On Soft Continuity And Soft Connectedness In Soft Generalized Topological Spaces

M. Supriya¹ And Dr. R. Selvi²

Research Scholar (Reg.No: 20211202092007), Department Of Mathematics, Sri Parasakthi College For Women, Courtallam - 627802, Tamilnadu, India, Affiliated To Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, Tamilnadu, India.

Associate Professor & Head, Department Of Mathematics, Sri Parasakthi College For Women, Courtallam -627802, Tamilnadu, India, Affiliated To Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli -627012, Tamilnadu, India.

Abstract:

In this paper, we introduced the notion of some new types of soft continuous functions such as soft minimal (μ, η) continuous, soft maximal (μ, η) -continuous and soft para (μ, η) continuous in soft generalized topological spaces. Some basic concepts and their properties of these types of soft continuous functions in soft generalized topological spaces are studied. Also, we introduced soft μ -connectedness and soft μ -hyperconnectedness in soft generalized topological topological spaces.

 Key Word: soft minimal (μ, η)-continuous; soft μ-connected; soft μ-hyperconnected.

 Date of Submission: 08-02-2025
 Date of Acceptance: 18-02-2025

I. Introduction

In 1999 D. Molodtsov [17] initiated the concept of soft set theory as a mathematical tool for modelling uncertainties. A soft set is a collection of approximate descriptions of an object. Maji et al. [16] have further improved the theory of soft sets. NaimCagman et al. [1] modified the definition of soft sets which is similar to that of Molodtsov. Muhammad Shabir et al. [25] introduced soft topological spaces. In 2002 A. Csaszar [9] introduced the concept of generalized topology and also studied some of its properties. Let X be a non-empty set and ξ be a collection of subsets of X. Then ξ is called a generalized topology (briefly GT) on X if and only if ϕ $\in \xi$ and $G_i \in \xi$ for $i \in J$ implies $\bigcup_{i \in J} G_i \in \xi$. Sunil Jacob John et al. [13] introduced the concept of soft generalized topological spaces in 2014. In the year 2001 and 2003, F. Nakaoka and N.oda [18], [19] introduced and studied minimal/maximal open sets which are subclasses of open sets. Oays Shakir [21] introduced and studied the concept of minimal and maximal soft open sets in soft topological spaces. B. Roy and R. Sen [22] introduced the concept of maximal μ -open and minimal μ -closed sets via generalized topology. C. Chetana and K. Naganagouda [8] introduced the notion of soft minimal continuous and soft maximal continuous in soft topological spaces. Sunil Jacob John [14] also introduced some interesting properties of the soft mapping $\pi : S(U)_E \to S(U)_E$ which satisfy the condition $\pi F_B \subset \pi F_D$ whenever $F_B \subset F_D \subset F_{\tilde{E}}$ in soft π -open sets in soft generalized topological spaces in 2015. S.S. Benchalli et.al [6] introduced and studied the concept of weaker forms of soft nano open sets in soft nano topological spaces in 2017. I. Basdouri et.al [3] introduced connected and hyperconnected generalized topological spaces in 2016.

These concepts motivate us to enhance our study in soft minimal (μ, η) -continuous, soft maximal (μ, η) continuous and soft para (μ, η) continuous in soft generalized topological spaces. Also, we introduced soft μ connectedness and soft μ -hyperconnectedness in soft generalized topological spaces.

Definition: 2.1 [14]

II. PRELIMINARIES

A soft set F_A on the universe U is defined by the set of ordered pairs $F_A = \{(e, f_A(e)) | e \in E, f_A(e) \in \mathcal{P}(U)\}$ where $f_A : E \to \mathcal{P}(U)$ such that $f_A(e) = \emptyset$ if $e \notin A$. Here f_A is called an approximate function of the soft set F_A . The value of $f_A(e)$ may be arbitrary. Some of them may be empty, some may have nonempty intersection. The set of all soft sets over U with E as the parameter set will be denoted by $S(U)_E$ or simply S(U).

Definition: 2.2 [14]

Let $F_A \in S(U)$. If $f_A(e) = \emptyset$, for all $e \in E$, then F_A is called an empty soft set, denoted by F_{\emptyset} . $f_A(e) = \emptyset$ means there is no element in U related to the parameter e in E. Therefore we do not display such elements in the soft sets as it is meaningless to consider such parameters.

Definition: 2.3 [14]

Let $F_A \in S(U)$. If $f_A(e) = U$, for all $e \in A$, then F_A is called an A-universal soft set, denoted by $F_{\tilde{A}}$. If A = E, then the A-universal soft set is called an universal soft set, denoted by $F_{\tilde{E}}$.

Definition: 2.4 [14]

Let $F_A \in S(U)$. Then, the soft complement of F_A , denoted by $(F_A)^c$, is defined by the approximate function $f_{A^c}(e) = (f_A(e))^c$, where $(f_A(e))^c$ is the complement of the set $f_A(e)$, that is, $(f_A(e))^c = U \setminus f_A(e)$ for all $e \in E$.

Definition: 2.5 [13]

Let $F_A \in S(U)$. A Soft Generalized Topology (SGT) on F_A , denoted by μ (or) μ_{F_A} is a collection of soft subsets of F_A having the following properties:

i. $F_{\emptyset} \in \mu$

ii. $\{F_{A_i} \subseteq F_A \mid i \in J \subseteq N\} \subseteq \mu \implies \bigcup_{i \in J} F_{A_i} \in \mu$

The pair (F_A, μ) is called a Soft Generalized Topological Space (SGTS). Observe that $F_A \in \mu$ must not hold.

Definition: 2.6 [13]

Let (F_A, μ) be a SGTS. Then every element of μ is called a soft μ -open set.

Definition: 2.7 [18]

Let (X, τ) be a topological space. A nonempty open set U of X is said to be a minimal open set if and only if any open set which is contained in U is \emptyset or U.

Definition: 2.8 [19]

Let (X, τ) be a topological space. A proper nonempty open subset U of X is said to be a *maximal open* set if any open set which contains U is X or U.

Definition: 2.9 [20]

Let *F* be a subset of a topological space *X*. Then the following *duality principle* holds:

(1) *F* is a minimal closed set if and only if X - F is a maximal open set.

(2) F is a maximal closed set if and only if X - F is a minimal open set.

Definition: 2.10 [5]

Any open subset U of a topological space X is said to be a paraopen set if it is neither a minimal open nor a maximal open set.

Definition: 2.11 [5]

Any closed subset F of a topological space X is said to be a paraclosed set if and only if its complement (X - F) is a paraopen set.

Definition: 2.12 [21]

A proper nonempty soft open subset F_K of a soft topological space $(F_A, \tilde{\tau})$ is said to be minimal soft open set if any soft open set which is contained in F_K is F_{\emptyset} or F_K .

Definition 2.13 [21]

A proper nonempty soft open subset F_K of a soft topological space $(F_A, \tilde{\tau})$ is said to be maximal soft open set if any soft open set which contains F_K is F_A or F_K .

Definition: 2.14 [14]

Let (F_A, μ) be a SGTS and $F_B \subseteq F_A$. Then the soft μ -interior of F_B , denoted by i_{μ} (F_B) is defined as the soft union of all soft μ -open subsets of F_B . Note that i_{μ} (F_B) is the largest soft μ -open set that is contained in F_B .

Definition: 2.15 [14]

Let (F_A, μ) be a SGTS and $F_B \subseteq F_A$. Then the soft μ -closure of F_B , denoted by c_{μ} (F_B) is defined as the soft intersection of all soft μ -closed super sets of F_B . Note that c_{μ} (F_B) is the smallest soft μ -closed superset of F_B .

Definition: 2.16 [14]

Let $(F_{\tilde{E}}, \mu)$ be a SGTS. Then a soft set $F_G \subset F_{\tilde{E}}$ is said to be a soft μ -semi-open set iff $F_G \subset c_{\mu}i_{\mu}F_G$ (i.e, the case when $\pi = c_{\mu}i_{\mu}$). The class of all soft μ -semi-open sets is denoted by $\delta_{(\mu)}$ or δ_{μ} .

Definition: 2.17 [14]

Let $(F_{\vec{E}}, \mu)$ be a SGTS. Then a soft set $F_G \subset F_{\vec{E}}$ is said to be a soft μ -pre-open set iff $F_G \subset i_{\mu}c_{\mu}F_G$ (i.e, the case when $\pi = i_{\mu}c_{\mu}$). The class of all soft μ -pre-open sets is denoted by $\rho_{(\mu)}$ or ρ_{μ} .

Definition: 2.18 [14]

Let $(F_{\tilde{E}}, \mu)$ be a SGTS. Then a soft set $F_G \subset F_{\tilde{E}}$ is said to be a soft μ - α -open set iff $F_G \subset i_{\mu}c_{\mu}i_{\mu}F_G$ (i.e, the case when $\pi = i_{\mu}c_{\mu}i_{\mu}$). The class of all soft μ - α -open sets is denoted by $\alpha_{(\mu)}$ or α_{μ} .

Definition: 2.19 [14]

Let $(F_{\tilde{E}}, \mu)$ be a SGTS. Then a soft set $F_G \subset F_{\tilde{E}}$ is said to be a soft μ - β -open set iff $F_G \subset c_{\mu}i_{\mu}c_{\mu}F_G$ (i.e, the case when $\pi = c_{\mu}i_{\mu}c_{\mu}$). The class of all soft μ - β -open sets is denoted by $\beta_{(\mu)}$ or β_{μ} .

Throughout this paper, we symbolize soft generalized topological space, soft generalized topological subspace, soft minimal (μ,η) -continuous, soft maximal (μ,η) -continuous, soft para (μ,η) -continuous and the set of all soft μ -interior and soft μ -closure in a soft generalized topological space $(F_{\tilde{E}}, \mu)$ by SGTS, SGTSS, soft Min (μ,η) -continuous, soft Max (μ,η) -continuous, soft Para (μ,η) -continuous, $S\mu - Int(F_{\tilde{E}})$ and $S\mu - Cl(F_{\tilde{E}})$ respectively.

III. SOFT MINIMAL (μ, η) -Continuous

Definition: 3.1

Let (F_A, μ) and (F_B, η) be two SGTS's. A soft mapping $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ is said to be soft minimal (μ, η) -continuous (soft Min (μ, η) -continuous) if for each soft minimal η -open set F_L in F_B , its inverse image $\psi_{\chi}^{-1}(F_L)$ is a soft μ -open set in F_A .

Example: 3.2

Let $\hat{\mathcal{V}} = \{v_1, v_2, v_3, v_4, v_5, v_6\}$, $\mathcal{E} = \{\hat{e_1}, \hat{e_2}, \hat{e_3}\}$, $\mathfrak{A} = \{\hat{e_1}, \hat{e_2}\} \cong \mathcal{E}$, then $(F_{\mathfrak{A}}, \mu) = \{F_{\emptyset}, F_{\mathfrak{A}_1}, F_{\mathfrak{A}_2}, F_{\mathfrak{A}_3}\}$ is a SGTS where $F_{\emptyset} = \{(\hat{e_1}, \emptyset), (\hat{e_2}, \emptyset)\}$ $F_{\mathfrak{A}} = \{(\hat{e_1}, \{v_1, v_2, v_3, v_4, v_5\}), (\hat{e_2}, \{v_1, v_2, v_4, v_5\})\}$ $F_{\mathfrak{A}_1} = \{(\hat{e_1}, \{v_1, v_3, v_4, v_5\}), (\hat{e_2}, \{v_1, v_4, v_5\})\}$ $F_{\mathfrak{A}_2} = \{(\hat{e_1}, \{v_1, v_3, v_5\}), (\hat{e_2}, \{v_1, v_4, v_5\})\}$ $F_{\mathfrak{A}_3} = \{(\hat{e_1}, \{v_1, v_3, v_5\}), (\hat{e_2}, \{v_1, v_4\})\}$

Let $\mathcal{K} = \{k_1, k_2, k_3, k_4, k_5\}$, $\mathfrak{J} = \{j_1', j_2', j_3'\}$, $\mathfrak{B} = \{j_1', j_2'\} \cong \mathfrak{J}$, then $(F_{\mathfrak{B}}, \eta) = \{F_{\emptyset}, F_{\mathfrak{B}_1}, F_{\mathfrak{B}_2}, F_{\mathfrak{B}_3}\}$ is a SGTS where $F_{\emptyset} = \{(j_1', \emptyset), (j_2', \emptyset)\}$ $F_{\mathfrak{B}} = \{(j_1', \{k_1, k_2, k_3, k_4\}), (j_2', \{k_1, k_2, k_3\})\}$ $F_{\mathfrak{B}_1} = \{(j_1', \{k_2, k_3, k_4\}), (j_2', \{k_2, k_3\})\}$ $F_{\mathfrak{B}_2} = \{(j_1', \{k_3, k_4\}), (j_2', \{k_2, k_3\})\}$ $F_{\mathfrak{B}_2} = \{(j_1', \{k_2, k_4\}), (j_2', \{k_2, k_3\})\}$

Define a map $\psi : \mathcal{V} \to \mathcal{K}$ by $\psi(\sigma_1) = k_3$, $\psi(\sigma_2) = k_2$, $\psi(\sigma_3) = k_4$, $\psi(\sigma_4) = k_1$, $\psi(\sigma_5) = k_3$, $\psi(\sigma_6) = k_5$ and $\chi : \mathcal{E} \to \mathfrak{F}$ by $\chi(\hat{e_1}) = j_1'$, $\psi(\hat{e_2}) = j_2'$, $\psi(\hat{e_3}) = j_3'$. Then $\psi_{\chi} : (F_{\mathfrak{A}}, \mu) \to (F_{\mathfrak{B}}, \eta)$ is a soft Min (μ, η) -continuous function.

Definition: 3.3

The SGTS (F_A, μ) is said to be soft μ - \mathcal{T}_{Min} space if for every non-null proper soft μ -open subset of F_A is soft minimal μ -open.

Proposition: 3.4

Each soft (μ, η) -continuous function is soft Min (μ, η) -continuous.

Proof:

Let $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ be a soft (μ, η) -continuous function. Let F_{B_i} be any soft minimal η -open set in F_B . Since each soft minimal η -open set is a soft η -open set, F_{B_i} is a soft η -open set in F_B . By hypothesis, $\psi_{\chi}^{-1}(F_{B_i})$ is a soft μ -open set in F_A . Hence $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ is soft Min (μ, η) -continuous.

Remark: 3.5

The converse of the preceding proposition holds only if $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ is an onto map and F_B is a soft η - \mathcal{T}_{Min} space.

Proof:

Let $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ be a soft Min (μ, η) -continuous, onto map. Let F_{B_k} be any nonempty proper soft η -open set in F_B . Since F_B is a soft η - \mathcal{T}_{Min} space, F_{B_k} is a soft minimal η -open set in F_B . Also, by the definition of soft Min (μ, η) -continuous, $\psi_{\chi}^{-1}(F_{B_k})$ is a soft μ -open set in F_A . Hence $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ is soft (μ, η) continuous.

Remark: 3.6

The composition of two soft Min (μ, η) -continuous function need not be soft Min (μ, η) -continuous.

Theorem: 3.7

The previous remark holds only if $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ is a soft (μ, η) -continuous function and $\Phi_{\zeta} : (F_B, \eta) \to (F_C, \xi)$ is a soft Min (η, ξ) -continuous map.

Proof:

Let F_{C_i} be any soft minimal ξ -open set in F_C . As Φ_{ζ} is a soft Min (η, ξ) -continuous function, $\Phi_{\zeta}^{-1}(F_{C_i})$ is a soft η -open set in F_B . Since ψ_{χ} is soft (μ, η) -continuous, $\psi_{\chi}^{-1}(\Phi_{\zeta}^{-1}(F_{C_i}))$ is a soft μ -open set in F_A . Hence $\Phi_{\zeta} \circ \psi_{\chi}$ is a soft Min (μ, η) -continuous map.

Theorem: 3.8

Let (F_A, μ) and (F_B, η) be two SGTS's. If $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ is a soft $Min(\mu, \eta)$ -continuous mapping and (F_H, ξ) is a SGTSS of F_A , then the restricted map $\psi_{\chi|F_H} : (F_H, \xi) \to (F_B, \eta)$ is soft $Min(\xi, \eta)$ -continuous.

Proof:

Let F_{B_l} be any soft minimal η -open set in F_B . Then, by definition 3.1, $\psi_{\chi}^{-1}(F_{B_l})$ is a soft μ -open set in F_A . Consider $(\psi_{\chi|F_H})^{-1}(F_{B_l}) = F_H \cap \psi_{\chi}^{-1}(F_{B_l})$, where $F_H \cap \psi_{\chi}^{-1}(F_{B_l})$ is a soft ξ -open set in F_H which implies $(\psi_{\chi|F_H})^{-1}(F_{B_l})$ is a soft ξ -open set in F_H . Hence $\psi_{\chi|F_H} : (F_H, \xi) \to (F_B, \eta)$ is soft Min (ξ, η) -continuous.

IV. SOFT MAXIMAL (μ , η)-Continuous

Definition: 4.1

Let (F_A, μ) and (F_B, η) be two SGTS's. A soft mapping $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ is said to be soft maximal (μ, η) -continuous (soft Max (μ, η) -continuous) if for each soft maximal η -open set F_G in F_B , its inverse image $\psi_{\chi}^{-1}(F_G)$ is a soft μ -open set in F_A .

Definition: 4.2

The SGTS (F_A, μ) is said to be soft μ - \mathcal{T}_{Max} space if for every non-null proper soft μ -open subset of F_A is soft maximal μ -open.

Proposition: 4.3

Each soft (μ, η) -continuous function is soft Max (μ, η) -continuous.

Proof:

Let $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ be a soft (μ, η) -continuous function. Let F_{B_i} be any soft maximal η -open set in F_B . Since each soft maximal η -open set is a soft η -open set, F_{B_i} is a soft η -open set in F_B . As ψ_{χ} is soft (μ, η) continuous, its inverse image $\psi_{\chi}^{-1}(F_{B_i})$ is a soft μ -open set in F_A . Therefore $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ is soft Max (μ, η) -continuous.

Remark: 4.4

The converse of the proposition 4.3 is true only if $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ is an onto map and F_B is a soft η - \mathcal{T}_{Max} space.

Proof:

Let $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ be a soft Max (μ, η) -continuous, onto map. Let F_{B_j} be any nonempty proper soft η -open set in F_B . Since F_B is a soft η - \mathcal{T}_{Max} space, F_{B_j} is a soft maximal η -open set in F_B . Also, by the definition of soft Max (μ, η) -continuous, $\psi_{\chi}^{-1}(F_{B_j})$ is a soft μ -open set in F_A . Hence $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ is soft (μ, η) continuous.

Remark: 4.5

The composition of two soft Max (μ, η) -continuous function need not be soft Max (μ, η) -continuous.

Theorem: 4.6

The above remark is true only if $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ is a soft (μ, η) -continuous function and $\Phi_{\zeta} : (F_B, \eta) \to (F_C, \xi)$ is a soft Max (η, ξ) -continuous map.

Proof:

Let F_{C_t} be any soft maximal ξ -open set in F_C . As Φ_{ζ} is a soft Max (η, ξ) -continuous function, $\Phi_{\zeta}^{-1}(F_{C_t})$ is a soft η -open set in F_B . Since ψ_{χ} is soft (μ, η) -continuous, $\psi_{\chi}^{-1}(\Phi_{\zeta}^{-1}(F_{C_t}))$ is a soft μ -open set in F_A . Hence $\Phi_{\zeta} \circ \psi_{\chi}$ is a soft Max (μ, η) -continuous map.

Theorem: 4.7

Let (F_A, μ) and (F_B, η) be two SGTS's. If $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ is a soft Max (μ, η) -continuous mapping and (F_H, ξ) is a SGTSS of F_A , then the restricted map $\psi_{\chi|F_H} : (F_H, \xi) \to (F_B, \eta)$ is soft Max (ξ, η) -continuous.

Proof:

Let F_{B_w} be any soft maximal η -open set in F_B . Then, by definition 4.1, $\psi_{\chi}^{-1}(F_{B_w})$ is a soft μ -open set in F_A . Consider $(\psi_{\chi|F_H})^{-1}(F_{B_w}) = F_H \cap \psi_{\chi}^{-1}(F_{B_w})$, where $F_H \cap \psi_{\chi}^{-1}(F_{B_w})$ is a soft ξ -open set in F_H which implies $(\psi_{\chi|F_H})^{-1}(F_{B_w})$ is a soft ξ -open set in F_H . Hence $\psi_{\chi|F_H} : (F_H, \xi) \to (F_B, \eta)$ is soft Max (ξ, η) -continuous.

Definition: 5.1

V. SOFT PARA (μ, η) -Continuous

Let (F_A, μ) and (F_B, η) be two SGTS's. A soft mapping $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ is said to be soft para (μ, η) -continuous (soft Para (μ, η) -continuous) if for each soft para η -open set F_s in F_B , its inverse image $\psi_{\chi}^{-1}(F_s)$ is a soft μ -open set in F_A .

Definition: 5.2

The SGTS (F_A, μ) is said to be soft μ - \mathcal{T}_{Para} space if for every non-null proper soft μ -open subset of F_A is soft para μ -open.

Proposition: 5.3

Each soft (μ, η) -continuous function is soft Para (μ, η) -continuous.

Proof:

Let $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ be a soft (μ, η) -continuous function. Let F_{B_i} be any soft para η -open set in F_B . Since each soft para η -open set is a soft η -open set, F_{B_i} is a soft η -open set in F_B . As ψ_{χ} is soft (μ, η) -continuous, its inverse image $\psi_{\chi}^{-1}(F_{B_i})$ is a soft μ -open set in F_A . Hence $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ is soft Para (μ, η) -continuous.

Remark: 5.4

The converse of the above proposition holds only if $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ is an onto map and F_B is a soft η - T_{Para} space.

Proof:

Let $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ be a soft Para (μ, η) -continuous, onto map. Let F_{B_l} be any nonempty proper soft η -open set in F_B . Since F_B is a soft η - T_{Para} space, F_{B_l} is a soft para η -open set in F_B . Also, by the definition of soft Para (μ, η) -continuous, $\psi_{\chi}^{-1}(F_{B_l})$ is a soft μ -open set in F_A . Hence $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ is soft (μ, η) continuous.

Remark: 5.5

The composition of two soft Para (μ, η) -continuous function need not be soft Para (μ, η) -continuous.

Theorem: 5.6

The above remark holds only if $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ is a soft (μ, η) -continuous function and $\Phi_{\zeta} : (F_B, \eta) \to (F_C, \xi)$ is a soft Para (η, ξ) -continuous map.

Proof:

Let F_{C_m} be any soft para ξ -open set in F_c . As Φ_{ζ} is a soft Para (η, ξ) -continuous function, $\Phi_{\zeta}^{-1}(F_{C_m})$ is a soft η -open set in F_B . Since ψ_{χ} is soft (μ, η) -continuous, $\psi_{\chi}^{-1}(\Phi_{\zeta}^{-1}(F_{C_m}))$ is a soft μ -open set in F_A . Hence $\Phi_{\zeta} \circ \psi_{\chi}$ is a soft Para (μ, η) -continuous map.

Theorem: 5.7

Let (F_A, μ) and (F_B, η) be two SGTS's. If $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$ is a soft *Para* (μ, η) -continuous mapping and (F_H, ξ) is a SGTSS of F_A , then the restricted map $\psi_{\chi|F_H} : (F_H, \xi) \to (F_B, \eta)$ is soft *Para* (ξ, η) - continuous.

Proof:

Let F_{B_z} be any soft para η -open set in F_B . Then, by definition 5.1, $\psi_{\chi}^{-1}(F_{B_z})$ is a soft μ -open set in F_A . Consider $(\psi_{\chi|F_H})^{-1}(F_{B_z}) = F_H \tilde{\cap} \psi_{\chi}^{-1}(F_{B_z})$, where $F_H \tilde{\cap} \psi_{\chi}^{-1}(F_{B_z})$ is a soft ξ -open set in F_H which implies $(\psi_{\chi|F_H})^{-1}(F_{B_z})$ is a soft ξ -open set in F_H . Hence $\psi_{\chi|F_H} : (F_H, \xi) \to (F_B, \eta)$ is soft Para (ξ, η) -continuous.

Definition: 6.1

VI. SOFT μ -CONNECTEDNESS

Let $(F_{\tilde{E}}, \mu)$ be a SGTS. Then a soft μ -separation of $F_{\tilde{E}}$ is a pair of soft disjoint non-null soft μ -open subsets of $F_{\tilde{E}}$ whose soft union is $F_{\tilde{E}}$.

Definition: 6.2

A space $F_{\tilde{E}}$ is said to be soft μ -connected if there does not exist a soft μ -separation of $F_{\tilde{E}}$.

Definition: 6.3

Let $(F_{\tilde{E}}, \mu)$ be a SGTS. Then $(F_{\tilde{E}}, \mu)$ is said to be soft μ -connected if there \nexists two soft μ -open sets $F_J, F_K \in \mu - F_{\emptyset}$ such that $F_J \cap F_K = F_{\emptyset}$ and $F_J \cup F_K = F_{\tilde{E}}$ or else $(F_{\tilde{E}}, \mu)$ is soft μ -disconnected.

Example: 6.4

Let $\mathcal{W} = \{w_1, w_2, w_3\}, E = \{\widehat{g_1}, \widehat{g_2}, \widehat{g_3}\}$ and $\mu = \{F_{\emptyset}, F_{A_1}, F_{A_2}, F_{A_3}, F_{A_4}, F_{\tilde{E}}\}$ is a SGTS where $F_{A_1} = \{(\widehat{g_1}, \{w_1, w_2\}), (\widehat{g_2}, \{w_1, w_3\})\}$ $F_{A_2} = \{(\widehat{g_1}, \{w_1, w_3\}), (\widehat{g_2}, \{W\})\}$ $F_{A_3} = \{(\widehat{g_1}, \{w_2, w_3\}), (\widehat{g_2}, \{w_1, w_2\})\}$ $F_{A_4} = \{(\widehat{g_1}, \{w_2\}), (\widehat{g_2}, \{w_1\})\}$ Then $(F_{\tilde{E}}, \mu)$ is a soft μ -connected space.

Remark: 6.5

Even though for each parameter g, $(F_{\tilde{E}}, \mu_g)$ is soft μ -connected, the space $(F_{\tilde{E}}, \mu)$ need not be soft μ -connected.

Definition: 6.6

Let $(F_{\tilde{E}}, \mu)$ be a SGTS. Any soft μ -open subset $F_Q \cong F_{\tilde{E}}$ is said to be soft μ -connected, if it is soft μ -connected as a SGTSS.

Theorem: 6.7

- Let $(F_{\tilde{E}}, \mu)$ be a SGTS. Then the following are equivalent:
- (i) $F_{\tilde{E}}$ is soft μ -connected.
- (ii) $F_{\tilde{E}}$ cannot be written as the soft union of two soft disjoint non-null soft μ -closed sets.
- (iii) $F_{\tilde{E}}$ cannot be written as the soft union of two non-null soft sets and such that $F_{\mathcal{K}} \cap S\mu Cl(F_{\mathcal{L}}) = F_{\mathcal{L}} \cap S\mu Cl(F_{\mathcal{K}}) = F_{\emptyset}$
- (iv) F_{\emptyset} and $F_{\tilde{E}}$ are the only soft sets which are both soft μ -open and soft μ -closed in $F_{\tilde{E}}$.

Proof:

(i) \Rightarrow (ii):

Suppose $F_{\tilde{E}} = F_{\mathcal{K}} \widetilde{\cup} F_{\mathcal{L}}$, where $F_{\mathcal{K}}$ and $F_{\mathcal{L}}$ are two non-null soft μ -closed sets such that $F_{\mathcal{K}} \cap F_{\mathcal{L}} = F_{\emptyset}$. Since $F_{\mathcal{K}}$ and $F_{\mathcal{L}}$ are soft μ -closed sets, $F_{\mathcal{K}}^{\tilde{c}}$ and $F_{\mathcal{L}}^{\tilde{c}}$ are soft μ -open. From hypothesis, $F_{\mathcal{K}} \cap F_{\mathcal{L}} = F_{\emptyset}$ which conclude that $F_{\mathcal{L}}$ and $F_{\mathcal{K}}$ are soft μ -open sets. Hence $F_{\tilde{E}}$ is the soft union of two soft disjoint non-null soft μ -open sets. Thus $F_{\tilde{E}}$ is soft μ -disconnected which is a contradiction.

(ii) \Rightarrow (iii):

Consider $F_{\tilde{E}} = F_{\mathcal{K}} \widetilde{\cup} F_{\mathcal{L}}$, where $F_{\mathcal{K}}$ and $F_{\mathcal{L}}$ are two non-null soft sets such that $F_{\mathcal{K}} \widetilde{\cap} S\mu - Cl(F_{\mathcal{L}}) = F_{\mathcal{L}} \widetilde{\cap} S\mu - Cl(F_{\mathcal{K}}) = F_{\emptyset}$. Let $\alpha \in S\mu - Cl(F_{\mathcal{K}})$. Since $F_{\mathcal{L}} \widetilde{\cap} S\mu - Cl(F_{\mathcal{K}}) = F_{\emptyset}, \alpha \notin F_{\mathcal{L}}$. Since $F_{\tilde{E}} = F_{\mathcal{K}} \widetilde{\cup} F_{\mathcal{L}}$, $\alpha \in F_{\mathcal{K}}$ which implies $S\mu - Cl(F_{\mathcal{K}}) \cong F_{\mathcal{K}}$. Hence $F_{\mathcal{K}}$ is soft μ -closed. Similarly, $F_{\mathcal{L}}$ is soft μ -closed. Also, $F_{\mathcal{K}} \widetilde{\cap} F_{\mathcal{L}} = F_{\mathcal{K}} \widetilde{\cap} S\mu - Cl(F_{\mathcal{L}}) = F_{\emptyset}$. Hence $F_{\tilde{E}} = F_{\mathcal{K}} \widetilde{\cup} F_{\mathcal{L}}$, where $F_{\mathcal{K}} \neq F_{\emptyset}$ and $F_{\mathcal{L}} \neq F_{\emptyset}$, $F_{\mathcal{K}}$ and $F_{\mathcal{L}}$ are two soft μ -closed sets and $F_{\mathcal{K}} \widetilde{\cap} F_{\mathcal{L}} = F_{\emptyset}$ which contradicts (ii).

(iii) \Rightarrow (iv):

Suppose (iv) is not true. Then there exists $F_{\mathcal{K}} \cong F_{\bar{E}}$ such that $F_{\mathcal{K}} \neq F_{\bar{E}}$ and $F_{\mathcal{K}} \neq F_{\phi}$ where $F_{\mathcal{K}}$ is both soft μ -open and soft μ -closed. Let $F_{\mathcal{K}}^{\bar{c}} = F_{\mathcal{L}}$. Then $F_{\mathcal{L}} \neq F_{\phi}$ is both soft μ -open and soft μ -closed. Hence $F_{\bar{E}} = F_{\mathcal{K}} \cup F_{\mathcal{L}}$, $S\mu - Cl(F_{\mathcal{K}}) \cap F_{\mathcal{L}} = F_{\phi}$. Similarly $F_{\mathcal{K}} \cap S\mu - Cl(F_{\mathcal{L}}) = F_{\phi}$. Hence $F_{\bar{E}} = F_{\mathcal{K}} \cup F_{\mathcal{L}}$, where $S\mu - Cl(F_{\mathcal{K}}) \cap F_{\mathcal{L}} = F_{\phi}$ and $F_{\mathcal{K}} \cap S\mu - Cl(F_{\mathcal{L}}) = F_{\phi}$ which is a $\Rightarrow \leftarrow$ to (iii).

$(iv) \Rightarrow (i)$:

Suppose $F_{\tilde{E}}$ is soft μ -disconnected. Then $F_{\tilde{E}} = F_{\mathcal{H}} \widetilde{\cup} F_{\mathcal{L}}$, $F_{\mathcal{H}}$ and $F_{\mathcal{L}}$ are two non-null soft μ -open sets and $F_{\mathcal{H}} \widetilde{\cap} F_{\mathcal{L}} = F_{\emptyset}$. Then $F_{\mathcal{L}}^{\tilde{C}} = F_{\mathcal{H}}$. Since $F_{\mathcal{L}}$ is soft μ -open, $F_{\mathcal{H}}$ is soft μ -closed. Also, $F_{\mathcal{H}} \neq F_{\emptyset}$ and $F_{\mathcal{H}} \neq F_{\tilde{E}}$, since $F_{\mathcal{L}} \neq F_{\emptyset}$. Hence $F_{\mathcal{H}}$ is a proper non-null soft subset of $F_{\tilde{E}}$ which is both soft μ -open and soft μ -closed which is a contradiction to (iv).

Theorem 6.8:

Let $(F_{\tilde{E}}, \mu)$ be a SGTS. Then $F_{\tilde{E}}$ is soft μ -connected if and only if the only soft subsets of $F_{\tilde{E}}$ that are both soft μ -open and soft μ -closed in $F_{\tilde{E}}$ are F_{\emptyset} and $F_{\tilde{E}}$.

Proof:

Suppose there exists a proper soft subset $F_{\mathcal{D}}$ which is both soft μ -open and soft μ -closed. Let $F_{\mathcal{C}} = F_{\mathcal{D}}^{\tilde{c}}$ Suppose $F_{\mathcal{D}}$ is soft μ -open, then $F_{\mathcal{C}}$ is soft μ -closed and $F_{\mathcal{D}}$ is soft μ -closed, then $F_{\mathcal{C}}$ is soft μ -open. Then $F_{\mathcal{D}} \neq F_{\phi}$ and $F_{\mathcal{C}} \neq F_{\phi}$, $F_{\mathcal{C}} \cap F_{\mathcal{D}} = F_{\phi}$ and $F_{\tilde{E}} = F_{\mathcal{C}} \cup F_{\mathcal{D}} \Rightarrow F_{\tilde{E}}$ is soft μ -disconnected which is a contradiction. Thus, F_{ϕ} and $F_{\tilde{E}}$ are the only soft μ -subsets of $F_{\tilde{E}}$ that are both soft μ -open and soft μ -closed in $F_{\tilde{E}}$.

Conversely, Suppose $F_{\tilde{E}}$ is soft μ -disconnected. Then $F_{\tilde{E}} = F_{\mathcal{U}} \widetilde{\cup} F_{\mathcal{V}}$ where $F_{\mathcal{U}} \neq F_{\emptyset}, F_{\mathcal{V}} \neq F_{\emptyset}, F_{\mathcal{U}}$ and $F_{\mathcal{V}}$ are soft μ -open sets and $F_{\mathcal{U}} \widetilde{\cap} F_{\mathcal{V}} = F_{\emptyset}$. Then $F_{\mathcal{V}}{}^{\tilde{c}} = F_{\mathcal{U}}$. Since $F_{\mathcal{V}}$ is soft μ -open, $F_{\mathcal{U}}$ is soft μ -closed. Also $F_{\mathcal{U}} \neq F_{\emptyset}$ and $F_{\mathcal{U}} \neq F_{\tilde{E}}$, since $F_{\mathcal{V}} \neq F_{\emptyset}$. Hence $F_{\mathcal{U}}$ is a proper non-null soft subset of $F_{\tilde{E}}$ which is both soft μ -open and soft μ -closed.

Theorem: 6.9

If $F_{\mathcal{A}}$ and $F_{\mathcal{B}}$ are two soft μ -open sets which forms a soft μ -disconnection in a SGTS ($F_{\tilde{E}}, \mu$) and $F_{\mathcal{T}}$ is a soft μ -connected SGTSS of ($F_{\tilde{E}}, \mu$). Then $F_{\mathcal{T}}$ is contained in $F_{\mathcal{A}}$ or $F_{\mathcal{B}}$.

Proof:

Let $F_{\mathcal{A}}$ and $F_{\mathcal{B}}$ be two soft μ -open sets in a SGTS $(F_{\tilde{E}}, \mu)$. Then $F_{\mathcal{A}} \cap F_{\mathcal{T}} \neq F_{\emptyset}$ and $F_{\mathcal{B}} \cap F_{\mathcal{T}} \neq F_{\emptyset}$ are two non-null soft μ -open subsets of $F_{\mathcal{T}}$ such that $(F_{\mathcal{A}} \cap F_{\mathcal{T}}) \cap (F_{\mathcal{B}} \cap F_{\mathcal{T}}) = F_{\emptyset}$ and $(F_{\mathcal{A}} \cap F_{\mathcal{T}}) \cup (F_{\mathcal{B}} \cap F_{\mathcal{T}}) =$ $F_{\mathcal{T}}$. Hence $F_{\mathcal{A}} \cap F_{\mathcal{T}} = F_{\emptyset}$ or $F_{\mathcal{B}} \cap F_{\mathcal{T}} = F_{\emptyset}$. If $F_{\mathcal{A}} \cap F_{\mathcal{T}} = F_{\emptyset}$, then $F_{\mathcal{T}}$ is contained in $F_{\mathcal{B}}$ and $F_{\mathcal{B}} \cap F_{\mathcal{T}} = F_{\emptyset}$, then $F_{\mathcal{T}}$ is contained in $F_{\mathcal{A}}$. Therefore $F_{\mathcal{T}}$ is contained in $F_{\mathcal{B}}$ or $F_{\mathcal{B}}$.

Theorem: 6.10

The soft union of a collection of soft μ -connected sets of a SGTS ($F_{\tilde{E}}, \mu$) that have a common point is soft μ -connected.

Proof:

Let F_{A_i} be a collection of soft μ -connected subsets of a SGTS $(F_{\tilde{E}}, \mu)$. Suppose F_Y is not soft μ connected. Then there exists two non-null soft disjoint soft μ -open sets $F_{\mathcal{P}}$ and $F_{\mathcal{Q}}$ such that $F_Y = F_{\mathcal{P}} \cup F_{\mathcal{Q}}$. Let α be a common point in that collection. Then $\alpha \in F_Y$ which implies either $\alpha \in F_{\mathcal{P}}$ or $\alpha \in F_{\mathcal{Q}}$. Since each F_{A_i} is soft μ -connected, F_{A_i} is contained in $F_{\mathcal{P}}$ or $F_{\mathcal{Q}}$. If $\alpha \in F_{\mathcal{P}}$, then F_{A_i} is not contained in $F_{\mathcal{Q}}$ which implies $F_{\mathcal{Q}} = F_{\emptyset}$. Similarly, if $\alpha \in F_{\mathcal{Q}}$, then F_{A_i} is not contained in $F_{\mathcal{P}}$ which implies $F_{\mathcal{P}} = F_{\emptyset}$ which is a contradiction. Hence F_Y is soft μ -connected.

Theorem: 6.11

Let $F_{\mathcal{R}}$ be a SGTSS of a SGTS $(F_{\mathcal{E}}, \mu)$. Then $F_{\mathcal{R}}$ is soft μ -separated if neither of which contains a soft μ -limit point of the other and $F_{\mathcal{R}}$ is soft μ -connected if there does not exist a soft μ -separation of $F_{\mathcal{R}}$.

Proof:

Suppose $F_{\mathcal{R}}$ is soft μ -separated. Then $F_{\mathcal{G}} \neq F_{\emptyset}$, $F_{\mathcal{H}} \neq F_{\emptyset}$, $F_{\mathcal{G}} \cap F_{\mathcal{H}} = F_{\emptyset}$, $F_{\mathcal{G}} \cup F_{\mathcal{H}} = F_{\bar{E}}$, where $F_{\mathcal{G}}$ and $F_{\mathcal{H}}$ are soft μ -open sets. We have $F_{\mathcal{G}}$ and $F_{\mathcal{H}}$ are both soft μ -open and soft μ -closed which imply that $F_{\mathcal{G}} \cap S\mu - Cl(F_{\mathcal{H}}) = F_{\mathcal{G}} \cap (F_{\mathcal{H}} \cup (F_{\mathcal{H}})') = F_{\emptyset}$. Suppose $F_{\mathcal{G}}$ is soft μ -open and $F_{\mathcal{H}}$ is soft μ -closed. Then $F_{\mathcal{G}} \cap F_{\mathcal{H}} = F_{\emptyset} \Rightarrow F_{\mathcal{G}} \cap (F_{\mathcal{H}})' = F_{\emptyset}$. Similarly, if $F_{\mathcal{G}}$ is soft μ -closed and $F_{\mathcal{H}}$ is soft μ -open, then $(F_{\mathcal{G}})' \cap F_{\mathcal{H}} = F_{\emptyset}$. Let $F_{\mathcal{C}} \neq F_{\emptyset}$, $F_{\mathcal{D}} \neq F_{\emptyset}$, $F_{\mathcal{C}} \cap S\mu - Cl(F_{\mathcal{D}}) = F_{\emptyset}$, $S\mu - Cl(F_{\mathcal{C}}) \cap F_{\mathcal{D}} = F_{\emptyset}$, $F_{\mathcal{R}} = F_{\mathcal{C}} \cup F_{\mathcal{D}}$. Now, $S\mu - Cl(F_{\mathcal{C}}) \cap F_{\mathcal{R}} = (S\mu - Cl(F_{\mathcal{C}}) \cap F_{\mathcal{C}}) \cup (S\mu - Cl(F_{\mathcal{C}}) \cap F_{\mathcal{D}}) = F_{\mathcal{C}}$ which implies $F_{\mathcal{C}}$ is soft μ -closed in $F_{\mathcal{R}}$. Similarly, $F_{\mathcal{D}}$ is soft μ -closed in $F_{\mathcal{R}}$ which implies $F_{\mathcal{C}}$ and $F_{\mathcal{D}}$ are both soft μ -open and soft μ -closed in $F_{\mathcal{R}}$. Hence $F_{\mathcal{R}}$ is soft μ -separated.

Theorem: 6.12

Let $F_{\mathcal{P}}$ be a soft μ -connected subset of a SGTS $(F_{\tilde{E}}, \mu)$ and F_I be a soft subset of $F_{\tilde{E}}$ such that $F_{\mathcal{P}} \cong F_I \cong S\mu - Cl(F_{\mathcal{P}})$, then F_I is soft μ -connected.

Proof:

Suppose F_I is not soft μ -connected. Then there exists two non-null soft μ -open sets F_K and F_V such that $F_K \cap F_V = F_{\emptyset}$ and $F_K \cup F_V = F_I$. Then $F_{\mathcal{P}} \subseteq F_K \cup F_V$ which implies either $F_{\mathcal{P}} \subseteq F_K$ or $F_{\mathcal{P}} \subseteq F_V$. By theorem: 6.11, $S\mu - Cl(F_K) \cap F_V = F_{\emptyset}$ and $S\mu - Cl(F_{\mathcal{P}}) \cong S\mu - Cl(F_K)$, $F_I \cap F_V = F_{\emptyset}$ which implies $F_V = F_{\emptyset}$ which is a contradiction. Also, since $F_K \cap S\mu - Cl(F_V) = F_{\emptyset}$ and $S\mu - Cl(F_{\mathcal{P}}) \cong S\mu - Cl(F_{\mathcal{P}})$ and $S\mu - Cl(F_V)$, $F_I \cap F_K = F_{\emptyset}$ which implies $F_K = F_{\emptyset}$ which is a contradiction. Thus F_I is soft μ -connected.

Corollary: 6.13

Let F_A be a soft μ -connected SGTSS of $(F_{\tilde{E}}, \mu)$. Then $S\mu - Cl(F_A)$ is soft μ -connected.

VII. SOFT μ -CONNECTEDNESS IN WEAKER FORMS OF SOFT μ -OPEN SETS Definition: 7.1

- Let $(F_{\tilde{E}}, \mu)$ be a SGTS. Then $F_{\tilde{E}}$ is called
- (i) soft μ - ρ -connected if \nexists two soft μ -pre-open sets F_B , $F_Z \in \mu F_{\emptyset}$ such that $F_B \cap F_Z = F_{\emptyset}$ and $F_B \cup F_Z = F_{\tilde{E}}$
- (ii) soft μ - δ -connected if \nexists two soft μ -semi-open sets F_B , $F_Z \in \mu F_{\emptyset}$ such that $F_B \cap F_Z = F_{\emptyset}$ and $F_B \cup F_Z = F_{\tilde{E}}$
- (iii) soft μ - α -connected if \nexists two soft μ - α -open sets F_B , $F_Z \in \mu F_{\emptyset}$ such that $F_B \cap F_Z = F_{\emptyset}$ and $F_B \cup F_Z = F_{\hat{\theta}}$
- (iv) soft μ - β -connected if \nexists two soft μ - β open sets F_B , $F_Z \in \mu F_{\emptyset}$ such that $F_B \cap F_Z = F_{\emptyset}$ and $F_B \cup F_Z = F_{\hat{E}}$

Corollary: 7.2

Let $(F_{\tilde{E}}, \mu)$ be a SGTS. Then the following are equivalent:

(i) $F_{\tilde{E}}$ is soft μ - β -connected

- (ii) $F_{\vec{E}}$ is soft μ - δ -connected
- (iii) $F_{\tilde{E}}$ is soft μ - α -connected

DOI: 10.9790/0661-2101015969

(iv) $F_{\tilde{E}}$ is soft μ -connected

Proof:

(i) \Rightarrow (ii):

Let $F_{\mathcal{E}}$ be soft μ - β -connected. Contrarily, $F_{\mathcal{E}}$ is soft μ - δ -connected. Then there exists two non-null soft μ -semi-open sets $F_{\mathcal{R}}$, $F_{\mathcal{S}} \in \mu - F_{\emptyset}$ such that $F_{\mathcal{R}} \cap F_{\mathcal{S}} = F_{\emptyset}$ and $F_{\mathcal{R}} \cup F_{\mathcal{S}} = F_{\tilde{E}}$. Since every soft μ - δ -open is soft μ - β -open, there exists two non-null soft μ - β -open sets $F_{\mathcal{R}}$, $F_{\mathcal{S}} \in \mu - F_{\emptyset}$ such that $F_{\mathcal{R}} \cap F_{\mathcal{S}} = F_{\emptyset}$ and $F_{\mathcal{R}} \cup F_{\mathcal{S}} = F_{\tilde{E}}$. Since every soft μ - δ -open is soft μ - β -open, there exists two non-null soft μ - β -open sets $F_{\mathcal{R}}$, $F_{\mathcal{S}} \in \mu - F_{\emptyset}$ such that $F_{\mathcal{R}} \cap F_{\mathcal{S}} = F_{\emptyset}$ and $F_{\mathcal{R}} \cup F_{\mathcal{S}} = F_{\mathcal{E}}$ which implies $F_{\mathcal{E}}$ is not soft μ - β -connected. Hence $F_{\mathcal{E}}$ is soft μ - δ -connected.

(ii) \Rightarrow (iii):

Let $F_{\tilde{E}}$ be soft μ - δ -connected. Suppose not, $F_{\tilde{E}}$ is soft μ - α -connected. Then there exists two non-null soft μ - α -open sets $F_{\mathcal{R}}$, $F_{\mathcal{S}} \in \mu - F_{\emptyset}$ such that $F_{\mathcal{R}} \cap F_{\mathcal{S}} = F_{\emptyset}$ and $F_{\mathcal{R}} \cup F_{\mathcal{S}} = F_{\tilde{E}}$. Since every soft μ - α -open set is soft μ -semi-open, then there exists two non-null soft μ -semi-open sets $F_{\mathcal{R}}$, $F_{\mathcal{S}} \in \mu - F_{\emptyset}$ such that $F_{\mathcal{R}} \cap F_{\mathcal{S}} = F_{\emptyset}$ and $F_{\mathcal{R}} \cup F_{\mathcal{S}} = F_{\tilde{E}}$ which implies $F_{\tilde{E}}$ is not soft μ - δ -connected. Hence $F_{\tilde{E}}$ is soft μ - α -connected.

(iii) \Rightarrow (iv):

Let $F_{\tilde{E}}$ be soft μ - α -connected. If not, $F_{\tilde{E}}$ is soft μ -connected. Then there exists two non-null soft μ -open sets $F_{\mathcal{R}}$, $F_{\mathcal{S}} \in \mu - F_{\emptyset}$ such that $F_{\mathcal{R}} \cap F_{\mathcal{S}} = F_{\emptyset}$ and $F_{\mathcal{R}} \cup F_{\mathcal{S}} = F_{\tilde{E}}$. We know that every soft μ -open set is soft μ - α -open. Therefore there exists two non-null soft μ - α -open sets $F_{\mathcal{R}}$, $F_{\mathcal{S}} \in \mu - F_{\emptyset}$ such that $F_{\mathcal{R}} \cap F_{\mathcal{S}} = F_{\emptyset}$ and $F_{\mathcal{R}} \cup F_{\mathcal{S}} = F_{\tilde{E}}$ which implies $F_{\tilde{E}}$ is not soft μ - α -connected. Hence $F_{\tilde{E}}$ is soft μ -connected.

Corollary: 7.3

Let $(F_{\tilde{E}}, \mu)$ be a SGTS. Then the following are equivalent:

(i) $F_{\tilde{E}}$ is soft μ - β -connected

(ii) $F_{\tilde{E}}$ is soft μ - ρ -connected

(iii) $F_{\tilde{E}}$ is soft μ - α -connected

Proof:

(i) \Rightarrow (ii):

Let $F_{\tilde{E}}$ be soft μ - β -connected. On the other hand, $F_{\tilde{E}}$ is not soft μ - ρ -connected. Then there exists two non-null soft μ -pre-open sets $F_{\mathcal{R}}$, $F_{\mathcal{S}} \in \mu - F_{\emptyset}$ such that $F_{\mathcal{R}} \cap F_{\mathcal{S}} = F_{\emptyset}$ and $F_{\mathcal{R}} \cup F_{\mathcal{S}} = F_{\tilde{E}}$. Since every soft μ -pre-open set is a soft μ - β -open set, then there exists two non-null soft μ - β -open sets $F_{\mathcal{R}}$, $F_{\mathcal{S}} \in \mu - F_{\emptyset}$ such that $F_{\mathcal{R}} \cap F_{\mathcal{S}} = F_{\emptyset}$ and $F_{\mathcal{R}} \cup F_{\mathcal{S}} = F_{\tilde{E}}$ which implies $F_{\tilde{E}}$ is not soft μ - β -connected. Hence $F_{\tilde{E}}$ is soft μ - ρ connected.

(ii) \Rightarrow (iii):

Let $F_{\tilde{E}}$ be soft μ - ρ -connected. On the contrary, $F_{\tilde{E}}$ is soft μ - α -connected. Then there exists two non-null soft μ - α -open sets $F_{\mathcal{R}}$, $F_{\mathcal{S}} \in \mu - F_{\emptyset}$ such that $F_{\mathcal{R}} \cap F_{\mathcal{S}} = F_{\emptyset}$ and $F_{\mathcal{R}} \cup F_{\mathcal{S}} = F_{\tilde{E}}$. Also, since every soft μ - α -open set is soft μ -pre-open, then there exists two non-null soft μ -pre-open sets $F_{\mathcal{R}}$, $F_{\mathcal{S}} \in \mu - F_{\emptyset}$ such that $F_{\mathcal{R}} \cap F_{\mathcal{S}} = F_{\emptyset}$ and $F_{\mathcal{R}} \cup F_{\mathcal{S}} = F_{\tilde{E}}$. Also, since every soft μ - α -open set is soft μ - F_{\emptyset} and $F_{\mathcal{R}} \cup F_{\mathcal{S}} = F_{\emptyset}$ and $F_{\mathcal{R}} \cup F_{\mathcal{S}} = F_{\emptyset}$ such that $F_{\mathcal{R}} \cap F_{\mathcal{S}} = F_{\emptyset}$ and $F_{\mathcal{R}} \cup F_{\mathcal{S}} = F_{\emptyset}$ such that $F_{\mathcal{R}} \cap F_{\mathcal{S}} = F_{\emptyset}$ and $F_{\mathcal{R}} \cup F_{\mathcal{S}} = F_{\tilde{E}}$ which implies $F_{\tilde{E}}$ is not soft μ - ρ -connected. Hence $F_{\tilde{E}}$ is soft μ - α -connected.

VIII. SOFT μ -HYPERCONNECTEDNESS IN WEAKER FORMS OF SOFT μ -OPEN SETS Definition: 8.1

Let $(F_{\tilde{E}}, \mu)$ be a SGTS. Then $F_{\tilde{E}}$ is called

(i) soft μ -hyperconnected if for each non-null soft μ -open subset F_A of $F_{\tilde{E}}$ is soft μ -dense.

 $[(i.e.) S\mu - Cl(F_A) = F_{\tilde{E}}]$

(ii) soft μ - ρ -hyperconnected if for each non-null soft μ -pre-open subset F_A of $F_{\tilde{E}}$ is soft μ -dense.

(iii) soft μ - δ -hyperconnected if for each non-null soft μ -semi-open subset F_A of F_E is soft μ -dense.

(iv) soft μ - α -hyperconnected if for each non-null soft μ - α -open subset F_A of F_E is soft μ -dense.

(v) soft μ - β -hyperconnected if for each non-null soft μ - β -open subset F_A of $F_{\tilde{E}}$ is soft μ -dense.

Corollary: 8.2

Let $(F_{\tilde{E}}, \mu)$ be a SGTS. Then the following are equivalent:

- (i) $F_{\tilde{E}}$ is soft μ - β -hyperconnected
- (ii) $F_{\tilde{E}}$ is soft μ - δ -hyperconnected
- (iii) $F_{\tilde{E}}$ is soft μ - α -hyperconnected
- (iv) $F_{\tilde{E}}$ is soft μ -hyperconnected

Proof:

(i) \Rightarrow (ii):

Let $F_{\tilde{E}}$ be soft μ - β -hyperconnected. Let F_{W} be any non-null soft μ -semi-open subset of $F_{\tilde{E}}$. As every soft μ -semi-open set is soft μ - β -open which imply that F_{W} is a non-null soft μ - β -open subset of $F_{\tilde{E}}$. By hypothesis, we have $S\mu - Cl(F_{W}) = F_{\tilde{E}}$. Hence $F_{\tilde{E}}$ is soft μ - δ -hyperconnected.

(ii) \Rightarrow (iii):

Let $F_{\tilde{E}}$ be soft μ - δ -hyperconnected. Let F_{W} be any non-null soft μ - α -open subset of $F_{\tilde{E}}$. Since each soft μ - α -open is soft μ -semi-open, F_{W} is a non-null soft μ -semi-open subset of $F_{\tilde{E}}$. Also, $F_{\tilde{E}}$ being soft μ - δ -hyperconnected, we have $S\mu - Cl(F_{W}) = F_{\tilde{E}}$. Hence $F_{\tilde{E}}$ is soft μ - α -hyperconnected.

(iii) \Rightarrow (iv):

Let $F_{\tilde{E}}$ be soft μ - α -hyperconnected. Let $F_{\mathcal{W}}$ be any non-null soft μ -open subset of $F_{\tilde{E}}$. By known result, every soft μ -open set is soft μ - α -open \Rightarrow $F_{\mathcal{W}}$ is a non-null soft μ - α -open subset of $F_{\tilde{E}}$. Under the hypothesis that $F_{\tilde{E}}$ is soft μ - α -hyperconnected, we have $S\mu - Cl(F_{\mathcal{W}}) = F_{\tilde{E}}$. Hence $F_{\tilde{E}}$ is soft μ -hyperconnected.

Corollary: 8.3

Let $(F_{\tilde{E}}, \mu)$ be a SGTS. Then the following are equivalent:

(i) $F_{\vec{E}}$ is soft μ - β -hyperconnected

(ii) $F_{\tilde{E}}$ is soft μ - ρ -hyperconnected (iii) $F_{\tilde{E}}$ is soft μ - α -hyperconnected

Proof:

(i) \Rightarrow (ii):

Let $F_{\tilde{E}}$ be soft μ - β -hyperconnected. Let $F_{\mathcal{W}}$ be any non-null soft μ -pre-open subset of $F_{\tilde{E}}$. As every soft μ -pre-open set is soft μ - β -open which implies $F_{\mathcal{W}}$ is a non-null soft μ - β -open subset of $F_{\tilde{E}}$. By hypothesis, we have $S\mu - Cl(F_{\mathcal{W}}) = F_{\tilde{E}}$. Hence $F_{\tilde{E}}$ is soft μ - ρ -hyperconnected.

(ii) \Rightarrow (iii):

Let $F_{\tilde{E}}$ be soft μ - ρ -hyperconnected. Let $F_{\mathcal{W}}$ be any non-null soft μ - α -open subset of $F_{\tilde{E}}$. Since each soft μ - α -open is soft μ -pre-open, $F_{\mathcal{W}}$ is a non-null soft μ -pre-open subset of $F_{\tilde{E}}$. Since $F_{\tilde{E}}$ is soft μ - ρ -hyperconnected, $S\mu - Cl(F_{\mathcal{W}}) = F_{\tilde{E}}$. Hence $F_{\tilde{E}}$ is soft μ - α -hyperconnected.

References

- [1]. H. Aktas And N. Cagman, Soft Sets And Soft Groups, Inform. Sci. 2007; 177: 2726-2735.
- K. V. Babita, Sunil Jacob John, Soft Set Relations And Functions, Computers And Mathematics With Applications, 2010; 60: 1840-1849.
- [3]. I. Basdouri, R. Messaoud, A. Missaoui, Connected And Hyperconnected Generalized Topological Spaces, Journal Of Linear And Topological Algebra. 2016; 5 (4): 229-234.
- [4]. S. S. Benchalli, Basavaraj M. Ittanagi And R. S. Wali, On Minimal Open Sets And Maps In Topological Spaces, J. Comp. And Math. Sci. 2011; 2 (2): 208-220.
- [5]. S. S. Benchalli And Basavaraj M. Ittanagi, On Paraopen Sets And Maps In Topological Spaces, Kyungpook Math. J. 2016; 56: 301-310.
- [6]. S. S. Benchalli, P.G. Patil, Nivedita, S. Kabbur And J. Pradeep Kumar, Weaker Forms Of Soft Nano Open Sets. Journal Of Computer And Mathematical Sciences. 2017; 8 (11): 589-599.
- [7]. C. Carpintero, E. Rosas, M. Salas-Brown And J. Sanabria, Minimal Open Sets On Generalized Topological Space, Proyecciones Journal Of Mathematics. 2017; 36(4): 739-751.
- [8]. C. Chetana And K. Naganagouda, Soft Minimal Continuous And Soft Maximal Continuous In Soft Topological Spaces, Global Journal Of Pure And Appiled Mathematics. 2017; 13(7): 3033-3047.
- [9]. A.Csaszar, Generalized Topology, Generalized Continuity, Acta Mathematica Hungarica. 2002; 96(4): 351-357.
- [10]. Hai-Long Yang, Xiuwu Liao And Sheng-Gang Li, On Soft Continuous Mappings And Soft Connectedness Of Soft Topological Spaces, Hacettepe Journal Of Mathematics And Statistics. 2015; 44 (2): 385-398.
- [11]. Hula. M. Salih, On Minimal Soft Hausdorff Space And Soft Minimal Hausdorff Space In Soft Topological Spaces, International Journal Of Advanced Scientific And Technical Research. 2016; 3 (6): 101-109.
- [12]. James R. Munkres, Topology, Second Edition, By Prentice-Hall, Inc. 2000.
- [13]. Jyothis Thomas And Sunil Jacob John, On Soft Generalized Topological Spaces, Journal Of New Results In Science. 2014; 4: 01-15.
- [14]. Jyothis Thomas, Sunil Jacob John, Soft Π-Open Sets In Soft Generalized Topological Spaces, Journal Of New Theory. 2015; 5: 53-66.
- [15]. P. K. Maji, R. Biswas, A. R. Roy, An Application Of Soft Sets In A Decision Making Problem, Computers And Mathematics With Applications. 2002; 44: 1077-1083.
- [16]. P. K. Maji, R. Biswas, A. R. Roy, Soft Set Theory, Computers Math. Appl. 2003; 45: 555-562.
- [17]. D. Molodtsov, Soft Set Theory-First Results, Computers Math. Appl. 1999; 37: 19-31.
- [18]. F. Nakaoka And N. Oda, Some Applications Of Minimal Open Sets, Int. J. Math. Math. Sci. 2001; 27 (8): 471-476.

- [19]. F. Nakaoka And N. Oda, Some Properties Of Maximal Open Sets, Int. J. Math. Math. Sci. 2003; 21: 1331-1340.
- [20]. F. Nakaoka And N. Oda, Minimal Closed Sets And Maximal Closed Sets, Int. J. Math. Math. Sci. 2006; Article Id 18647.
- [21]. Qays Shakir, Minimal And Maximal Soft Open Sets, Malaya J. Mat. 2016; 4 (1): 53-58.
- [22]. B. Roy And R. Sen, On Maximal μ-Open And Minimal μ-Closed Sets Via Generalized Topology, Acta Math. Hungar. 2012; 136 (4): 233-239.
- [23]. Sabir Hussain, A Note On Soft Connectedness, Journal Of The Egyptian Mathematical Society. 2014: 1-6.
- [24]. S. Hussain, B. Ahmad, Some Properties Of Soft Topological Spaces, Comput. Math. Appl. 2011; 62: 4058-4067.
- [25]. M. Shabir And M. Naz, On Soft Topological Spaces, Computers Math. Appl. 2011; 61: 1786-1799.
- [26]. K. Shakila And R. Selvi, A Note On Fuzzy Soft Maximal Open Set And Fuzzy Soft Minimal Open Set, International Journal Of Scientific Research And Review. 2018; 7 (7): 472-477.
- [27]. K. Shakila And R. Selvi, A Note On Fuzzy Soft Paraopen Sets And Maps In Fuzzy Soft Topological Spaces, J. Math. Comp. Sci. 2020; 10 (2): 289-308.
- [28]. M. Supriya And R. Selvi, Soft Minimal Open Sets On Soft Generalized Topological Spaces, Proceedings Of The International Conference On Recent Innovations In Applications Of Mathematics, Isbn: 978-93-91563-72-1. 2023: 152-157.
- [29]. M. Supriya And R. Selvi, Soft Maximal Open Sets And Soft Paraopen Sets On Soft Generalized Topological Spaces, Quest Journals, Journal Of Research In Applied Mathematics. 2024; 10 (2): 05-12.
- [30]. I. Zorlutuna, M. Akdag, W. K. Min And S. Atmaca, Remarks On Soft Topological Spaces, Annals Of Fuzzy Mathematics And Informatics. 2012; 3 (2): 171-185.