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Abstract:

In this paper, we investigate the concept of closure within the framework of single-valued neutrosophic primal
topological spaces. We introduce and define the single-valued neutrosophic primal closure operator and examine
its fundamental properties, such as idempotency, extensivity, and preservation under primal continuous
mappings. Furthermore, we explore the relationships between the primal closure and other classical closure
operators in neutrosophic and fuzzy topologies. Several characterizations are provided to distinguish primal
closed sets from general closed sets. Our results contribute to a deeper understanding of the structural behavior
of neutrosophic primal topologies and offer a foundation for further applications in uncertainty modeling and
decision-making systems.
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I.  Introduction

The theory of neutrosophic sets, initiated by Smarandache in 1999 [1], provides a flexible mathematical
framework for handling indeterminate, inconsistent, and incomplete information. As a generalization of classical,
fuzzy, and intuitionistic fuzzy set theories, neutrosophic sets have found extensive applications in logic, decision-
making, artificial intelligence, and topology. A particular branch of this theory, known as single-valued
neutrosophic sets (SVNS), restricts the membership, indeterminacy, and non-membership degrees to values
within the standard unit interval [0,1], thereby enabling practical implementation in real-world scenarios.

Topological structures defined under SVNS—referred to as single-valued neutrosophic topological
spaces—have been the subject of growing interest. Among various extensions, the concept of single-valued
neutrosophic primal topology offers a nuanced approach to defining open, closed, interior, and closure operators
that account for primal properties unique to the neutrosophic environment.

In classical topology, the closure operator plays a fundamental role in understanding the structure of
topological spaces. However, in neutrosophic topology—especially within the primal framework—the behavior
and properties of closure are less straightforward due to the inherent uncertainty and dual nature of membership
and non-membership values. This motivates a deeper investigation into how closure functions in such contexts
and how it interacts with other neutrosophic operators.

Recently, neutrosophic theory has gained traction across various branches of mathematics. Salama et al.
[2,3] extended Chang’s [4] framework for fuzzy topological spaces (Q2,T) to neutrosophic settings. Hur et al. [5,6]
further developed the structure of neutrosophic and neutrosophic crisp sets, while Smarandache [7] explored their
applications to non-standard intervals.

Recognizing the limitations of Chang’s approach, Sostak [8] redefined fuzzy topology as a mapping
from fuzzy subsets of Q to the interval [0,1], establishing what is now referred to as smooth fuzzy topology.
Researchers such as Fang et al. [9] and Zahran et al. [10] contributed further by analyzing decomposition
techniques in fuzzy continuity, ideal continuity, and a-continuity.

The concept of single-valued neutrosophic sets was introduced by Wang [11], and fuzzy neutrosophic
topological spaces in the Sostak sense were developed by Gayyar [12]. Kim [13] defined a foundation for ordinary
single-valued neutrosophic topology, while Alsharari et al. [13] introduced stratified filters and quasi-uniformities
for single-valued neutrosophic soft sets. Saber et al. [14] presented the Ideals on fuzzy topological spaces to study
topological structures in this context. Alsharari, et al. [15] presented the stratified single-valued soft topogenous
structures.
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Ongoing work [16-26] has continued to expand the theory of single-valued neutrosophic topological
spaces (Q,T), including the definition of open local functions and primal structures [27].

In this work, we define and analyze the single-valued neutrosophic primal closure operator, exploring
its properties, comparing it with traditional closure concepts, and identifying its implications for the broader
structure of neutrosophic topological spaces. The results obtained here form a basis for further studies on

I1.  Preliminaries

This section provides a comprehensive introduction to the fundamental concepts and methods underlying
Single-Valued Neutrosophic Set Theory (SVN-set) and Single-Valued Neutrosophic Primal Theory (SVN-
primal).

Let & denote the set of all SVN-sets defined on a universe *&. A structure of the form (K, T°%™, pPoT™)
is referred to as a Single-Valued Neutrosophic Primal Topological Space (SVNPTS). In this framework:
o & represents the closed interval [0, 1],
o & denotes the open interval (0, 1],
e Forany a € & and 3 € K, define the constant function a(3) = a.

Definition 1 ([7])
Let P be a non-empty set. An n-set on by is defined as:
D = {{k,0_.D(I),7. D), m_D(I)) |9 € "},

where:

o 1_D(9): Degree of membership,

o 7_D(¥): Degree of indeterminacy,

e g _D(¥): Degree of non-membership,
with all values in the extended interval (0-, 17).

Definition 2 ([11])
A set D is a Single-Valued Neutrosophic Set (SVN-set) on by if:
D = {{x,0_.D(),7. D), r_DW)) |9 € "},

where

e g_D: K — ¢ (falsity membership),

e 7_D: "W — ¢ (indeterminacy membership),

o m_D: " — & (truth membership).
Special cases:

o Null SVN-set (denoted 0): V9 € ", 0 D) = 0,7.D(¥) = 1,n.D®) = 1

o Absolute SVN-set (denoted IT): V9 € ", 0 D) = 1,7.D(¥) = 0,n_.D(¥) = 0.

Definition 3 ([11])

The complement of an SVN-set D is denoted D¢ and defined as:
e 0. DY) = n_D(I),

o 7. D°(W) = t_.D(Y),

e 7._D°(W) = a_D(V).

Definition 4 ([28])

GivenD,Z € &*

eDCZ o VY EXsDWV) <0 ZW),tDW) = 1.Z9),n. D) = n_Z(9).
eD=7Z©DC ZandZ < D.

Definition 5 ([29])

LetD,Z € &¥. Then:

e D ANZ = (min(o6_D,c_Z),max(t_D,t_Z), max(n_D,n_7))
e DV Z = (max(o_D,o_Z),min(z_D,t_Z), min(n_D,r_Z))

Definition 6 ([17])
An SVN Topological Space (SVNTS) is a tuple (%K,T°,T%, T™), where each T is a mapping & — &* satisfying:
(T1) T°(0) =T°(1) =1, T(0) = T*(1) =0, T™(0) = T™(1) = 0.
(T2) For any D, z € &
T°(D A Z) = T°(D) A T°(2),
TY(D A Z) < TY(D) vV T*(Z),
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T™(D A Z) < T™(D) V T™(Z).
- (T3) For any family {D;} < &*:
T°(VD;) = VT°(D;), T™(VD)) < VT™(D;),  T™(VD;) < VT™(D)).

Theorem 1 ([27])
Let (%K, T°"™,) be an SVNTS. Define the operator CTotm : &¥ x & — &% by:
CTotn(D,r)= V{Z € |0 € D, T°(Z)=r, T"(Z)<1-r, T"Z) <1-r}

Definition 7 ([27])
Similarly, define the interior operator ITotm : &% X & — &F by:
ITotn(D,r) = MZ €&* |D 2 Z, T°(Z) =, T"(Z) < 1-r, T™(Z) £ 1—-r}.

Definition 8 ([27])
A triple of mappings P®, PTY, P™: &¥ — EZiscalled a SVN-primal if:
(P1) ) Boundary conditions:
P°(1)=0, P°(0)=1 T'(1)=0, T(0)=1  T*(1)=0, T™0) = 1.
(P2) ForallD,Z € &*:
P°(D A Z)< P°(D)V P°(Z), P*(D AZ)= P*(D)A P'(Z), T™(D AZ) = T™D) A T"().

(P3) IfD < Z = P°(Z) < P°(D), P (Z) = P*(D), T™(Z) = T™(D).
If P < P* (pointwise), we say that P is finer than P*.
The structure 0K, T, P°™) is called a SVNPTS.

Definition 9 ([27])

Let (%K, T°™, P°™™), be a single-valued neutrosophic topological space (svnpts). For each point 9 €
and for each D € &, the single-valued neutrosophic primal open local function D; (T, P°™™) is defined as
the union of all svn-points x; . such that: If Z € Qromn(x5¢,7), and P°(R) =2 1, PP(R) < 1-71,
P™(R) < 1—r, then there exists at least one ¥ € K such that the following conditions hold:

o D) + 0 ZW) — 1 > d_RW),
7. D) + . Z(®¥) — 1 < 1.R(W),
7. D) + nZ@®) — 1 < m_R®).

In this article, we denote this local function as D, without loss of generality.
Remark 1 ([27])
Let 0K, T, P?™™), be asingle-valued neutrosophic topological space (svnpts) and let D € &*¥. Define
the following operators:
C*otn(D,r) =DV D}
Iotn(D,r) =D A[(DY)];

The operator C*otr is referred to as an svn-primal closure operator. The structure
(T7(P?), T™(PT), T™(P™)) forms the svnt generated by C*otm c* ., where:
T*(I)(D) = V{r: C*otn (D¢, 1) = D}.
Theorem 2 ([27])
Let 0K, T°™) be an SVYNTS (soft valued neutrosophic triple system), and let P, and P, be two SVN-
primals on K. Then, foreach D,Z € &¥andr € &,, the following properties hold:
1. IfD < Z,then D} < Z;.
2. ifp? <Py ,Pf 2P, and P =P} then: D (T°™, P7*™) = Dy (T°™, Py™™)
3. Df=C*otn(D,r) < CTotn(D, 7).
4. (D})y < Dy.
5. IfP°(D) = 7, P"(D) < 1—1, P"(D) < 1—r,andPn<1-r,then(DVZ):=D;VZ =D}
6. D;VZi = (DVZI):
7. DFANZ; = (DVZ);.

orx!

I11.  Primal Semi-Closure Operator
Definition 10 Let (K, T °™,P°™) be a svnpts and r € &. Then De &¥is called:
(Dr-svnpo iff D < [Totn(D;,1).
(2)r-svnspo iff D < C*otn(ITotn(D,r),7) .
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(3)r-svnppo iff D < ITotrn(C*otn(D,T),T) .
The complement of r-svnpo (resp, r-svnspo, r-svnppo-set) are called r-svnpc ( resp, r-svnspc, r-svnppc).
Example 1 Presume that "¢ = {ul,u2,u3}; define the svn-sets Z1,72,Z3,R € &% as follows

Z1 = ((0.5,0.5,0.5),(0.5,0.5,0.5), (0.5,0.5,0.5)),

Z2 = ((0.4,0.4,0.4),(0.5,0.5,0.5), (0.5,0.5,0.5)),

73 = ((0.4,0.4,0.4),(0.4,0.4,0.4), (0.4,0.4,0.4)),

R = ((0.1,0.1,0.1), (0,0,0), (0,0,0)).

Define the mapping, P°, PY, P™: &% - &&andT°, TT, T™: &% - Zas follows:

\ 7.3 1, ifzZ=0,
)] - _’ 1
1, ifz=1, 3 =Y
T°MD) =11 pPe(l) = 41L
5 1fZ={21,72}, 7 if0<Z<R,
0, otherwise, 0, otherwise,
0, ifZ=0, [(3) =
0, ifz=T, z rZ=Y
TSM) =41 pPe(Il) = All
5 ifZ= {22,723}, 5 if0 <Z<R,
1, otherwise, 1, otherwise,
fo, itz =0, [(2) e
0, ifz=1, 3 f2=Y
TP =41 Pe(II) = i
2 1fZ2=122,73} 5 if0<Z<R,
1, otherwise, 1 i
otherwise,

Suppose that ® = ((0.3,0.3,0.3), (0.3,0.3,0.3), (0.3,0.3,0.3)), then, O is 1 -svnppo but it is not 1-svnspo.

Definition 11 A mapping PSC : &*x& — &¥ is called a single-valued neutrosophic primal semi-closure operator
(for short, PSC) on " if, for all D,Ze &¥and r, t € &,, the following axioms hold:
1. PSC(0,7) = 0 ;
2. D < PSC(D,r);
3. PSC(D,r) v PSC(Z,v) = PSC(DV Z,7);
4. PSC(D,t) < PC(D,r)ift < r;
5. PSC(PSC(D,r),r) = PSC(D,7).
The pair (K, PSC) is referred to as a single-valued neutrosophic primal semiclosure space (svnpscs).
If 1and PSC2 are single-valued neutrosophic semi-closure operators on *K, then PSC1 is said to be finer
than PSC2, denoted PSC2 < PC1,if PSC1(D,r) < PSC2(D,r) for every De &¥and r € &.

Theorem 3 Let (K, T°™) be an svnts. Then, for any De & and r € &, we define an operator PSC : &¥x& — &
as follows:
PSCotn(D,7) = N{Z€ §¥: D<Z,  Zisr — svnpc).
Then, (K, PSCotm) is an svnpscs.
Proof Suppose that (K, PSCotm) is an SVNTS. Then, (1), (2) and (4) follows directly from the definition of
PSCorm.
(3) Since D,Z <D UZ we obtain PSCotr(Z,r) < PSCotn(D U Z,r) and PSCotn(D,r) < PSCotn(D U
Z,7), therefore,
PSCotr(D,r) UPSCotn(Z,r) < PSCotn(D VU Z, 7).
Let (K, T°"™) be an svnts. From (2), we have
D < PSCo(D, 1), [PSCo(D,1)]¢ < Co(inta([PSCa(D,7)]°,1),7)
[PSCa(D,r)]¢ = Co(into([PSCa(D,r)]¢, 1),1),
[PSCa(D,1)]¢ = Co(inta([PSCa(D,1)°,1),7)
D = PSCt(D,r), [PSCT(D,1)]¢ = Ct(intt([PSCT(D,7)]% 1),7)
[PSCt(D,7)]¢ < Cr(intr([PSCT(D,1)]% 1), 1),
[PSCT(D,7r)]¢ < Ct(intt([PSCT(D,7)]% 1), 1),
D = PSCt(D,r), [PSCm(D,1)]¢ = Cr(intm([PSCr(D,7)]%,1),7)
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[PSCr(D,1)]¢ < Cm(intrn([PSCr(D,7)]°,1),7),
[PSCr(D,r)]¢ < Cm(intt([PSCn(D, 1) 1),71),
And
Z < PSCo(Z,7), [PSCa(Z,7)]° < Co(into([PSCo(Z,1)]%,7),T)

[PSCo(Z,7)]¢ = Co(into([PSCa(Z,1)]%, 1), 1),
[PSCa(Z,7)]|¢ = Co(inta([PSCa(Z,7)°,7),T)

Z > PSCt(Z,1), [PSCT(Z,1)]¢ > Cr(intr([PSCT(Z,T)]57),T)
[PSCT(Z,1)]¢ < Cr(intt([PSCT(Z, )], 1), 1),
[PSCt(Z,7r)]¢ < Cr(intt([PSCT(Z,7)]% 1), 71),

Z > PSCt(Z,7), [PSCr(Z,7)]¢ = Cr(intm([PSCr(Z,7)]°,7),7)
[PSCr(Z,7)]¢ < Cr(intr([PSCr(Z,1)]%, 1),1),
[PSCr(Z,7)]¢ < Cr(intt([PSCr(Z,1)] 1), 1)

Itimpliesthat D U Z < PSCotr(D,r) U PSCotr(Z,r) and
[PSCo(D,r) U [PSCa(Z,7)]¢ = [PSCa(D,1)]° N [PSCa(Z,7)]¢
Co(ino([PSCa(D,7)]°, 1), 1) N Ca(inta([PSCa(Z,1)], 1), 1)
Co(inta([PSCo(D,1)]¢ n [PSCo(Z,7T)]¢, 1), 1)
Co(inta([PSCo(D,r) U PSCo(Z,1)]¢,1),7),
PSCt(D,r) U [PSCt(Z,1)]¢ = [PSCt(D,r)]¢ n [PSCt(Z,1)]°¢
Ct(intt([PSCT(D, )] 1), r) N Ct(intt([PSCt(Z,1)]° 1), 1)
Ct(intt([PSCT(D,r)]¢ n [PSCT(Z, )], 1), 1)
Ct(intt([PSCT(D,r) U PSCt(Z,7r)]¢, 1), 1),
PSCr(D,r) U [PSCr(Z,1)]¢ = [PSCn(D,r)]¢ n [PSCr(Z,1)]¢
Ct(intn([PSCr(D,7)]% 1), r) N Cr(intn([PSCn(Z,1)]¢, 1), 1)
Cr(intr([PSCr(D,r)]¢ N [PSCr(Z,1)] 1), 1)
Cr(intn([PSCn(D,r) U PSCn(Z,1)]% 1), 1),
Hence, PSCotr(D,r) V PSCotn(Z,r) = PSCotn(D V Z,r) ,thus
PSCotrn(D,r) V PSCotn(Z,v) = PSCotn(DV Z,1)
(5) Suppose that there exists r € &, De &*and k €% such that
TPscore (PSCa(D,7),1) (V) > Tgscore ((D,1),7) (V).
Tescore (PSCT(D,7),7) (V) < Tpscors((D,7),7)(V).
Tpscore (PSC(D,7),7) (V) < Thscors (D7), 7) ().
By the definition of PSCotm, there exists an De &* with D>Z and Z that is svnpscs such that
Tpscore (PSCa(D,1),1) (V) >T(Z)(V) > Tpscors (D, 1), ) (V).
Tescore (PSCT(D,7),7) (V) < TY(Z)(V) < Tpscore (D, 1), 1) ().
Tpscore (PSC(D,1),7) (V) < T™(Z2)(V) < Tpscore (D, 1), ) (V).
Since PSCotn(D,R) < Z and Z that is svnpscs, by the definition of PSCotn(PSCotm), we have
Tscore (PSCa(D,1), 1)) < T°(Z)(V),  Tpscors (PSCT(D,7),1)(0) > T™(Z)(v),
Tscore (PSC(D,1),1)(0) > T™(Z) ().

1A

—

v

—

v

It is a contradiction. Thus, PSC(PSC(D,r),r) = PSC(D,r). Hence, PSC is a single valued neutrosophic primal
closure operator in *H.

Theorem 4 Let (F, PSCotm) be an SVNPSCS and De &¥ and r € &. Define the mappingTZeZ,r,: X — & by
Tfsce (D, v) = V{r € &: PSCao(D¢,r)=D}.
TEscoe (D, 1) =A{r € &: PSCt(D¢r)= D¢}
Tisco (D, 1) =A{r € &: PSCt(D¢r) =D}

Then,

1) Tfsco 1San SVNTS on F;

2) PSCotr is finer than SC.

Proof (T1) Let (F,PSCatm) be an SVNSCS. Since PSC(0,7) = 0 and PSC(1,r) = 1; foreveryr € (,
(T2) Let (F,PSCotm) be an SVNSCS. Suppose that there  exists D1,

D2€e &% such that
TPscora (D1 A D2) < Tfscora(D1) A Toscora (D2),
TEscora (D1 A D2) > Tgscora(D1) V Toscora (D2),
TEscora (D1 A D2) > Tgscora(D1) V Tescora (D2),
there exists r € {psuch that
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Tfscore (D1 AD2) > 1 > Tgscore (D1) A Tscore (D2),
Tpscore(D1AD2) <1 —1 < Tgscore (D1) V Toscors (D2),
Tiscore(D1AD2) <1 —1 < Tiscore (D1) V Toscors (D2),

For each i €{1,2}, there exists r € {owith PSC(Di,ri) = Disuch that

7 <1l < Tscora (D1), Tpscore(DD) <1 —1i < =1, Thscore(Di) <1 —1i < —1.
In addition, since PSCotm(Di) = Diby (2) and (4) of Definition 11, for any i €{1,2},

PSCotm(D1U D2,7) = D1UD2.

It follows that Tscore (D1 AD2) 271, Tpsecore(D1AD2) <1 —1 and Thscore(D1AD2) <1—1. Itis a
contradiction. Thus, for every For any D1,D2 € &*: T°(D1 AD2) > T°(D1) A T°(D2),T*(D1 A D2) <
TY(D1) v TY(D2), T™(D1 A D2) < T™(D1) v T™(D2).
(T3) Obvious.

Example 1 Presume that F = {u1,u2}; define the svn-sets Z1,Z2 € &*as follows
Z1 = ((0.1,0.1),(0.3,0.3), (0.3,0.3)),
Z2 = ((0.4,04,),(0.1,0.1),(0.1,0.1)).

We define the mapping PSC : {F x {,— (T as follows:
1, ifD=0,

1
Z1n7Z2, if0+#D<Z1nZ2 0<r<5,

1
Z1, if D <71, D$ZZ,O<1‘<E

PSC(D, 1) = < 1
72, ifD <72, D < 71, O<r<E,

1
Z1U Z2, if0#D <Z1nZ2 O<r<z,

1, otherwise.

Then, PSC is a single-valued neutrosophic closure operator.
From Theorem 2, we have a single-valued neutrosophic topology (Tﬁsc’ T;SCT,?SC) on F as follows:

1, ifD=0or 1
2
-, ifD = (Z1)¢,
3
1
> if D = (Z2)¢,

Tgse, (D) =41

rse 5 iD= (@)U @,

1
= if0£D<ZINZ
0, otherwise.
0, ifD= Oor 1
1
=, ifD = (Z1)¢
3 ) ] ( ) )
1
> if D = (Z2)¢,

Tgse (D) =11

pse 5 ifD =@ U2y,

1
= if0£D<ZINZ
1, otherwise.
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0, ifD=0or 1
, ifD = (Z1)¢,

., if D = (Z2)°,
. if D = (Z1)° U (Z1)¢,

) if0#D<Z1nNnZ

1

3

1

. 2
Tise (D) =11
2

1

2

1, otherwise.

Thus, the TZ$Z is a single-valued neutrosophic topology on F.
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