Contraction And C(\alpha)- Suboperator Classes

Awadh Bihari Yadav

Department Of Mathematics, C. M. Science College, Darbhanga, Bihar, India.

Abstract:

In this paper we characterize the generalisation of contraction in Hilbert space and $C(\alpha)$ - Suboperator class and establish some new result in the class of $C(\alpha)$ - Suboperator [1] and its contractive extensions of a $C(\alpha)$ -Suboperator class in a complex Hilbert space. The characterizations include a quadratic form inequality. The bounded linear operator T in complex Hilbert space which satisfy $T = \beta I + (1 - \beta)U$ where $\beta \in (0,1)$ and U is a contraction ($||U|| \le 1$).

 Keywords: Contraction, C(α)- Suboperator, Contractive extension, Sectorial operator, Hilbert space.

 Date of Submission: 26-11-2024
 Date of Acceptance: 06-12-2024

I. Introduction:

Let *H* be a complex Hilbert space with the inner product (.,.) and the norm $\|.\|$. Here an operator in *H* means a linear map $T:D(T) \subset H \to H$ whose domain D(T) is a linear subspace of *H*. Also $\sigma(T)$ is the spectrum of *T* and R(T) is the range, moreover L(H) denotes the space of all bounded linear operator on *H*. P_{H_0} denote the orthogonal projection in a Hilbert space *H* on to its subspace H_0 .

Definition 1.1: Let $\alpha \in \left(0, \frac{\pi}{2}\right)$ and let a linear operator *T* in *H* be defined on the subspace H_0 with the condition $||Tsin\alpha \pm icos\alpha I|| \le 1$ (1)

If in the case $H_0 = H$, we say that *T* belongs to the class $C(\alpha)$ and if in the case $H_0 \neq H$, the operator *T* is called a $C(\alpha)$ -Suboperator. It is clear that if $T \in C(\alpha)$ iff $T^* \in C(\alpha)$. It is easy to see that the condition (1) is equivalent to

 $sin\alpha(\|h\|^2 - \|Th\|^2) \ge 2cos\alpha |Im(Th,h)| \quad \text{for all } h \in H_0$ (2)

It is clear that the operators from the class $C(\alpha)$ and $C(\alpha)$ -Suboperators are contractions and this type of operator define the class C(0) as the set of all self-adjoint contractions in H and a nondensely defined Hermitian contraction we will call a C(0)-Suboperator.

Let $0 < t < \pi$, we define open sector as $S_t = \left\{ z \in \mathbb{C}/_{(0)} : |argz| < t \right\}$ and its closure $\bar{S}_t = \left\{ z \in \mathbb{C}/_{(0)} : |argz| \le t \right\}$ we consider the following arg with value in $[-\pi, \pi]$.

Definition 1.2: Let -1 < u < 0 and $0 \le v < \pi$, we denoted by $\theta_v^u(H)$, for the set of all closed linear operator $T: D(T) \subset H \to H$ which satisfy (a) $\sigma(T) \subset S_v$ (b) For any $v < t < \pi$, there exit a positive constant c_t such that $||(z - T)^{-1}|| \le c_t |z|^u$, for any $z \notin S_t$ then this linear operator T is called sectorial operator in H if $T \in \theta_v^u(H)$. It is clearly it having non-densely domain and range.

 $C(\alpha)$ - Suboperators or operator of the class $C(\alpha)$ naturally arise in the Fractional linear transformation of the form $(I - S)(I + S)^{-1}$ of sectorial linear relation S with vertex at the origin and the semi angle α [2].

Let *T* be a non-densely defined contraction in the complex Hilbert space *H* with $D(T) = H_0$. By M.G. Crandall [3], gave a parametric form of all contractive extension on *H* of the operator *T* in the operator form as $\overline{T}_M = TP_H + (I - TT^*)^{1/2}MP_B$ (3)

 $\overline{T}_{M} = TP_{H_{0}} + (I - TT^{*})^{1/2}MP_{R}$ (3) Where $T^{*}: H \to H_{0}$ is adjoint of T and $R = H \ominus H_{0}$, and $P_{H_{0}}, P_{R}$ are orthogonal projection in H on to H_{0} and R respectively and $M: R \to \overline{ran}(I - TT^{*})^{1/2}$ is a contractive parameter. This description of all such extension of a non-densely defined contraction T is in the form of block operator matrices. We will often use the following well known result of R.G. Dauglus [4].

Theorem 1.3: [4] For every $S, T \in L(H)$ the following statement are equivalent: (a) $ran S \subset ran T$ (b) S = TU for some $U \in L(H)$ (c) $SS^* \leq \lambda TT^*$ for some $\lambda \geq 0$. In this case there is a unique U satisfying $||U|| = [inf\{\lambda: SS^* \leq TT^*\}]^{1/2}$ and $ran U \subset \overline{ran}T^*$.

 $||h||^2 - ||Th||^2 \ge$

Let *T* be contraction operator which satisfy the inequality $\alpha Re((I - T)h, h)$ (4) For some $\alpha > 0$ and all $h \in H$, then *T* has a form $T = \mu I + (1 - \mu)U$ (5)

Where U is a contraction $(||U|| \le 1)$ and $\mu \in (0,1)$ this means that the spectrum of T is contained in a disk $(z \in C: |z - \mu| \le 1 - \mu)$ and this type of inequality is called quadratic form inequality, and one has $||T^nh|| \le ||e^{-\epsilon n(l-T)}h||$ for some $\epsilon \in (0,1)$ and $h \in H$, $n \in N$. This is a type of domination of the discrete semigroup $(T^n)_{n \in N}$ by the continuous time semigroup $(e^{-t(l-T)})_{t \ge 0}$. A generalization of (5) had formulated by Nevanlinna [5] who obtained the following results.

Theorem 1.4 : Let *H* be complex Hilbert space and $T \in L(H)$, the following two condition are equivalent. (a) there exist $\mu \in (0,1)$, $U \in L(H)$ such that $sup_{n \in N} ||U^n|| < \infty$ and T = T

 $\mu I + (1-\mu)U$

(b) there exist constant a, b > 0 such that $||e^{zT}|| \le ae^{|z|(1-b\theta^2)}$ for all $z \in C$ with $z = |z|e^{i\theta}, \theta \in [-\pi, \pi]$, Moreover, if these condition hold, then $sup_{n \in N} ||T^n|| < \infty$, $sup_{n \in N} n^{1/2} ||T^n - T^{n+1}|| < \infty$.

II. Contractions And Their Contractive Extensions

Let H and H' be two Hilbert space and let suppose H_0 is a subspace of H and $T: H_0 \to H'$ is a nondensely contraction. The operator \tilde{T} defined on H is called a contractive extension of T if $\tilde{T} \supset T$ and $\|\tilde{T}\| \leq 1$. . let $T \in L(H_0, H')$ and $T^* \in L(H', H_0)$ be its adjoint operator and $R = H \ominus H_0$. the following theorem considered by M.G Crandall [6].

Theorem 2.1: The result $\tilde{T} = TP_{H_0} + (I - T^*T)^{1/2}KP_R$ establishes 1-1 correspondense between all contractive extension of *T* and all contraction *K* from *R* to closure of the range $(I - T^*T)^{1/2}$. Proof: Let the operator \tilde{T} be given in this result, where *K* is a contraction, then

Proof: Let the operator \tilde{T} be given in this result, where K is a contraction, then

$$\widetilde{T^*} = T^* + K^* (I - T^*T)^{1/2}$$

Let for all $u \in H^{1}$ and $(I - T^{*}T)^{1/2} = \beta(say)$, then

$$\begin{aligned} \|\widetilde{T^*u}\|^2 &= \|T^*u\|^2 + \|K^*\beta u\|^2 \\ &\leq \|T^*u\|^2 + \|\beta u\|^2 = \|u\|^2 \end{aligned}$$

Thus $\widetilde{T^*}$ is a contraction. Hence the operator \widetilde{T} is contraction and $\widetilde{T} \upharpoonright H_0 = T$.

Conversely, if \tilde{T} is a contractive extension of T then its adjoint $\tilde{T}^*: H \to H$ is also a contraction. Because $\tilde{T} \supset T$, we get $P_{H_0}\tilde{T}^* = T^*$. hence the operator \tilde{T}^* is in the form $\tilde{T}^* = T^* + S$, where the range of the operator S is in the contained $R = H \ominus H_0$, it follow that $\|\tilde{T}^*u\|^2 = \|T^*u\|^2 + \|Su\|^2$, for all $u \in H^{\cdot}$. Since \tilde{T}^* is a contraction, we obtain

 $||Su||^2 \le ||u||^2 - ||T^*u||^2$, $u \in H^1$, by theorem 1.3, we have $S^* = (I - T^*T)^{1/2} K$, where K is a contraction from R to C_{T^*} , where C_{T^*} is the closure of the range space of $(I - T^*T)^{1/2}$.

We extend this result as a consequence for $\tilde{T} = TP_{H_0} + (I - T^*T)^{1/2} KP_R$ with non-densely contraction $K \in L(R, C_{T^*})$ has the following relations

$$\left\| \left(I - \tilde{T}^* \tilde{T} \right)^{1/2} v \right\|^2 = \left\| \left[\left(I - T^* T \right)^{1/2} P_{H_0} - T^* K P_R \right] v \right\|^2 + \left\| \left(I - K^* K \right)^{1/2} P_R v \right\|^2, v \in H$$
(6)
and $\left\| \left[I - \left(\tilde{T}^* \right)^* \tilde{T}^* \right] u \right\|^2 = \left\| \left[I - (K^*)^* K^* \right] \left[I - (T^*)^* T^* \right] u \right\|^2, u \in H^{,}$ (7)
since $T^* C_{T^*} \subset C_T$, from relation (5) gives,
 $\inf \left\{ \left\| \left(I - \tilde{T}^* \tilde{T} \right) v - \left(I - \tilde{T}^* \tilde{T} \right) w \right\|^2 : w \in H_0 \right\} = \left\| \left(I - K^* K \right)^{1/2} P_R v \right\|^2$, for all $v \in H$
This implies that, $Range (I - \tilde{T}^* \tilde{T})^{1/2} \cap R = range (I - K^* K)^{1/2}$ and by (7) implies that
 $Range \left[I - \left(\tilde{T}^* \right)^* \tilde{T}^* \right]^{1/2} = \left[I - (T^*)^* T^* \right]^{1/2} range \left[I - (K^*)^* K^* \right]^{1/2}$.

III. Matrix Representation Of Contractive Extensions

If possible, the Hilbert space H' is decomposed in the way as $H' = H'_0 \oplus M$, then we write $T = C^* + T_0$, where $T_0 = P_{H'_0}T \in L(H_0, H'_0)$ and $C^* = P_MT \in L(H_0, M)$.

Then, we transform T in matrix form $= \begin{bmatrix} C^* \\ T_0 \end{bmatrix}$, but T is a contraction, we have $||T_0h_0||^2 + ||C^*h_0||^2 \le ||h_0||^2$ for all $h_0 \in H_0$, then

$$C^* = K_0 (I - T_0^* T_0)^{1/2}$$
(8)

Where K_0 is operator from closure of the range $(I - T_0^*T_0)^{1/2}$ to M, which is also contraction. A bounded extension \tilde{T} of T also has the matrix representation as

$$\check{T} = \begin{bmatrix} C^* & B \\ T_0 & D \end{bmatrix} \colon \begin{bmatrix} H_0 \\ R \end{bmatrix} \to \begin{bmatrix} H'_0 \\ M \end{bmatrix}$$

In this representation, the block matrix description of B and D of all contractive extension \tilde{T} was obtained in [7]. here we propose another approach based on the Crandall,s form [6]

Theorem 3.1: The consequence $\tilde{T} = \begin{bmatrix} T_0 & d_{T_0^*}S \\ K_0d_{T_0} & -K_0T_0^*S + d_{K_0^*}Ud_S \end{bmatrix} : \begin{bmatrix} H_0 \\ R \end{bmatrix} \rightarrow \begin{bmatrix} H'_0 \\ M \end{bmatrix}$ (9) establishes 1-1 correspondence between all contractive extension \tilde{T} of the contraction $T = T_0 + K_0d_{T_0}$ and all pairs (S, U) of

correspondence between all contractive extension \tilde{T} of the contraction $T = T_0 + K_0 d_{T_0}$ and all pairs (S, U) of contractive operator where $S \in L(R, C_{T_0^*})$ and $U \in L(C_S, C_{K_0^*})$ and non-negative square root $d_T = (I - T^*T)^{1/2}$ which is also called defect operator of T.

Proof: since from theorem 2.1, we have that $T^* = T_0^* P_{H'_0} + d_{T_0} K_0^* P_M$, then for all $u \in H'$, we have $\|u\|^2 - \|T^* u\|^2 = \|P_{H'_0} u\|^2 + \|P_M u\|^2 - \|(T_0^* P_{H'_0} + d_{T_0} K_0^* P_M) u\|^2$

$$= \|P_{M}u\|^{2} + \|P_{H_{0}}u\|^{2} - \|T_{0}^{*}P_{H_{0}}u\|^{2} - \|d_{T_{0}}K_{0}^{*}P_{M}u\|^{2} - 2Re(T_{0}^{*}P_{H_{0}}u, d_{T_{0}}K_{0}^{*}P_{M}u))$$

$$= \|d_{T_{0}^{*}}P_{H_{0}}u\|^{2} - \|K_{0}^{*}P_{M}u\|^{2} + \|T_{0}K_{0}^{*}P_{M}u\|^{2} - 2Re(d_{T_{0}^{*}}P_{H_{0}}u, T_{0}K_{0}^{*}P_{M}u) + \|P_{M}u\|^{2}$$

$$= \|d_{T_{0}^{*}}P_{H_{0}}u - T_{0}K_{0}^{*}P_{M}u\|^{2} + \|d_{K_{0}^{*}}P_{M}u\|^{2}$$

And hence, $\|d_{T^*}u\|^2 = \|d_{T_0^*}P_{H'_0}u - T_0K_0^*P_Mu\|^2 + \|d_{K_0^*}P_Mu\|^2$ (10) Since the equality $T_0d_{T_0} = d_{T_0^*}T_0$, so we get $T_0C_{T_0} \subset C_{T_0^*}$ and since $range(K_0^*) \subset C_{T_0}$ thus from (10) $\|d_{K_0^*}P_Mu\|^2 = inf\{\|d_{T^*}(u-v)\|^2 : v \in H_0\}$ (11) Let $\varkappa_0 = \overline{d_{T^*}H_0}$ and $M_0' = C_{T^*} \ominus \varkappa_0'$, so $M_0' = (m \in C_{T^*} : d_{T^*}m \in M)$, and from (10) and (11) we get, $\|P_{\varkappa_0'}d_{T^*}u\|^2 = \|d_{T_0^*}P_{H_0'}u - T_0K_0^*P_Mu\|^2$, and $\|P_{M_0'}d_{T^*}u\|^2 = \|d_{K_0^*}P_Mu\|^2$ $u \in H$. (12) Thus, $\|P_{\varkappa_0'}d_{T^*}w\|^2 = \|d_{T_0^*}w\|^2$, $w \in H_0'$ From (12), we define a unitary operator $U_0 \in L(\varkappa_0', C_{T_0^*})$ and $Z_0 \in L(M_0', C_{K_0^*})$ such a way that

From (12), we define a unitary operator $U_0 \in L(\varkappa_0, C_{T_0^*})$ and $Z_0 \in L(M_0, C_{K_0^*})$ such a way that $U_0 P_{\varkappa_0} d_{T^*} u = d_{T_0^*} P_{H_0} u - T_0 K_0^* P_M u$ (12)

 $Z_0 P_{M_0^*} d_{T^*} u = d_{K_0^*} P_M u$, $u \in H^{\cdot}$ (13) Since adjoint of unitary operator is equal to its inverse that means $U_0^* = U_0^{-1}$ and $Z_0^* = Z_0^{-1}$, then from (13) we have

$$d_{T^*} = U_0^{-1} \left(d_{T_0^*} P_{H_0'} - T_0 K_0^* P_M \right) + Z_0^{-1} d_{K_0^*} P_M$$

 $= (d_{T_0^*} - K_0 T_0^*) U_0 P_{\varkappa_0} + d_{K_0^*} Z_0 P_{M_0'}$

Since $K \in L(R, C_{T^*})$ is contraction, then $K = P_{\varkappa_0}K + P_{M_0}K$, put $S = U_0 P_{\varkappa_0}K$, $Y = Z_0 P_{M_0}K$

 $\overline{K} = S + Y$, it follows that $K = U_0^{-1}S + Z_0^{-1}Y$ and $||Kr||^2 = ||\overline{K}r||^2 = ||Sr||^2 + ||Yr||^2$ for all $r \in R$. Since K is contraction then $\overline{K} \in L(M, C_{T_0^*} \oplus C_{K_0^*})$ is also contraction iff $Y = Ud_S$ where $U \in L(C_S, C_{K_0^*})$ is also contraction.

Again since $K \in L(R, C_{T^*})$ is contraction, then by (14) and all $r \in R$ we get $d_{T^*}Kr = (d_{T_0^*} - K_0T_0^*)Sr + d_{K_0^*}Ud_Sr$ (15)

Let $\overline{T} = TP_{H_0} + d_{T^*}KP_R$, then by (5) and (15) gives (9), if the \overline{T} is given by (6) with contraction $S \in L(R, d_{T_0^*})$ and $U \in L(C_S, C_{K_0^*})$ then the operators $\overline{K} = S + Ud_S$ and $K = U_0^{-1}S + Z_0^*Ud_S$ are contractions. Since $K \in L(R, C_{T^*})$ and hence we obtain $\overline{T} = (T_0 + K_0 d_T)P_U + [(d_{T^*} - K_0 T_0^*)S + d_{K^*}Ud_N]P_D$

$$= (T_0 + K_0 d_{T_0})P_{H_0} + [(d_{T_0^*} - K_0 T_0^*)S + d_{K_0^*}Ud_N]P_R$$

= $TP_{H_0} + [(d_{T_0^*} - K_0 T_0^*)U_0P_{\varkappa_0'} + d_{K_0^*}Z_0P_{R_0}]KP_R$
= $TP_{H_0} + d_{T^*}KP_R$

And hence \overline{T} is a contractive extension of *T*.

Theorem 3.2: Let *T* be a $C(\alpha)$ -suboperator in *H* with dom $(T) = H_0 \subset H$ and $S = (I - T^*)(I + T)$ be sectorial operator with the vertex at the origin and the semi angle θ . Define the contractive extension $\overline{T}_0 = TP_{H_0}$ and let

 $\tilde{\varphi}(z) = \left[-\bar{T}_0 + z\bar{T}_0^*(l - z\bar{T}_0^*)^{-1}d_{\bar{T}_0}\right] \upharpoonright C_{\bar{T}_0}$ be the characteristic function [8] of \bar{T}_0 . Then there exist strong unitary limits $\tilde{\varphi}(\pm 1) = S - \lim_{z \to \pm 1} \bar{\varphi}(z), \quad \tilde{\varphi}^* = S - \lim_{z \to \pm} \tilde{\varphi}^*(z)$, (which is nontangential to the imazinary axis) and moreover, the operator $\tilde{\varphi}(\pm 1) \upharpoonright R$ are linear isometries.

Proof: since $\bar{T}_{0}^{*} = T^{*}$, then $d_{T^{*}} = d_{\bar{T}_{0}^{*}}$, $d_{\bar{T}_{0}} = d_{T}P_{H_{0}} + P_{R}$ and hence $C_{\bar{T}_{0}^{*}} = C_{T^{*}}$, $C_{\bar{T}_{0}} = C_{T} \oplus R$, then we have, $d_{T^{*}}(I - zT_{0}^{*})^{-1}d_{Tu} = U_{0}^{-1}d_{T_{0}^{*}}(I - zT_{0}^{*})^{-1}d_{T_{0}}d_{K_{0}}V_{0}u$, $u \in C_{T}$ (16) Where V_{0} is an isometry from C_{T} on to $C_{K_{0}}$. Consequently, $\tilde{\varphi}(z)u = -Tu + U_{0}^{-1}[\varphi_{0}(z) + T_{0}]d_{K_{0}}V_{0}u$, $u \in C_{T}$ (17) Let $r \in R$, then,

$$d_{T^*}(I - zT^*)^{-1}r = d_{T^*}(I - zT^*)^{-1}(r - zT^*r + zT^*r)$$

= $d_{T^*}r + zd_{T^*}(I - zT^*)^{-1}T^*r = d_{T^*}r + zd_{T^*}(I - zT^*)^{-1}d_{T_0}K_0^*r$
= $d_{T^*}r + U_0^{-1}[\varphi(z) + T_0]K_0^*r$, $r \in \mathbb{R}$ (18)

Therefore, $\tilde{\varphi}(z)r = zd_{T^*}r + zU_0^{-1}[\varphi(z) + T_0]K_0^*r$, $r \in \mathbb{R}$

Since T_0^* and T_0 being the class $C(\alpha)$ in the subspace $H_0 \subset H$, there exist unitary strong limiting values $\varphi(\pm 1)$ and $\varphi^*(\pm 1)$ of $\varphi(z)$ and $\varphi^*(z)$ respectively, this implies that there exist unitary nontangential strong limiting value $\tilde{\varphi}(\pm 1)$, $\tilde{\varphi}^*(\pm 1)$ and

$$\tilde{\varphi}(\pm 1) = \left[-T + U_0^{-1}[\varphi(\pm 1) + T_0]d_{K_0}V_0\right]P_{H_0} \pm \left[d_{T^*} + U_0^{-1}[\varphi(\pm 1) + T_0]K_0^*\right]P_R$$

Next ,we prove that $\tilde{\varphi}(\pm 1) \upharpoonright R$ are linear isometry. It is easy to say that

 $\|r\|^2 - \|\tilde{\varphi}(z)r\|^2 = (1 - |z|^2)\|(I - zT^*)^{-1}r\|^2, \quad r \in \mathbb{R}$

For $r \in R$ from the equality $T^*P_R = d_{T_0}K_0^*P_R$, we have,

$$(1 - |z|^2)^{1/2}(I - zT^*)^{-1}r = (1 - |z|^2)^{1/2}r + z(1 - |z|^2)^{1/2}(I - zT^*)^{-1}T^*r$$

= $(1 - |z|^2)^{1/2}r + z(1 - |z|^2)^{1/2}(I - zT^*)^{-1}d_{T_0}K_0^*r$

Since, $||v||^2 - ||\varphi(z)v||^2 = (1 - |z|^2) ||(I - zT^*)^{-1}d_{T_0}v||^2$, $v \in C_{T_0}$ and the operator $\varphi(\pm 1)$ are unitary in C_{T_0} . Consequently we have,

$$S - \lim_{z \to \pm 1} (1 - |z|^2)^{1/2} (I - zT^*)^{-1} d_{T_0} = 0$$

Therefore, for all $r \in R$, we have ,

$$\lim_{z \to \pm 1} (\|r\|^2 - \|\tilde{\varphi}(z)r\|^2) = \lim_{z \to \pm 1} \left\| (1 - |z|^2)^{1/2} \left(r + z(I - zT^*)^{-1} d_{T_0} K_0^* r \right) \right\|^2$$

And hence operator $\tilde{\varphi}(\pm 1) \upharpoonright R$ are linear isometry.

Theorem 3.3: Let $T \in C(\alpha)$ - sub operator class and \tilde{T} be its contractive extension such that there exist $\lambda > 0$ with

 $\|h\|^{2} - \|\tilde{T}h\|^{2} \ge \lambda \left| \left[(I - \tilde{T})h, h \right] \right|$ For all $h \in H$, then , $Sup_{n \in N} n |\tilde{T}^{n} - \tilde{T}^{n+1}| < \infty$. (19)

Proof: This inequality implies that $\|h\|^2 - \|\tilde{T}h\|^2 \ge 0$, so that \tilde{T} is contraction. Thus this implies $\|\tilde{T}\| \le 1$ and there exist $\lambda > 0$ such that $\|h\|^2 - \|\tilde{T}h\|^2 \ge \lambda \operatorname{Re}[(I - \tilde{T})h, h]$ for all $h \in H$, Consequently,

 $\|h\|^{2} - \|\tilde{T}h\|^{2} + \|(I - \tilde{T})h\|^{2} = 2 \operatorname{Re}[(I - \tilde{T})h, h]$ (20) Hence, from (19) and (20) we get, $\|[(I - \tilde{T})h, h]\| \le 2\lambda^{-1} \operatorname{Re}[(I - \tilde{T})h, h]$

This inequality is a sectorial estimate with quadratic form which implies that the semi group $\left(e^{-t(I-\tilde{T})}\right)_{t\geq 0}$ is bounded holomorphic and hence one has a result

 $\left\| (I - \tilde{T}) e^{-t(I - \tilde{T})} \right\| \le \lambda t^{-1} \text{ for all } t > 0$

(But we know a result for all contraction T, $||T^nh|| \le ||e^{-\varepsilon n(I-T)}h||$, $h \in domT$) Using this result, we obtain a bound

Using this result, we obtain a bound,

 $\left\| \left(I - \tilde{T} \right) \tilde{T}^n \right\| \le \left\| \left(I - \tilde{T} \right) e^{-\varepsilon n (I - \tilde{T})} \right\| \le \lambda n^{-1}, \text{ for all } n \in N$ And hence we get, $Sup_{n \in N} n \left| \tilde{T}^n - \tilde{T}^{n+1} \right| < \infty.$

IV. Conclusions:

In this article we make use of the results from previously the known results and establish some new results on extension of $C(\alpha)$ -sub operator classes and also extend some results and application.

References:

- Yu. M. Arlinskii, A class of contractions in a Hilbert space, Translated from Ukrainski Matematicheskii zhurnal, vol.39, No.6, (1987), 691-696.
- M.M. Malamud, On some classes of extensions of sectorial operators and dual pair of contractions, Operator theory: Advances and appl. 124 (2001), 401-448.
- [3] M.G. Crandall, Norm preserving extensions of linear transformation in Hilbert space, Proc. Amer. Math. Soc. 21 (1969), 335-340.
 [4] R.G. Douglus, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-416.
- [5] O. Nevanlinna, Resolvent conditions and powers of operators, Studia math, 145 (2001) 113-14.
- [6] Gr. Arsene and A. Gheondea, Completing matrix contraction, J. Operator theory, 7 (1982) 179-198.
- [7] T. Kato, Perturbation theory of linear operator, 2nd ed, springer, 1980.
- [8] W. Rudin, Functional analysis, 2nd ed, McGraw-Hill Inc, New york, 1991.
- [9] N. Dungey, Time regularity for random walks on locally compact group, Probab. Theory Related fields, 137 (2007), 404-410.
- S. Sarkar, Pure contractive multipliers of some reproducing kernel Hilbert spaces and applications, arXiv:2112. 08332v1[Math.FA], 2021.
- [11] J. W. He, Y. Zhou, Non-autonomous fractional Cauchy problems with almost sectorial operators, B. sci. Math, 191 (2024).
- [12] T. Ozawa, J. E. Restrepo, D. Suragan, Inverse abstract Cauchy problems, Appl. Anal. 101(14) (2022) 4965-4969.
- [13] A. B. Yadav, Characterization of S_{ξ} –super strictly singular operator, IOSR. J. of Mathematics, Vol-19, (2023) 30-33.