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Abstract: This paper proposes a multi-substance identification and analysis algorithm based on Fourier 

Transform Infrared (FTIR) spectroscopy. The algorithm begins with baseline correction and data length 

normalization of the FTIR spectra. From the perspective of overall optimization, the mixture data is analyzed 

using the non-negative least squares algorithm to identify potential substances in the database. Subsequently, key 

features such as the maximum values of spectral peaks, peak widths, and the left and right minimum values are 

extracted to construct a feature parameter vector. Finally, from the perspective of local optimization, a similarity 

function is employed to match and identify the most similar substance in the database. By iterating this process, 

multi-substance identification is achieved. Experimental results demonstrate the method's high accuracy and 

reliability in identifying mixture components, providing an efficient and precise approach for qualitative analysis. 

This method holds significant potential for future applications in chemical analysis. 
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I. Introduction 
In modern industrial production and chemical management, the importance of multi-substance 

identification has grown significantly. With the continuous increase in chemical products, accurately identifying 

toxic and hazardous substances is crucial for ensuring safety and environmental protection. Accurate substance 

identification technology not only prevents safety risks but also enhances production efficiency. Establishing a 

fast and reliable identification method is essential for addressing potential risks and improving emergency 

response capabilities. Fourier Transform Infrared Spectroscopy (FTIR), as an efficient and environmentally 

friendly analytical technique, has been widely applied in fields such as toxic gas detection[1]and drug component 

analysis[2]. It has become a core tool in multi-substance identification and analysis. Compared to traditional 

methods, FTIR detection often faces challenges such as insufficient sensitivity and long response times, which 

may lead to severe consequences due to delayed results. In contrast, FTIR technology can monitor trace harmful 

gases in real-time, making it an ideal solution. Additionally, FTIR can identify unknown chemical substances, 

ensuring rapid responses to toxic gas leaks. Another key application of FTIR is drug component analysis, where 

it effectively identifies main components and impurities, supporting drug quality control and regulation. This 

ensures drug safety and enhances therapeutic efficacy. As technology advances, the potential applications of FTIR 

will continue to expand, offering more comprehensive safeguards for safety and health. 

Given the broad applications of FTIR-based multi-substance identification in toxic gas detection and 

drug property analysis, researchers have proposed various methods for analyzing FTIR data. In 1994, Curk et al. 
[3] described how to use FTIR to monitor the cultivation process of lactic acid bacteria in beer production and 

identify different species of lactic acid bacteria. They attempted to improve traditional identification methods 

using FTIR and other analytical techniques, providing rapid, reliable, and routine analysis for many samples. 

However, there is still room for improvement, such as exploring additional spectral windows (single or combined) 

and increasing the number of species and strains analyzed to create a more reliable database. In 2012, Jiang An[4] 

proposed several improved algorithms for the qualitative analysis of complex mixtures using FTIR, including an 

asymmetric least squares baseline correction algorithm, a continuous wavelet transform-based FTIR fitting 

algorithm, and a support vector machine-based qualitative analysis algorithm using prior knowledge. However, 

when dealing with more complex spectral data, these algorithms may face challenges in achieving local 

optimization, affecting the correction results. In 2019, Liu Caizheng et al. [5] proposed a method for identifying 

mixture components using Raman spectroscopy. This method involves background correction and denoising of 

the Raman spectra, followed by fitting the Raman peaks using the Voigt function to construct feature vectors for 
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standard library substances and the mixture to be identified. Finally, the mixture components are identified by 

correlating the feature vectors with the database. However, this method struggles to effectively identify spectral 

data with overlapping peaks. In 2023, Chen Bin et al. [6] addressed the qualitative analysis of mixtures by using a 

multi-feature fusion Backpropagation (BP) neural network model based on infrared spectroscopy and compared 

it with a logistic regression model. The multi-feature fusion logistic regression model and BP neural network 

model, which incorporate both spectral features and full-spectrum information, exhibit stronger discriminative 

capabilities compared to single-matching algorithms. However, these methods still face challenges such as high 

model training complexity and strong dependence on data quality. In summary, existing methods either achieve 

local optimization with poor overall performance or achieve overall optimization but fail to accurately identify 

features, leaving room for improvement in accuracy and flexibility. 

In FTIR-based multi-substance identification, the principle of overall optimization quickly narrows down 

a subset of the database that likely contains the target substance, ensuring rapid response when dealing with large 

databases. On the other hand, the principle of local optimization focuses on precisely extracting the spectral 

features of the target substance from the subset obtained through overall optimization, emphasizing detailed 

accuracy, which is crucial for improving identification accuracy. Therefore, the core task of this paper is to find a 

balance between overall and local optimization to enhance the flexibility and accuracy of identification. To 

achieve this, we propose a new FTIR-based multi-substance identification and analysis algorithm that integrates 

non-negative least squares, spectral peak identification, similarity function matching, and iterative processes. 

First, when dealing with complex data, the non-negative least squares algorithm is used to quickly determine a 

subset from the database that likely contains the target substance, providing a solid foundation for subsequent in-

depth analysis and identification of multiple substances, ensuring the accuracy and reliability of the results. 

Second, spectral peak identification is used to extract key features from the spectra, and a similarity function is 

defined based on these features. Finally, the similarity function matching method is used to match the spectral 

peaks of the mixture with the subset, and the most similar target substance is selected. By iterating this process, 

the goal of multi-substance identification can be achieved. Theoretically, this algorithm can iterate indefinitely 

until all substance components in the test data are identified. 

The structure of this paper is as follows: Section 1 describes the algorithm and presents the FTIR-based 

multi-substance identification and analysis algorithm. Section 2 discusses the numerical results and analysis. The 

final section concludes the paper. 

 

II. Algorithm Description 
This section describes the main methods used in the algorithm. First, the Fourier Transform Infrared 

(FTIR) spectral data is preprocessed, including baseline correction and data length normalization. Next, the non-

negative least squares algorithm is used to analyze the multi-substance mixture from an overall perspective. 

Finally, feature vectors for the substances in the database and the multi-substance mixture are constructed, and 

the similarity function is used to analyze the feature vectors of the multi-substance mixture and the database data 

one by one. 

 

Preprocessing of FTIR Spectral Data 

Preprocessing of FTIR spectral data [7-9] is a crucial step to ensure data quality and analytical accuracy. 

It eliminates noise and baseline drift generated during data acquisition while enhancing model adaptability through 

standardization and regularization. The preprocessing includes multiple steps aimed at improving data quality, 

such as baseline correction to remove drift and data length normalization to align test and database data for 

subsequent analysis. 

First, this paper crops the data to ensure that the horizontal coordinate ranges of the test data and the 

database data are consistent. Assume there are K spectral datasets, each containing NK sample points, where the 

k-th dataset has a horizontal coordinate set  1 2, , ,
kk kk kNV v v v  and a vertical coordinate set 

 1 2, , ,
kk kk kNI I II  .The horizontal coordinate range of each dataset is calculated, i.e., the minimum 

value , min( )kmin kv V  and the maximum value max, max( )kkv V  of the horizontal coordinates. Then, the overall 

horizontal coordinate range for all datasets is calculated as follows: 

  ,1 ,2 ,max , , ,min min min min Kv vx v  ，  ,1 ,2 ,min , , ,max max max max Kv vx v   (1) 

For each dataset, the horizontal coordinate range is cropped to the overall horizontal coordinate 

range  ,min maxx x . That is, for the k-th dataset, data points that satisfy min k maxx x x   are selected, resulting in 

the cropped dataset  'kV : 

    '
k min k maxkV V when x x x    (2) 
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This ensures that the horizontal coordinate ranges of all datasets are unified to a common interval. Next, 

spectral alignment is performed to ensure that all datasets have consistent horizontal coordinate intervals and the 

same number of sampling points. This paper uses spline interpolation to map the horizontal coordinate values of 

each dataset to a new, uniformly spaced set of sampling points. For the k-th dataset, the cropped horizontal 

coordinate range is  ,min maxx x , and a new, uniformly spaced horizontal coordinate set with M elements is defined, 

evenly distributed within the interval  ,min maxx x , as follows: 

 1( 1) , .
1

,2,
max min

i min

v
x v

v
i v

M
v whe e Mr i


    


   ，  (3) 

Then, for the k-th dataset, spline interpolation is used to interpolate the original vertical coordinates Ik

 onto the new horizontal coordinate set  "kV , resulting in a new vertical coordinate set  'kI .Through this 

process, each dataset has the same number of elements M within the unified horizontal coordinate range, and the 

horizontal coordinate values are uniformly spaced. 

After aligning all datasets, this paper performs baseline correction [10-15] on the test data to eliminate or 

reduce baseline shifts caused by factors such as instrument drift and sample background. This  "kV  involves 

correcting the vertical coordinates of each dataset so that the baseline is close to zero. Common baseline correction 

methods include polynomial baseline correction, adaptive baseline correction, and piecewise polynomial fitting. 

Common baseline correction methods include polynomial baseline correction, adaptive baseline correction, and 

piecewise polynomial fitting. This paper employs the effective extremum correction method, whose basic idea is 

based on effective extrema to better capture the main trends and effective details of the signal. Based on this, the 

effective extremum baseline correction method is derived. This method not only retains the effective information 

of the test data and the database but also makes their baselines consistent, facilitating subsequent analysis. 

Through the above steps, the preprocessed dataset can be compared within the same horizontal coordinate 

range, eliminating differences caused by varying numbers of sampling points, horizontal coordinate ranges, and 

baseline shifts. This provides consistent spectral data for subsequent analysis, effectively improving the accuracy 

and reliability of FTIR spectral analysis and laying a solid foundation for further data analysis. 

 

Non-Negative Least Squares Algorithm 

After preprocessing the test data and the database data, this paper obtains n+1 vectors of length m, where 

n vectors correspond to the vertical coordinates of the substances in the database, i.e.,  ' 2 ,: 1, ,k nI k   . The 

remaining vector is the test data, denoted as y. By combining '
kI  as column vectors, a matrix m nA   is 

obtained. The goal now is to find a limited number of column vectors from the n column vectors of A such that 

the error between their linear combination and y is minimized. This is exactly the problem that traditional least 

squares methods are well-suited to solve, i.e., finding nx  such that 
2

Ax y  is minimized in the 2-norm 

sense. However, some components of x obtained by this method may be negative, which contradicts the physical 

meaning of the problem. Therefore, this paper adds a constraint that every component of x must be greater than 

or equal to zero. This is the basic idea of Non-negative Least Squares (NNLS). For more details on Non-negative 

Least Squares, refer to references [16,17]. Specifically, Non-negative Least Squares (NNLS) solves for the 

coefficient vector * nx   such that 

 
2 2

02 2
* min

x
yx AxA


   (4) 

where 
2

 denotes the 2-norm. To solve the NNLS problem, researchers have developed various 

effective algorithms, such as the steepest descent method[18], Newton's method[19], and the conjugate gradient 

method[20]Some researchers have also transformed this problem into a linear complementarity problem, resulting 

in a feasible interior-point algorithm, as described in reference[21]. Due to space limitations, this paper will not 

elaborate on these algorithms in detail. Interested readers can refer to[18]. 

Using the NNLS algorithm, a subset of the database that likely contains the target substance can be 

quickly determined. In fact, by sorting all components of *x  in descending order and selecting the top ten largest 

components, the corresponding database data and substances can be identified. The next task is to find the 

substance most likely contained in the target mixture from these ten substances. In other words, after determining 

an overall optimal range using the NNLS algorithm, the principle of local optimization is applied within this range 

to identify the target substance. To achieve this, this paper studies the local features of the database data and test 

data and proposes a definition for the similarity function. 
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Similarity Function 

To define the similarity function, it is first necessary to study the local information of the FTIR spectral 

data, such as spectral peaks and peak widths. In FTIR spectra, spectral peaks are regions where the absorption 

intensity of the sample changes significantly at specific wavelengths or wavenumbers, typically representing the 

characteristics of the components in the sample. In mixtures, spectral peaks often shift or deform due to the 

overlapping of adjacent peaks or interference from certain components. This phenomenon not only affects the 

clarity of the peaks but may also lead to misjudgment of the mixture components, posing challenges to the 

accuracy of peak identification. To better illustrate the characteristics of spectral peaks, Figure 1 shows an example 

of a multi-substance mixture's FTIR spectrum. The shape characteristics of each peak are clearly displayed. Figure 

2 shows the spectral peak characteristics of the mixture, including the relative positions and shapes of the peaks. 

By observing this figure, the importance of spectral peaks in mixture analysis can be more intuitively understood. 

Peak width typically refers to the width of the spectral peak, reflecting the extent of the peak's spread in the 

frequency domain. Under constant data collection conditions, the peak width is relatively stable. By measuring 

the peak width in the spectrum and comparing it with the peak width of standardized substances, the corresponding 

substances can be further identified in the database.  

 

  

Figure 1: Fourier infrared spectroscopy of mixtures Figure 2: Spectral peak characterization in mixtures 

 

By observing the spectra of mixtures and 342 common chemical substances based on FTIR, spectral peak 

characteristics are typically represented as a series of peaks and troughs. To clearly describe these characteristics, 

this paper extracts the maximum values of the peaks, the width of the peaks, and the left and right minimum values 

to form the spectral peak feature parameter vector of the data. Let the i-th spectral peak feature be represented as 

a vector mmax max min in )( , , , ,l r

i i i i iS    , 1,2 ,,i N  , where N is the number of peaks. 

Here, mmax max i nn mil r

i i i i iS   、、 、 、  represent the horizontal and vertical coordinates of the peak maximum, the 

peak width i minm nr l

i i iS   , and the horizontal coordinates of the left and right minima, respectively. These 

elements together form the overall feature vector of the spectral peak, facilitating the identification and 

differentiation of different components in multi-substance analysis. The maximum point is located at the highest 

point of each main peak, indicating the concentration of the main components in the sample. The peak width 

describes the width of the spectral peak, and through the mathematical model of the peak, structural information 

of complex mixtures can be revealed. The left and right minimum points are located on either side of each peak, 

indicating the shape and symmetry of the spectral peak. 

By capturing the spectral peaks and their width information from the database and test data using the 

horizontal coordinates of the local maxima and their left and right minima, a similarity function is defined to 

determine their similarity. This enables the identification of the substance in the database that is most similar to 

the test data. Specifically, let the i-th spectral peak feature vector of a substance in the database 

be mmax max min in )( , , , ,l r

i i i i iS    , 1,2 ,,i N  , where N is the number of peaks, and let the k-th spectral peak 

feature vector of the test data be mmax max min in )( , , , ,l r

k k k k kS    , 1,2 ,,k M  , where M is the number of peaks. 

First, the horizontal distance between the test data and the i-th peak in the database is calculated. Based on the 

principle of minimizing the distance between the test data peak and the i-th peak in the database, a peak from the 

test data that is closest to the i-th peak in the database is selected. Let its feature vector 

be mmax max min
* * * * *

in( ), , , ,l rS    , and let the distance be denoted as *
max max

il    .Next, the similarity between 

the selected test data peak and the i-th peak in the database is defined. The test data peak and the database peak 

are considered similar if they satisfy the following three conditions: 

1. The minimum distance l is less than or equal to half the width of the test data peak, i.e., 
2

l
S

 ; 



Overall and Local Optimization: A Multi-Substance Identification Algorithm Based on .. 

DOI: 10.9790/0661-2102020110                                www.iosrjournals.org                                     5 | Page 

2. The horizontal coordinate of the maximum of the i-th peak in the database lies within the peak of the test 

data, i.e., * *,l rmax min min
i     ; 

3. The vertical coordinate of the maximum of the i-th peak in the database is close to that of the test data peak, 

i.e., *
max max
i    , where   is a predefined threshold (set to 0.02 in this paper); 

For two similar peaks, the i-th peak in the database can be assigned a positive value. 
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 (5) 

Otherwise, the i-th peak in the database is assigned a negative value 
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Here, max x
k
ma  is the maximum vertical coordinate of the peaks in the test data, x

k
ma  is the mean 

vertical coordinate of all peaks in the test data, and min x
k
ma  is the minimum vertical coordinate of the peaks in 

the test data. Finally, each feature in the database data is assigned a value, and the similarity between the database 

data and the test data is calculated as follows: 

 * *, ,( ) ( )max max max max
i i

R
N

R R   
 


  . (7) 

Multi-Substance Identification Analysis Algorithm 

After preprocessing the test data, the NNLS algorithm is used to obtain a subset of the database that likely 

contains the target substance from an overall optimization perspective. Then, the similarity function is used to 

identify the most likely target substance from a local optimization perspective. In this way, the first substance in 

the mixture corresponding to the test data is identified. By subtracting the product of the database data 

corresponding to this substance and the weighting coefficient obtained from the NNLS algorithm from the test 

data, a new set of data is obtained. This new test data is then analyzed again using the NNLS algorithm to obtain 

a new subset from the database. The spectral peak features of the first target substance are removed from this new 

subset, and the similarity function is used to identify the second target substance. This process is repeated until all 

possible substances in the mixture are identified. Specifically, the algorithm is as follows: 

Algorithm: Multi-Substance Identification and Analysis Algorithm Based on FTIR Spectroscopy: 

Input: Test data, i.e., the mixture to be analyzed; 

Output: The names of two or three common chemical substances that match the mixture, along with their 

similarity values. 
1. Import the data of 342 common chemical substances based on FTIR spectroscopy to form the database. 

Preprocess both the database data and the test data; 

2. Calculate the spectral peak feature vectors for both the test data and the database; 

3. Use the NNLS algorithm to identify the top ten candidate substances from the database that are similar to the 

test data for identifying the first target substance; 

4. Calculate the similarity values between the ten candidate substances and the test data using the similarity 

function, sort them, and identify the first target substance with the highest similarity; 
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5. Calculate the similarity values between the ten candidate substances and the test data using the similarity 

function, sort them, and identify the first target substance with the highest similarity data; 

6. Use the NNLS algorithm again on this new test data to obtain a new subset from the database. Remove the 

spectral peak features of the first target substance from this new subset, and use the similarity function to 

identify the second target substance; 

7. Repeat steps (5) and (6) to identify the third target substance; 

8. Combine the three target substances in 1:1 pairwise combinations and a 1:1:1 combination to form four new 

simulated mixture datasets; 

9. Calculate the spectral peak feature vectors for the four simulated mixtures obtained in step (8); 

10. Use the similarity function to calculate the similarity values between the four simulated mixtures and the test 

data, sort them, and output the names of all substances in the simulated mixture with the highest similarity 

value, along with its similarity value. 

 

III. Experiments and Results 
In the previous section, this paper introduced the steps of the multi-substance identification and analysis 

algorithm based on Fourier Transform Infrared (FTIR) spectroscopy. In this section, numerical experiments will 

be conducted to verify the high accuracy and effectiveness of the proposed multi-substance identification and 

analysis algorithm. This paper uses the Alphapce ALPHAPEC5010 portable FTIR spectrometer (spectral range: 

500cm⁻ ¹~5000cm⁻ ¹, maximum resolution: 1cm⁻ ¹, signal-to-noise ratio: 45000:1, transmittance repeatability 

better than 0.5%T) to sample 342 common chemical substances and 40 mixture samples, which are used as the 

database data and test data for spectral analysis. The following two multi-substance mixtures will be selected for 

numerical experiments. These mixtures are chosen because they are representative and can more effectively test 

the algorithm's performance. The numerical experiments in this paper were conducted on a personal computer 

equipped with an Intel i5-8250U processor (1.60GHz), 12GB RAM, and the Microsoft Windows 10 operating 

system, using MATLAB (R2017b). This paper presents the data obtained using the proposed non-negative least 

squares method and similarity function method. Additionally, to demonstrate the differences in data between 

different substances, the multi-substance mixtures are divided into three-substance mixtures and two-substance 

mixtures for data analysis. The data for each stage are listed step-by-step in Tables 1 to 14, and the comparison 

between the multi-substance mixtures and the fitted spectra of the target substances is displayed in the same 

window. 

 

Table 1: Three-substance mixtures and the use of non-negative least squares to obtain the first ten 

alternative substances and non-negative least squares coefficients for the identification of the first target 

substance 
Multi-substance mixture: Acetone + Styrene + Benzyl Alcohol 

Ranking Top 10 Candidate Substance Names Non-negative Least Squares Coefficients 

1 Acetone 1.3363 

2 Styrene 0.8498 

3 Benzaldehyde 0.5398 
4 4-Hydroxy-4-methyl-2-pentanone 0.3138 

5 Benzyl alcohol 0.2483 

6 Biphenyl 0.2136 
7 Amphetamine hydrochloride 0.1192 

8 Trimethyl borate 0.1090 
9 Dimethyl sulfide 0.0952 

10 Phenylacetic acid 0.0945 

 

Table 2: Similarity values of the three-substance mixture and the first ten alternative substances used to 

identify the first target substance compared with each other using the similarity function 
Multi-substance mixture: Acetone + Styrene + Benzyl Alcohol 

Ranking Top 10 Substances Similarity Value 

1 Acetone 0.8750 

2 Styrene 0.5000 
3 Biphenyl 0.2222 

4 Phenylacetic acid 0.0833 

5 4-Hydroxy-4-methyl-2-pentanone 0.0455 
6 Benzaldehyde -0.0667 

7 Dimethyl sulfide -0.2857 

8 Amphetamine hydrochloride -0.3235 
9 Trimethyl borate -0.4167 

10 Benzyl alcohol -0.7308 
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Table 3: Three-substance mixtures and the use of non-negative least squares to obtain the first ten 

alternative substances and non-negative least squares coefficients for the identification of the second target 

substance 
Multi-substance mixture: Acetone + Styrene + Benzyl alcohol 

Ranking Top 10 Substances Non-negative Least Squares Coefficient 

1 Benzyl alcohol 10.1488 

2 Diphenylmethanol 11.4775 
3 Tetraphenyl-1,2-ethanediol 12.2202 

4 Styrene 12.2557 

5 Dibenzylamine 12.5690 
6 Furfuryl alcohol 12.6376 

7 1-Phenylethanol 12.6629 

8 Diphenylmethane 12.7440 
9 Dibenzyl ether 12.7696 

10 Triphenylmethane 12.8199 

 

Table 4: Similarity values of the three-substance mixture and the first ten alternative substances used to 

identify the second target substance compared using the similarity function 
Multi-substance mixture: Acetone + Styrene + Benzyl alcohol 

Ranking Top 10 Substances Similarity Value 

1 Benzyl alcohol 0.8636 
2 Styrene 0.5417 

3 Diphenylmethane 0.5000 

4 Dibenzylamine 0.3889 
5 Diphenylmethanol 0.1923 

6 1-Phenylethanol 0.1000 

7 Dibenzyl ether 0.0833 
8 Tetraphenyl-1,2-ethanediol 0.0000 

9 Triphenylmethane -0.0357 

10 Furfuryl alcohol -0.0909 

 

Table 5: Three-substance mixtures and the use of non-negative least squares to obtain the first ten 

alternative substances and non-negative least squares coefficients for the identification of the third target 

substance 
Multi-substance mixture: Acetone + Styrene + Benzyl alcohol 

Ranking Top Ten Substances Non-negative Least Squares Coefficient 

1 4-Hydroxy-4-methyl-2-pentanone 8.7613 

2 Benzaldehyde 8.8477 

3 Styrene 8.9432 
4 4-Phenylcyclohexanone 9.1081 

5 Phenylacetic acid 9.1611 

6 2-Pyrrolidone 9.3309 
7 cis-Stilbene 9.4156 

8 Furfural 9.5995 

9 Acetophenone 9.6006 
10 4-Phenylurazole 9.6161 

Table 6: Similarity values of the three-substance mixture and the first ten alternative substances used to 

identify the third target substance compared using the similarity function 
Multi-substance mixture: Acetone + Styrene + Benzyl alcohol 

Ranking Top Ten Substances Similarity Value 

1 Styrene 0.5000 

2 cis-Stilbene 0.0417 

3 4-Phenylurazole -0.1818 
4 4-Phenylcyclohexanone -0.2105 

5 Phenylacetic acid -0.3333 

6 Benzaldehyde -0.3667 
7 Acetophenone -0.4231 

8 2-Pyrrolidone -0.6000 

9 4-Hydroxy-4-methyl-2-pentanone -0.6500 
10 Furfural -0.6667 

 

Table 7: 1:1 combination of a three-substance mixture with the three target substances obtained and 1:1:1 

combination and similarity values calculated using the similarity function 
Multi-substance mixture: Acetone + Styrene + Benzyl alcohol 

Ranking Target Substance Similarity Value 

1 Acetone + Styrene + Benzyl alcohol 0.9750 

2 Styrene + Benzyl alcohol 0.9444 
3 Acetone + Benzyl alcohol 0.9375 
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4 Acetone + Styrene 0.6786 

 

Table 8: Two-substance mixtures and the use of non-negative least squares to obtain the first ten 

alternative substances and non-negative least squares coefficients for the identification of the first target 

substance 
Multi-substance mixture: Ethanol + Ethylene glycol 

Ranking Top 10 Substances Non-negative Least Squares Coefficient 

1 Ethylene glycol 1.2711 

2 Ethanol 1.0071 
3 N-Methyl-2,2-iminodiethanol 0.6200 

4 Benzene 0.6093 

5 Anthracene 0.5952 
6 cis-1,5-Cyclooctadiene 0.4963 

7 Tetrahydrofuran (THF) 0.4316 

8 9,10-Diphenylanthracene 0.4213 
9 Diiodomethane 0.3919 

10 Cyclohexene 0.3761 

 

Table 9: Similarity values of the two-substance mixtures and the first ten alternative substances used to 

identify the first target substance compared using the similarity function 
Multi-substance mixture: Ethanol + Ethylene glycol 

Ranking Top 10 Substances Similarity Value 

1 Ethanol 0.7500 
2 Ethylene glycol 0.6667 

3 Diiodomethane 0.2500 

4 Tetrahydrofuran (THF) 0.2000 
5 cis-1,5-Cyclooctadiene 0.1000 

6 Cyclohexene 0.0909 

7 N-Methyl-2,2-iminodiethanol 0.0500 
8 Benzene -0.1250 

9 Anthracene -0.1667 

10 9,10-Diphenylanthracene -0.4286 

 

Table 10: Two-substance mixtures and the use of non-negative least squares to obtain the first ten 

alternative substances and non-negative least squares coefficients for the identification of the second target 

substance 
Multi-substance mixture: Ethanol + Ethylene glycol 

Ranking Top 10 Substances Non-negative Least Squares Coefficient 

1 Ethylene glycol 13.8772 

2 1,5-Pentanediol 16.4148 

3 N-Methyl-2,2-iminodiethanol 16.9025 
4 Polyvinyl alcohol (PVA) 17.1447 

5 Glycerol (or Glycerin) 17.2766 

6 2-Propyn-1-ol (Propargyl alcohol) 18.3000 
7 Diphenhydramine 18.6301 

8 Atropine 18.8749 

9 Benzyl alcohol 18.9556 
10 Morphine 19.2505 

 

Table 11: Similarity values of the two substance mixtures and the first ten alternative substances used to 

identify the second target substance compared using the similarity function 

 

 

 

 

 

Multi-substance mixture: Ethanol + Ethylene glycol 
Ranking Top 10 Substances Similarity Value 

1 Ethylene glycol 0.7500  

2 Glycerol (or Glycerin) 0.1250  

3 Benzyl alcohol 0.0625  
4 1,5-Pentanediol 0.0000  

5 Polyvinyl alcohol (PVA) -0.0833  

6 2-Propyn-1-ol (Propargyl alcohol) -0.2500  
7 Diphenhydramine -0.2500  

8 Atropine -0.2679  

9 N-Methyl-2,2-iminodiethanol -0.3571  
10 Morphine -0.5455  
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Table 12: Two-substance mixtures and the use of non-negative least squares to obtain the first ten 

alternative substances and non-negative least squares coefficients for the identification of the third target 

substance 
Multi-substance mixture: Ethanol + Ethylene glycol 

Ranking       Top 10 Substances Non-negative Least Squares Coefficient 

1 4-Methyl-2-pentanol 11.1180  

2 1-Propanol 11.5467  
3 Mixed xylenes 11.5648  

4 1-Phenylethanol 11.5981  

5 2-Butanol 11.7024  
6 Polyvinyl alcohol (PVA) 11.7622  

7 Diphenylmethanol 11.8157  

8 1,3-Butanediol 11.8292  
9 Styrene-butadiene rubber (SBR 1500) 11.8383  

10 2-Aminophenol 11.8897  

 

Table 13: Similarity values of the two substance mixtures and the first ten alternative substances used to 

identify the third target substance compared using the similarity function 
Multi-substance mixture: Ethanol + Ethylene glycol 

Ranking Top 10 Substances Similarity Value 

1 Diphenylmethanol -0.2857  
2 Polyvinyl alcohol (PVA) -0.3000  

3 1,3-Butanediol -0.4583  

4 Styrene-butadiene rubber (SBR 1500) -0.5000  
5 4-Methyl-2-pentanol -0.5625  

6 Mixed xylenes -0.5625  

7 2-Butanol -0.5833  
8 1-Phenylethanol -0.6000  

9 2-Aminophenol -0.6750  

10 1-Propanol -0.7727  

 

Table 14: 1:1 combinations of two-substance mixtures with the three target substances obtained and 1:1:1 

combinations and similarity values calculated using the similarity function 
Multi-substance mixture: Ethanol + Ethylene glycol 

Ranking Target Substance Data Simulation Similarity Value 

1 Ethanol + Ethylene glycol 0.8750 

2 Ethanol + Ethylene glycol + Diphenylmethanol 0.4375 

3 Ethanol + Diphenylmethanol 0.4167 
4 Ethylene glycol + Diphenylmethanol 0.2222 

 

  

Figure 3: Comparison of Fourier infrared 

spectra of three-substance mixtures and Fourier 

infrared spectra of simulated multi-substance 

mixtures 

Figure 4: Comparison of Fourier infrared spectra 

of two-substance mixtures and Fourier infrared 

spectra of simulated multi-substance mixtures 

 

By examining Tables 1 to 14, the method combining overall and local optimization demonstrates high 

accuracy and reliability in identifying mixture components. The non-negative least squares method identifies a 

subset of the database containing target substances, but the NNLS coefficients are often very close, making it 

difficult to determine the most similar substance. Therefore, local optimization is applied within this subset to 

identify the target substance. Analysis of Tables 2, 4, 6, 9, 11, and 13 shows that similarity values are positively 

correlated with the match between substances and test data: higher values indicate better matches, while values 

below 0 indicate poor fits. Table 7 shows that the similarity values of the three target substances with the test data 

exceed 0.5, and subsequent verification confirms a high degree of fit (close to 1). In contrast, Table 14 shows that 

only two target substances have similarity values above 0.5, while the third has a value below 0, indicating a poor 
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fit. Figures 3 and 4 further illustrate that higher similarity values correspond to better matches between simulated 

mixtures and test data. 

In summary, the combination of the non-negative least squares method and the similarity function 

enables accurate identification of true substances in multi-substance identification analysis. The non-negative least 

squares method ensures that a subset containing the true substances in the test data is obtained from the entire 

database, while the similarity function can accurately and quickly identify the true substances in the test data 

within the optimal range. It can be concluded that the method proposed in this paper not only effectively and 

quickly identifies the components of multi-substance mixtures but also demonstrates high practicality and 

reliability in real-world applications. 

 

IV. Conclusion 
This paper proposes a multi-substance identification and analysis algorithm based on Fourier Transform 

Infrared   spectroscopy. By integrating overall and local optimization strategies, the method significantly improves 

the accuracy of substance identification. It utilizes the non-negative least squares algorithm, a similarity function 

matching algorithm, and an iterative process to achieve multi-substance identification. Theoretically, the 

algorithm can iterate indefinitely until all substance components in the test data are identified. Experimental results 

demonstrate that the method effectively leverages both overall and local optimization, enabling accurate 

qualitative analysis and identification of multi-substance mixtures. 
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