)$. It is easy to see that the condition (1) is equivalent to

 $\sin \alpha (\|h\|^2 - \|Th\|^2) \geq 2cos \alpha |Im(Th, h)|$ for all $h \in H_0$ (2)

It is clear that the operators from the class $C(\alpha)$ and $C(\alpha)$ - Suboperators are contractions and this type of operator define the class $C(0)$ as the set of all self-adjoint contractions in H and a nondensely defined Hermitian contraction we will call a $C(0)$ - Suboperator.

Let $0 < t < \pi$, we define open sector as $S_t = \left\{ z \in \mathbb{C}/_{(0)} : |arg z| < t \right\}$ and its closure $\bar{S}_t =$ $\left\{z\in\mathbb{C}/_{(0)}: |argz|\leq t\right\}$ we consider the following arg with value in $[-\pi,\pi]$.

Definition 1.2: Let $-1 < u < 0$ and $0 \le v < \pi$, we denoted by $\theta_v^u(H)$, for the set of all closed linear operator $T: D(T) \subset H \to H$ which satisfy (a) $\sigma(T) \subset S_v$ (b) For any $v < t < \pi$, there exit a positive constant c_t such that $||(z-T)^{-1}|| \leq c_t |z|^u$, for any $z \notin S_t$ then this linear operator T is called sectorial operator in H if T \in $\theta_v^u(H)$.It is clearly it having non-densely domain and range.

 $C(\alpha)$ - Suboperators or operator of the class $C(\alpha)$ naturally arise in the Fractional linear transformation of the form $(I - S)(I + S)^{-1}$ of sectorial linear relation S with vertex at the origin and the semi angle α [2].

Let T be a non-densely defined contraction in the complex Hilbert space H with $D(T) = H_0$. By M.G. Crandall [3], gave a parametric form of all contractive extension on H of the operator T in the operator form as $\bar{T}_M = TP_{H_0} + (I - TT^*)^{1/2}MP_R$ (3)

Where $T^*: H \to H_0$ is adjoint of T and $R = H \oplus H_0$, and P_{H_0}, P_R are orthogonal projection in H on to H_0 and R respectively and $M: R \to \overline{ran}(I - TT^*)^{1/2}$ is a contractive parameter. This description of all such extension of a non-densely defined contraction T is in the form of block operator matrices. We will often use the following well known result of R.G. Dauglus [4].

Theorem 1.3: [4] For every $S, T \in L(H)$ the following statement are equivalent: (a) $ran S \subset ran T$ (b) $S = TU$ for some $U \in L(H)$ (c) $SS^* \leq \lambda TT^*$ for some $\lambda \geq 0$.

In this case there is a unique U satisfying $||U|| = [inf{\lambda:SS^* \leq TT^*}]^{1/2}$ and ran $U \subset \overline{ran} T^*$.

² – ||Th||² ≥

Let T be contraction operator which satisfy the inequality $\alpha Re((I-T)h, h)$ (4) For some $\alpha > 0$ and all $h \in H$, then T has a form $T = \mu I + (1 - \mu) U$ (5)

Where U is a contraction ($||U|| \le 1$) and $\mu \in (0,1)$ this means that the spectrum of T is contained in a disk $(z \in C: |z - \mu| \le 1 - \mu)$ and this type of inequality is called quadratic form inequality, and one has $||T^n h|| \le ||e^{-\epsilon n (1-T)} h||$ for some $\epsilon \in (0,1)$ and $h \in H$, $n \in N$. This is a type of domination of the discrete semigroup $(T^n)_{n \in N}$ by the continuous time semigroup $(e^{-t(I-T)})_{t \ge 0}$. A generalization of (5) had formulated by Nevanlinna [5] who obtained the following results.

Theorem 1.4 : Let *H* be complex Hilbert space and $T \in L(H)$, the following two condition are equivalent. (a) there exist $\mu \in (0,1)$, $U \in L(H)$ such that $sup_{n \in N} ||U^n|| < \infty$ and $T =$

$$
\mu I + (1 - \mu)U
$$

(b) there exist constant $a, b > 0$ such that $||e^{zT}|| \le a e^{|z|(1-b\theta^2)}$ for all $z \in C$ with $z = |z|e^{i\theta}, \theta \in C$ $[-\pi, \pi]$, Moreover, if these condition hold, then $sup_{n \in \mathbb{N}} ||T^n|| < \infty$, $sup_{n \in \mathbb{N}} n^{1/2} ||T^n - T^{n+1}|| < \infty$.

II. Contractions And Their Contractive Extensions

Let H and H' be two Hilbert space and let suppose H_0 is a subspace of H and $T: H_0 \to H'$ is a nondensely contraction. The operator \tilde{T} defined on H is called a contractive extension of T if \tilde{T} ⊃ T and $\|\tilde{T}\|$ ≤ 1 . let $T \in L(H_0, H')$ and $T^* \in L(H', H_0)$ be its adjoint operator and $R = H \ominus H_0$. the following theorem considered by M.G Crandall [6].

Theorem 2.1: The result $\tilde{T} = TP_{H_0} + (I - T^*T)^{1/2} \tilde{R}P_R$ establishes 1-1 correspondense between all contractive extension of T and all contraction K from R to closure of the range $(I - T^*T)^{1/2}$.

Proof: Let the operator \tilde{T} be given in this result, where K is a contraction, then

$$
\widetilde{T^*} = T^* + K^*(I - T^*T)^{1/2}
$$

Let for all $u \in H$ and $(I - T^*T)^{1/2} = \beta(say)$, then

$$
\|\widetilde{T^*}u\|^2 = \|T^*u\|^2 + \|K^*\beta u\|^2
$$

\n
$$
\leq \|T^*u\|^2 + \|\beta u\|^2 = \|u\|^2
$$

Thus \widetilde{T}^* is a contraction. Hence the operator \widetilde{T} is contraction and $\widetilde{T} \restriction H_0 = T$.

Conversely, if \tilde{T} is a contractive extension of T then its adjoint \tilde{T}^* : $H \to H$ is also a contraction. Because $\tilde{T} \supset T$, we get $P_{H_0} \tilde{T}^* = T^*$. hence the operator \tilde{T}^* is in the form $\tilde{T}^* = T^* + S$, where the range of the operator S is in the contained $R = H \ominus H_0$, it follow that $\|\tilde{T}^*u\|^2 = \|T^*u\|^2 + \|Su\|^2$, for all $u \in H$. Since \tilde{T}^* is a contraction, we obtain

 $||Su||^2 \le ||u||^2 - ||T^*u||^2$, $u \in H$ by theorem 1.3, we have $S^* = (I - T^*T)^{1/2} K$, where K is a contraction from R to C_{T^*} , where C_{T^*} is the closure of the range space of $(I - T^*T)^{1/2}$.

We extend this result as a consequence for $\tilde{T} = TP_{H_0} + (I - T^*T)^{1/2} \, KP_R$ with non-densely contraction $K \in L(R, C_{T^*})$ has the following relations

$$
\left\| \left(I - \tilde{T}^* \tilde{T} \right)^{1/2} v \right\|^2 = \left\| \left[(I - T^* T)^{1/2} P_{H_0} - T^* K P_R \right] v \right\|^2
$$

+
$$
\left\| (I - K^* K)^{1/2} P_R v \right\|^2, v \in H
$$

and
$$
\left\| \left[I - \left(\tilde{T}^* \right)^* \tilde{T}^* \right] u \right\|^2 = \left\| [I - (K^*)^* K^*] [I - (T^*)^* T^*] u \right\|^2, u \in H
$$

since
$$
T^* C_{T^*} \subset C_T, \text{ from relation (5) gives,}
$$

$$
inf \left\{ \left\| (I - \tilde{T}^* \tilde{T}) v - (I - \tilde{T}^* \tilde{T}) w \right\|^2 : w \in H_0 \right\} = \left\| (I - K^* K)^{1/2} P_R v \right\|^2, \text{ for all } v \in H
$$

This implies that,
$$
Range \left[I - \left(\tilde{T}^* \right)^* \tilde{T}^* \right]^{1/2} = \left[I - \left(T^* \right)^* T^* \right]^{1/2} range \left[I - \left(K^* \right)^* K^* \right]^{1/2}.
$$

III. Matrix Representation Of Contractive Extensions

If possible, the Hilbert space H^t is decomposed in the way as $H' = H'_0 \oplus M$, then we write $T = C^*$ + T_0 , where $T_0 = P_{H'_0} T \in L(H_0, H'_0)$ and $C^* = P_M T \in L(H_0, M)$.

Then, we transform T in matrix form $= \begin{bmatrix} C^* \\ T \end{bmatrix}$ $\begin{aligned} \mathcal{L}_{T_0} \left| \right. &\right|, \text{ but } T \text{ is a contraction, we have } \|T_0 h_0\|^2 + \end{aligned}$ $||C^*h_0||^2 \le ||h_0||^2$ for all $h_0 \in H_0$, then

$$
C^* = K_0(I - T_0^*T_0)^{1/2}
$$
\n(8)

Where K_0 is operator from closure of the range $(I - T_0^*T_0)^{1/2}$ to M, which is also contraction. A bounded extension \tilde{T} of T also has the matrix representation as

$$
\tilde{T} = \begin{bmatrix} C^* & B \\ T_0 & D \end{bmatrix} : \begin{bmatrix} H_0 \\ R \end{bmatrix} \to \begin{bmatrix} H'_0 \\ M \end{bmatrix}
$$

In this representation, the block matrix description of B and D of all contractive extension \tilde{T} was obtained in [7] . here we propose another approach based on the Crandall,s form [6]

Theorem 3.1: The consequence $\tilde{T} = \begin{bmatrix} T_0 & d_{T_0} S \\ V & V \end{bmatrix}$ $\begin{bmatrix} T_0 & a_{T_0}S \ K_0d_{T_0} & -K_0T_0^*S + d_{K_0^*}Ud_S \end{bmatrix} : \begin{bmatrix} H_0 \ R \end{bmatrix}$ $\begin{bmatrix} H_0 \\ R \end{bmatrix} \rightarrow \begin{bmatrix} H_0' \\ M \end{bmatrix}$ $\begin{bmatrix} a_0 \\ M \end{bmatrix}$ (9) establishes 1-1

correspondence between all contractive extension \tilde{T} of the contraction $T = T_0 + K_0 d_{T_0}$ and all pairs (S, U) of contractive operator where $S \in L(R, C_{T_0})$ and $U \in L(C_S, C_{K_0})$ and non-negative square root $d_T = (I - T^*T)^{1/2}$ which is also called defect operator of T .

Proof: since from theorem 2.1, we have that $T^* = T_0^* P_{H_0} + d_{T_0} K_0^* P_M$, then for all $u \in H$, we have, $||u||^2$ – $||T^*u||^2 = ||P_{H'_0}u||^2 + ||P_Mu||^2 - ||(T_0^*P_{H'_0} + d_{T_0}K_0^*P_M)u||^2$ 2 $\ln n \cdot n$ \ln^2 2

$$
= \|P_M u\|^2 + \|P_{H'_0} u\|^2 - \|T_0^* P_{H'_0} u\|^2 - \|d_{T_0} K_0^* P_M u\|^2 - 2Re(T_0^* P_{H'_0} u, d_{T_0} K_0^* P_M u)
$$

$$
= \|d_{T_0^*} P_{H'_0} u\|^2 - \|K_0^* P_M u\|^2 + \|T_0 K_0^* P_M u\|^2 - 2Re(d_{T_0^*} P_{H'_0} u, T_0 K_0^* P_M u) + \|P_M u\|^2
$$

$$
= \|d_{T_0^*} P_{H'_0} u - T_0 K_0^* P_M u\|^2 + \|d_{K_0^*} P_M u\|^2
$$

And hence, $||d_{T^*}u||^2 = ||d_{T_0^*}P_{H_0'}u - T_0K_0^*P_Mu||^2 + ||d_{K_0^*}P_Mu||^2$ (10) Since the equality $T_0d_{T_0} = d_{T_0^*}T_0$, so we get $T_0C_{T_0} \subset C_{T_0^*}$ and since $range(K_0^*) \subset C_{T_0}$ thus from (10) $\left\| d_{K_0^*} P_M u \right\|^2 = \inf \{ \| d_{T^*}(u - v) \|^2 : v \in H_0$ } (11) Let $\kappa_0 = \overline{d_{T^*}H_0}$ and $M_0' = C_{T^*} \oplus \kappa_0'$, so $M_0' = (m \in C_{T^*}: d_{T^*}m \in M)$, and from (10) and (11) we get, $||P_{x_0'}d_{T^*}u||^2 = ||d_{T_0^*}P_{H_0'}u - T_0K_0^*P_Mu||^2$, and $||P_{M_0'}d_T*u||^2 = ||d_{K_0^*}P_Mu||^2 \t u \in H$ (12) Thus, $||P_{\varkappa_0'}||$ $\left\| d_{T^*} w \right\|^2 = \left\| d_{T_0^*} w \right\|^2, \ \ w \in H_0^k$

From (12), we define a unitary operator $U_0 \in L(\kappa_0, C_{T_0^*})$ and $Z_0 \in L(M'_0, C_{K_0^*})$ such a way that $U_0 P_{\kappa'_0} d_{T^*} u = d_{T_0^*} P_{H'_0} u - T_0 K_0^* P_M u$

$$
Z_0 P_{M'_0} d_{T^*} u = d_{K_0^*} P_M u, \qquad u \in H'
$$
\n(13)

\nSince adjoint of unitary operator is equal to its inverse that means $U_0^* = U_0^{-1}$ and $Z_0^* = Z_0^{-1}$, then from (13)

we have

$$
d_{T^*} = U_0^{-1} \left(d_{T_0^*} P_{H_0'} - T_0 K_0^* P_M \right) + Z_0^{-1} d_{K_0^*} P_M
$$
\n
$$
(14)
$$

 $=(d_{T_0^*}-K_0T_0^*)U_0P_{\varkappa'_0}+d_{K_0^*}Z_0P_{M_0^*}$

Since $K \in L(R, C_{T^*})$ is contraction, then $K = P_{\varkappa_0'}K + P_{M'_0}K$, put $S = U_0 P_{\varkappa_0'}K$, $Y = Z_0 P_{M'_0}K$

 $\overline{K} = S + Y$, it follows that $K = U_0^{-1}S + Z_0^{-1}Y$ and $||Kr||^2 = ||\overline{K}r||^2 = ||Sr||^2 + ||Yr||^2$ for all $r \in R$. Since K is contraction then $\overline{K} \in L(M, C_{T_0^*} \oplus C_{K_0^*})$ is also contraction iff $Y = Ud_S$ where $U \in L(C_S, C_{K_0^*})$ is also contraction.

Again since $K \in L(R, C_{T^*})$ is contraction, then by (14) and all $r \in R$ we get $d_{T^*}Kr = (d_{T_0^*} - K_0T_0^*)Sr + d_{K_0^*}Ud_Sr$ (15)

Let $\overline{T} = TP_{H_0} + d_{T^*} \overline{KP_R}$, then by (5) and (15) gives (9), if the \overline{T} is given by (6) with contraction $S \in$ $L(R, d_{T_0^*})$ and $U \in L(C_S, C_{K_0^*})$ then the operators $\overline{K} = S + Ud_S$ and $K = U_0^{-1}S + Z_0^*Ud_S$ are contractions. Since $K \in L(R, C_{T^*})$ and hence we obtain

$$
\overline{T} = (T_0 + K_0 d_{T_0}) P_{H_0} + [(d_{T_0^*} - K_0 T_0^*) S + d_{K_0^*} U d_N] P_R \n= T P_{H_0} + [(d_{T_0^*} - K_0 T_0^*) U_0 P_{K_0'} + d_{K_0^*} Z_0 P_{R_0'}] K P_R \n= T P_{H_0} + d_{T^*} K P_R
$$

And hence \overline{T} is a contractive extension of T .

Theorem 3.2: Let T be a $C(\alpha)$ -suboperator in H with dom(T) = $H_0 \subset H$ and * $)(I + T)$ be sectorial operator with the vertex at the origin and the semi angle θ . Define the contractive extension \bar{T}_0 = TP_{H_0} and let

 $\tilde{\varphi}(z) = \left[-\overline{T}_0 + z\overline{T}_0^*(I - z\overline{T}_0^*)^{-1}d_{\overline{T}_0}\right] \uparrow C_{\overline{T}_0}$ be the characteristic function [8] of \overline{T}_0 . Then there exist strong unitary limits $\tilde{\varphi}(\pm 1) = S - \lim_{z \to \pm 1} \bar{\varphi}(z)$, $\tilde{\varphi}^* = S - \lim_{z \to \pm 1} \tilde{\varphi}^*(z)$, (which is nontangential to the imazinary axis) and moreover, the operator $\tilde{\varphi}(\pm 1) \upharpoonright R$ are linear isometries.

Proof: since $\bar{T}_0^* = T^*$, then $d_{T^*} = d_{\bar{T}_0^*}$, $d_{\bar{T}_0} = d_T P_{H_0} + P_R$ and hence $C_{\bar{T}_0^*} = C_{T^*}$, $C_{\bar{T}_0} = C_T \oplus R$, then we have, $d_{T^*}(I - zT_0^*)^{-1}d_{Tu} = U_0^{-1}d_{T_0^*}(I - zT_0^*)^{-1}d_{T_0}d_{K_0}V_0u, \quad u \in C_T$ (16) Where V_0 is an isometry from C_T on to C_{K_0} . Consequently, $\tilde{\varphi}(z)u = -Tu + U_0^{-1}[\varphi_0(z) + T_0]d_{K_0}V_0u, \qquad u \in C_T$ (17) Let $r \in R$, then,

$$
d_{T^*}(I - zT^*)^{-1}r = d_{T^*}(I - zT^*)^{-1}(r - zT^*r + zT^*r)
$$

= $d_{T^*}r + zd_{T^*}(I - zT^*)^{-1}T^*r = d_{T^*}r + zd_{T^*}(I - zT^*)^{-1}d_{T_0}K_0^*r$
= $d_{T^*}r + U_0^{-1}[\varphi(z) + T_0]K_0^*r$

Therefore, $\tilde{\varphi}(z) r = z d_{T^*} r + z U_0^{-1} [\varphi(z) + T_0] K_0^*$ $r \in R$ (18)

Since T_0^* and T_0 being the class $C(\alpha)$ in the subspace $H_0 \subset H$, there exist unitary strong limiting values $\varphi(\pm 1)$ and $\varphi^*(\pm 1)$ of $\varphi(z)$ and $\varphi^*(z)$ respectively, this implies that there exist unitary nontangential strong limiting value $\tilde{\varphi}(\pm 1)$, $\tilde{\varphi}^*(\pm 1)$ and

$$
\tilde{\varphi}(\pm 1) = \left[-T + U_0^{-1}[\varphi(\pm 1) + T_0]d_{K_0}V_0\right]P_{H_0} \pm \left[d_{T^*} + U_0^{-1}[\varphi(\pm 1) + T_0]K_0^*\right]P_R
$$

Next, we prove that $\tilde{\varphi}(\pm 1) \upharpoonright R$ are linear isometry. It is easy to say that

 $||r||^2 - ||\tilde{\varphi}(z)r||^2 = (1 - |z|^2) ||(I - zT^*)^{-1}r||^2$, $r \in R$

For
$$
r \in R
$$
 from the equality $T^*P_R = d_{T_0}K_0^*P_R$, we have,

$$
(1-|z|^2)^{1/2}(I-zT^*)^{-1}r = (1-|z|^2)^{1/2}r + z(1-|z|^2)^{1/2}(I-zT^*)^{-1}T^*r
$$

=
$$
(1-|z|^2)^{1/2}r + z(1-|z|^2)^{1/2}(I-zT^*)^{-1}d_{T_0}K_0^*r
$$

Since, $||v||^2 - ||\varphi(z)v||^2 = (1 - |z|^2) ||(I - zT^*)^{-1} d_{T_0} v||^2$, $v \in C_{T_0}$ and the operator $\varphi(\pm 1)$ are unitary in C_{T_0} . Consequently we have,

$$
S - \lim_{z \to \pm 1} (1 - |z|^2)^{1/2} (I - zT^*)^{-1} d_{T_0} = 0
$$

Therefore, for all $r \in R$, we have

$$
\lim_{z \to \pm 1} (\|r\|^2 - \|\tilde{\varphi}(z)r\|^2) = \lim_{z \to \pm 1} \left\| (1 - |z|^2)^{1/2} \left(r + z(I - zT^*)^{-1} d_{T_0} K_0^* r \right) \right\|^2
$$

And hence operator $\tilde{\varphi}(\pm 1) \restriction R$ are linear isometry.

Theorem 3.3: Let $T \in C(\alpha)$ - sub operator class and \tilde{T} be its contractive extension such that there exist $\lambda > 0$ with

 $\|h\|^2 - \|\tilde{T}h\|^2 \ge \lambda \left| \left[(I - \tilde{T})h, h \right] \right|$ (19) For all $h \in H$, then , $Sup_{n \in N} n | \tilde{T}^n - \tilde{T}^{n+1} | < \infty$.

Proof: This inequality implies that $||h||^2 - ||\tilde{T}h||^2 \ge 0$, so that \tilde{T} is contraction. Thus this implies $||\tilde{T}|| \le 1$ and there exist $\lambda > 0$ such that $||h||^2 - ||\tilde{T}h||^2 \ge \lambda \text{ Re}\left[(I - \tilde{T})h, h \right]$ for all $h \in H$, Consequently,

 $\|h\|^2 - \|\tilde{T}h\|^2 + \|(I - \tilde{T})h\|^2 = 2 \Re\left[(I - \tilde{T})h, h\right]$ (20) Hence, from (19) and (20) we get, $\left| \left[(I - \tilde{T})h, h \right] \right| \leq 2\lambda^{-1} \text{ Re} \left[(I - \tilde{T})h, h \right]$

This inequality is a sectorial estimate with quadratic form which implies that the semi group $(e^{-t(I-\tilde{T})})_{t\geq0}$ is bounded holomorphic and hence one has a result

 $||(I - \tilde{T})e^{-t(I - \tilde{T})}|| \leq \lambda t^{-1}$ for all $t > 0$

(But we know a result for all contraction T, $||T^n h|| \leq ||e^{-\varepsilon n (1-T)} h||$, $h \in domT$)

Using this result, we obtain a bound,

 $||(I - \tilde{T})\tilde{T}^n|| \leq ||(I - \tilde{T})e^{-\varepsilon n(I - \tilde{T})}|| \leq \lambda n^{-1}$, for all $n \in \mathbb{N}$ And hence we get, $Sup_{n\in\mathbb{N}} n|\tilde{T}^n - \tilde{T}^{n+1}| < \infty$.

IV. Conclusions:

In this article we make use of the results from previously the known results and establish some new results on extension of $C(\alpha)$ -sub operator classes and also extend some results and application.

References:

- [1] Yu. M. Arlinskii, A class of contractions in a Hilbert space, Translated from Ukrainski Matematicheskii zhurnal, vol.39, No.6, (1987), 691-696.
- [2] M.M. Malamud, On some classes of extensions of sectorial operators and dual pair of contractions, Operator theory: Advances and appl. 124 (2001), 401-448.
- [3] M.G. Crandall, Norm preserving extensions of linear transformation in Hilbert space, Proc. Amer. Math. Soc. 21 (1969), 335-340.
[4] R.G. Douglus, On majorization, factorization and range inclusion of operators in Hilbe [4] R.G. Douglus, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966),
- 413-416. [5] O. Nevanlinna, Resolvent conditions and powers of operators, Studia math, 145 (2001) 113-14.
- [6] Gr. Arsene and A. Gheondea, Completing matrix contraction, J. Operator theory, 7 (1982) 179-198.
- [7] T. Kato, Perturbation theory of linear operator, 2nd ed, springer, 1980.
- [8] W. Rudin, Functional analysis, 2nd ed, McGraw-Hill Inc, New york, 1991.
- [9] N. Dungey, Time regularity for random walks on locally compact group, Probab. Theory Related fields, 137 (2007), 404-410.
- [10] S. Sarkar, Pure contractive multipliers of some reproducing kernel Hilbert spaces and applications, arXiv:2112. 08332v1[Math.FA], 2021.
- [11] J. W. He, Y. Zhou. , Non-autonomous fractional Cauchy problems with almost sectorial operators, B. sci. Math, 191 (2024).
- [12] T. Ozawa, J. E. Restrepo, D. Suragan, Inverse abstract Cauchy problems, Appl. Anal. 101(14) (2022) 4965-4969.
[13] A. B. Yadav, Characterization of S_{ξ} –super strictly singular operator, IOSR. J. of Mathematics,
- A. B. Yadav, Characterization of S_{ϵ} –super strictly singular operator, IOSR. J. of Mathematics, Vol-19, (2023) 30-33.