Perfect Codes For Join Zero Divisor Graphs Of A Ring Zn

K. Ranga Devi, V. Raja, Dr. D. Bharathi

Research Scholar Research Scholar Professor

Department Of Mathematics, Sri Venkateswara University, Tirupati- 517502, Andhra Pradesh, India.

Abstract

In this paper, we construct the perfect codes for a star zero divisor graphs of a ring z_n , when n = 2p, p > 2 prime and join zero divisor graphs of rings z_n and z_m when n = 2p and m = p2, p > 2 prime. Using these we find codewords and minimum Hamming distance of the code.

Keywords: Hamming bound, Perfect code, Non-zero zero divisors, Zero –divisor graph, Star graph, join of two graphs,

Date of Submission: 04-10-2025 Date of Acceptance: 14-10-2025

Bute of Submission, 04 to 2023

I. Intorduction

Richard Hamming and Marcel Golay introduced the concept of perfect codes in 1940[1], Hamming developing the binary Hamming code in 1950[23]. These codes are fundamental to the theory of error-correcting codes

N. Biggs is credited with initiating the study of perfect codes in graphs in 1973[2], extending the concept from coding theory to distance-transitive graphs, while J. Kratochvíl further developed the theory by introducing t-perfect codes in general graphs in the late 1980s. Michel Mollard, studied On perfect codes in Cartesian products of graphs in 2011[3]. Rongquan Feng, He Huang and Sanming Zhou, studied Perfect codes in circulant graphs in 2017[4].

In abstract algebra, the theory of rings has its origin in the early 19th century when the commutative and non-commutative rings are being explored. A ring is one of the fundamental algebraic structures consisting of a set with two binary operations which are addition and multiplication [5].

In 1988, the zero-divisor graph was first introduced by Beck. Beck introduced idea of presenting zero-divisor graph of a commutative ring R in 1988[5]. Anderson and Livingston [1] introduced and studied the subgraph $\Gamma(R)$ (of G(R)) whose vertices are the non-zero zero-divisors of R and the authors studied the interplay between the ring-theoretic properties of a commutative ring and the graph theoretic properties of its zero-divisor graph. Let $Z^*(R) = Z(R) \setminus (0)$, be the set of non-zero zero-divisors of R. The zero-divisor graph of R, denoted by Γ (R), is a simple undirected graph with all non-zero zero-divisors as vertices and two distinct vertices $x, y \in Z^*(R)$ are adjacent if and only if xy = 0. Thus Γ (R) is the null graph if and only if R is an integral domain. Lu Danchenga and Wu Tongsuob studied, On bipartite zero-divisor graphs in2009[6]. Nurhidayah Zaid, studied ,the perfect codes of commuting zero divisor graph of some matrices of dimension two in 2021[7] J. Phys.

D. F. Anderson and Philip S. Livingston are credited with introducing the defined term and concept of the "join graph zero divisor graph" or the standardized zero-divisor graph in graph theory, based on the work of Irving Beck. Beck originally introduced a zero-divisor graph in 1990[8], and Anderson and Livingston later modified and standardized its definition in 1999[9] for commutative rings.

II. Preliminaries

Graph theory related definitions:

- Let Z_n be the ring of integers modulo n. The zero-divisor graph of Z_n , denoted by $\Gamma(Z_n)$, is the graph with vertex set $V(\Gamma(Z_n))$ and for distinct vertices a and b are adjacent if and only if $a.b = 0 \pmod{n}$. Clearly, $\Gamma(Z_n)$ is the null graph if and only if Z_n is an integral domain.
- A star graph is a graph with a single central vertex connected to all other vertices, which are called leaves. If a star graph has n vertices, one vertex has a degree of n-1 (the central vertex), and the other n-1 vertices each have a degree of 1. It is denoted by $K_{1,n}$

• The join of two graphs G_1 and G_2 with disjoint vertex sets is a new graph formed by taking the union of G_1 and G_2 and adding an edge between every vertex of G_1 to every vertex of G_2 .

i.e, $V(G_1)$ and $V(G_2)$ are the vertex sets and $E(G_1)$ and $E(G_2)$ are the edge sets, then the join graph G_1+G_2 has: Vertex set: $V(G_1)\cup V(G_2)$ and edge set: $E(G_1)\cup E(G_2)\cup \{uv|\ u\in V(G_1),v\in V(G_2)\}$

Coding theory related definitions:

- The weight w of a code word is the number of 1s in the word. The "distance of a code" refers to its minimum distance, which is the smallest Hamming distance between any two distinct codewords in the code.
- Hamming bound: If C is a code of length n and distance d = 2t + 1 or d = 2t + 2, then

$$|C| \le \frac{2^n}{\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{t}}$$

The Hamming bound is upper bound for the number of words in a code of length n and distance d=2t+1.

Note that t = [(d-1)/2], a code of distance d will correct all error patterns of weight less than or equal to [(d-1)/2]. Such a code correct all error patterns of weight less than or equal to t.

• A code C of length n and odd distance d = 2t +1 is called a **perfect code**, if C attains the Hamming bound.

i.e,
$$|C| = \frac{2^n}{\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{t}}$$

- An Error-Correcting Code (ECC), is a method of encoding data in a way that allows for the detection and correction of errors that may occur during data transmission or storage
- A perfect t-correcting code in coding theory is an error-correcting code that achieves the Hamming bound
- A perfect code which corrects all error patterns of weight less than or equal to t = [(d-1)/2], then we say that t is a **perfect t-error correcting code**.

III. Main Section

From[1], if $0 \le t \le n$ and if v is a word of length n, then the no.of words of length n of distance at most t from v is precisely $\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{t}$

Let t and n are integers, $0 \le t \le n$, then the symbol $\binom{n}{t} = \frac{n!}{t!(n-t)!}$

An unordered collection of t objects can be chosen from a set n objects.

Thus $\binom{n}{t}$ is the number of words of length n and weight t.

Since there are 2^n words of length n, if t = n

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{t} = 2^{n}$$

Let t = 0, then $\binom{n}{0} = 1 = 2^0$, so $|C| = \frac{2^n}{\binom{n}{0}} = 2^n$. The only code with 2^n codewords of length n in $C = K^n$, K^n is a perfect code.

Theorem 3.1: If the length of the code C is n and of odd distance d = n, then C is a perfect code,

Proof: Let a code C of length n and distance d= 2t+1=n

From Definition,
$$|C| = \frac{2^n}{\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{t}}$$
 C is a perfect code.

If C be a perfect code of length n and distance d=2t+1, then C will correct all error patterns of weight less than or equal to t and no other error patterns.

Let C is a perfect code of length n and distance d=2t+1, each of the 2ⁿ words on Kⁿ lies within distance t of exactly one codeword. If enable to count the no .of codewords of minimum non-zero weight in a perfect code.

For every prime, the star graph $\Gamma(Z_p)$ does not exist. Since Z_p has no zero divisors.

Theorem 3.2: The code C of a zero divisor graph $\Gamma(Z_{2p})$ is star graph and forms a perfect code, if p > 2, *prime*. **Proof:** Let Z_n be the ring of integers modulo n and $\Gamma(Z_n)$ is the non-zero zero-divisor graph of Z_n , when n = 2p, p > 2, prime number.

Let the graph $\Gamma(Z_n)$ be star graph, when the order of non-zero zero divisors is odd and when n=2p, p>2.

By the definition of Zero divisor graph, if u and v be in V($\Gamma(Z_n)$), then u.v $\equiv 0 \pmod{n}$

The order of the graph $\Gamma(Z_n) = n - \varphi(n) - 1 = m$

The vertex set is defined as $V(\Gamma(Z_{2p}))$ = { $u,\,v_1,\,v_2,....,\,v_{p\text{-}1}$ }.

The edge set is defined as { $uv_i / 1 \le i \le p-1$ and $uv_i \equiv 0 \pmod{n}$ }, every vertex is connected only to the central vertex u.

Therefore, $|V((\Gamma(Z_{2p}))| = m$ and $|E((\Gamma(Z_{2p}))| = m-1$

Star graph K_{1,n}

From the star graph $\Gamma(Z_{2p})$, a code of length n, d=2t+1 and t = [(d-1)/2]

$$|C| = \frac{2^m}{\binom{m}{0} + \binom{m}{1} + \dots + \binom{m}{t}} = \text{power of } 2$$

Therefore, C is a perfect code .

We consider Perfect code C for Z₆

Example 3.3: A zero divisor graph $\Gamma(Z_{2(3)}) = \Gamma(Z_6)$ is a star graph and forms a perfect code.

We know that

 $Z_6 = \{0,1,2,3,4,5\}$

The no.of non-zero zero divisors of $Z_n = n - \varphi(n) - 1$

Here $\varphi(n)$ = positive integer less than n and relatively prime to n.

 $= n \Pi (1-1/p)$

 $\varphi(6) = 6(1-1/2)(1-1/3) = 2$

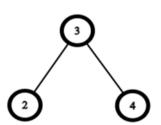
The no. of zero divisors of $Z_6 = 6 - 2 - 1 = 3$, odd

The set of non-zero zero divisors of Z_9 is $V(\Gamma(Z_6)) = \{2,3,4\}$.

The set of edges of $\Gamma(Z_6)$ is $E(\Gamma(Z_6))=\{(2,3), (3,4)\}$

Therefore, $|V((\Gamma(Z_6))| = 3$ and $|E((\Gamma(Z_6))| = 2$

A zero divisor graph $\Gamma(Z_6)$ is a star graph $K_{1,2}$



Star graph $\Gamma(\mathbb{Z}_6)$, Fig 4.1.1

From the graph, the code length is 3 and
$$d = 2t+1$$
 odd distance; $t = [(d-1)/2] = 3-1/2 = 1$ $|C| = \frac{2^3}{\binom{3}{0} + \binom{3}{1}} = \frac{2^3}{1+3} = \frac{2^3}{4} = 2^1$, is perfect code.

This code has minimum Hamming distance 3.

Since 3 = 2(1)+1, this code can correct t = 1 bit error

Therefore, there are $2^3 = 8$ possible codewords, then C = {000, 100, 010, 001, 110, 101, 011, 111}, which is a perfect code.

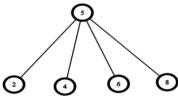
Example 3.4: Consider a star graph $\Gamma(Z_{2(5)}) = \Gamma(Z_{10})$, which forms a perfect code.

The no. of non-zero zero divisors of $Z_{10} = 10 - 4 - 1 = 5$, odd

The set of non-zero zero divisors of Z_{10} is $V(\Gamma(Z_{10})) = \{2,4,5,6,8\}$.

The set of edges of $\Gamma(Z_{10})$ is $E(\Gamma(Z_{10}))=\{(2,5), (4,5), (6,5), (8,5)\}$

Therefore, $|V((\Gamma(Z_{10}))| = 5$ and $|E((\Gamma(Z_{10}))| = 4$



Star graph Γ (Z₁₀), 4.1.2

From the graph, the code length is 5 and d = 2t+1, odd distance; t = [(d-1)/2] = 4/2 = 2

$$|C| = \frac{2^5}{\binom{5}{0} + \binom{5}{1} + \binom{5}{2}} = \frac{2^5}{1+5+10} = \frac{2^5}{16} = 2^1$$
, is a perfect code.

This code has minimum Hamming distance 5.

Since 5=2(2)+1, this code can correct t=2 bit errors

Therefore, there are 2^5 = 32 possible codewords, C ={00000, 10000, 01000, 001000,...,11111}, is a perfect code.

Example 3.4: Consider a star graph $\Gamma(Z_{2(7)}) = \Gamma(Z_{14})$, which forms a perfect code.

The no. of non-zero zero divisors of $Z_{14} = 14 - 6 - 1 = 7$, odd

Therefore, $|V((\Gamma(Z_{14}))| = 7$ and $|E((\Gamma(Z_{14}))| = 6$

Star graph Γ (Z₁₄), Fig 4.1.3

From the graph, the code length is 7 and d = 2t+1, odd distance; t = [(7-1)/2] = 3

|C| =
$$\frac{7}{\binom{7}{0} + \binom{7}{1} + \binom{7}{2} + \binom{7}{3}} = \frac{2^7}{1+7+21+35} = \frac{2^7}{64} = 2^1$$
, is a perfect code.

This code has minimum Hamming distance 7.

Since 5=2(3)+1, this code can correct t=3 bit errors.

Therefore, there are $2^7 = 128$ possible codewords, $C = \{0000000, 1000000, 01000000, 001000000,, 11111111\}$, is a perfect code.

 $\Gamma(Z_{2p})$ is star graph and it forms a perfect code, when p > 2.

Construction of perfect codes for join zero divisor graphs of a ring zn:

The **join of two graphs** G_1 and G_2 with disjoint vertex sets is a new graph formed by taking the union of G_1 and G_2 and adding an edge between every vertex of G_1 to every vertex of G_2 .

i.e, $V(G_1)$ and $V(G_2)$ are the vertex sets and $E(G_1)$ and $E(G_2)$ are the edge sets, then the join graph G_1+G_2 has:

Vertex set: $V(G_1) \cup V(G_2)$ and edge set: $E(G_1) \cup E(G_2) \cup \{uv \mid u \in V(G_1), v \in V(G_2)\}$

The code C of the join of zero divisor graph $\Gamma(Z_{2p})+\Gamma(Z_4)$ does not form a perfect code, if p=2, prime.

(The order of the graph $|\Gamma(Z_{2p})+\Gamma(Z_4)|$ is even number of vertices, C does not form a Perfect code).

Theorem 3.5: The code C of the join of zero divisor graph $\Gamma(Z_{2p}) + \Gamma(Z_9)$ is a perfect code, if p > 2, prime **Proof:** Let the graph $G = \Gamma(Z_{2p}) + \Gamma(Z_9)$

The order of the graph $|\Gamma(Z_{2p})+\Gamma(Z_9)|$ is odd number of vertices.

We know that $V(\Gamma(Z_{2p})) = \{2, 4, \ldots, 2(p-1), p\} = \{u_1, u_2, \ldots, u_{p-1}\}$ and $V(\Gamma(Z_9) = \{3, 6\} = \{v_1, v_2\}.$

Now, the vertex set is defined as $V(G) = \{u_0, u_1, u_2, \dots, u_{p-1}, v_1, v_2\}$

The edge set of E(G) = $\{u_0u_i; 1 \le i \le p-1\} \cup \{u_iv_j; 0 \le i \le p-1, j=1,2\} \cup \{v_1v_2\}$

Therefore, $|V((\Gamma(Z_{2p})+\Gamma(Z_9))|=p+1$ and $|E((\Gamma(Z_{2p})+\Gamma(Z_9))|=3p$

From Theorem, 4.1.1, C is a Perfect code.

Example 3.6: Consider a join zero divisor graph $\Gamma(Z_{2(3)})+\Gamma(Z_9)$

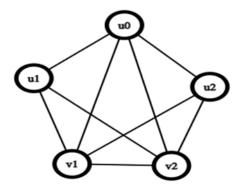
Vertex set of $\Gamma(Z_6)$ be $\{u_0, u_1, u_2\}$ and edge set of $\Gamma(Z_9)$ be $\{v_1, v_2\}$

Now, the vertex set is defined as $V(\Gamma(Z_6) + \Gamma(Z_9)) = \{u_0, u_1, u_2, v_1, v_2\}$

The edge set of $E(\Gamma(Z_6) + \Gamma(Z_9)) = \{u_0 u_{1,} u_0 u_2\} \cup \{u_0 v_1, u_0 v_2, u_1 v_2, u_2 v_1\} \cup \{v_1 v_2\}$

Therefore, $|V((\Gamma(Z_{2p})+\Gamma(Z_9))|=5$ and $|E((\Gamma(Z_{2p})+\Gamma(Z_9))|=9$

The join zero divisor graph $\Gamma(Z_6)$ + $\Gamma(Z_9)$ is



Join graph $\Gamma(Z_6) + \Gamma(Z_9)$, Fig 4.1.4

From the graph, the code length is 5 and d = 2t+1, odd distance; t = [(d-1)/2] = 4/2 = 2

$$|C| = \frac{2^5}{\binom{5}{0} + \binom{5}{1} + \binom{5}{2}} = \frac{2^5}{1+5+10} = \frac{2^5}{16} = 2^1$$
, is a perfect code.

This code has minimum Hamming distance 5.

Since 5=2(2)+1, this code can correct t=2 bit errors

Therefore, there are 2^5 = 32 possible codewords, C ={00000, 10000, 01000, 001000,....,11111}, is a perfect code.

Example 3.7: Consider a join zero divisor graph $\Gamma(Z_{10}) + \Gamma(Z_{9})$

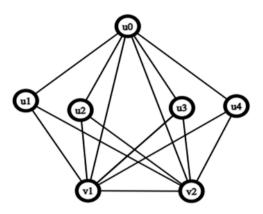
Vertex set of $\Gamma(Z_{10})$ be $\{u_0, u_1, u_2, u_3, u_4\}$ and edge set of $\Gamma(Z_9)$ be $\{v_1, v_2\}$

Now, the vertex set is defined as $V(\Gamma(Z_{10}) + \Gamma(Z_{9})) = \{u_0, u_1, u_2, u_3, u_4, v_1, v_2\}$

The edge set of $E(\Gamma(Z_{10}) + \Gamma(Z_{9})) = \{u_{0}u_{1}, u_{0}u_{2}, u_{0}u_{3}, u_{0}u_{4}\} \cup \{u_{0}v_{1}, u_{0}v_{2}, u_{1}v_{1}, u_{1}v_{2}, u_{2}v_{1}, u_{2}v_{2}, u_{3}v_{1}, u_{3}v_{2}, u_{3}v_{1}, u_{4}v_{2}\} \cup \{v_{1}v_{2}\}$

Therefore, $|V((\Gamma(Z_{2p})+\Gamma(Z_9))|=7$ and $|E((\Gamma(Z_{2p})+\Gamma(Z_9))|=15$

The join zero divisor graph $\Gamma(Z_{10})+\Gamma(Z_{9})$ is



Join graph $\Gamma(Z_{10})+\Gamma(Z_{9})$, Fig 4.1.5

From the graph, the code length is 7 and d = 2t+1, odd distance; t = [(7-1)/2] = 3

$$|C| = \frac{2^7}{\binom{7}{0} + \binom{7}{1} + \binom{7}{2} + \binom{7}{3}} = \frac{2^7}{1+7+21+35} = \frac{2^7}{64} = 2^1$$
, is a perfect code.

This code has minimum Hamming distance 7.

Since 7 = 2(3) + 1, this code can correct t = 3 bit errors

Therefore, there are $2^7 = 128$ possible codewords, $C = \{0000000, 1000000, 0100000, 0010000,, 1111111\}$, is a perfect code.

 $\Gamma(Z_{2p}) + \Gamma(Z_p^2)$, is join graphs and form a perfect code, when p > 2.

Theorem 3.8: $\Gamma(Z_{2p}) + \overline{\Gamma(Z_{9})}$, is join graphs and form a perfect code, when p > 2.

Proof: Let the graph $G = \Gamma(Z_{2p}) + \overline{\Gamma(Z_{9})}$

The order of the graph $|\Gamma(Z_{2p})+\overline{\Gamma(Z_{9})}|$ is odd

We know that $V(\Gamma(Z_{2p})) = \{2, 4, \ldots, 2(p-1), p\} = \{u_1, u_2, \ldots, u_{p-1}\}$ and $V(\Gamma(Z_9)) = \{3, 6\} = \{v_1, v_2\}$.

Now, the vertex set is defined as $V(G) = \{u_0, u_1, u_2, \dots, u_{p-1}, v_1, v_2\}$

The edge set of E(G) = $\{u_0u_i; 1 \le i \le p-1\} \cup \{u_iv_j; 0 \le i \le p-1, j=1,2\}$

Therefore, $|V((\Gamma(Z_{2p}) + \overline{\Gamma(Z_{9})})| = p+1$ and $|E((\Gamma(Z_{2p}) + \overline{\Gamma(Z_{9})})| = 3p-1$

From Theorem, 4.1.1, C is a Perfect code.

Example 3.9: Consider a join zero divisor graph $\Gamma(Z_{2(3)}) + \overline{\Gamma(Z_9)}$

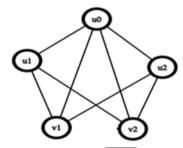
Vertex set of $\Gamma(Z_6)$ be $\{u_0, u_1, u_2\}$ and edge set of $\Gamma(Z_9)$ be $\{v_1, v_2\}$

Now, the vertex set is defined as $V(\Gamma(Z_6) + \overline{\Gamma(Z_9)}) = \{u_0, u_1, u_2, v_1, v_2\}$

The edge set of $E(\Gamma(Z_6) + \overline{\Gamma(Z_9)}) = \{u_0 u_1, u_0 u_2\} \cup \{u_0 v_1, u_0 v_2, u_1 v_2, u_2 v_1\} \cup \{v_1 v_2\}$

Therefore, $|V((\Gamma(Z_{2p}) + \overline{\Gamma(Z_{9})})| = 5$ and $|E((\Gamma(Z_{2p}) + \overline{\Gamma(Z_{9})})| = 9$

The join zero divisor graph $\Gamma(Z_6) + \overline{\Gamma(Z_9)}$ is



Join graph $\Gamma(\mathbb{Z}_6)$ + $\overline{\Gamma(\mathbb{Z}_9)}$, Fig 4.1.4

From the graph, the code length is 5 and d = 2t+1, odd distance; $t = \lceil (d-1)/2 \rceil = 4/2 = 2$

$$|C| = \frac{2^5}{\binom{5}{0} + \binom{5}{1} + \binom{5}{2}} = \frac{2^5}{1+5+10} = \frac{2^5}{16} = 2^1$$
, is a perfect code.

This code has minimum Hamming distance 5.

Since 5=2(2)+1, this code can correct t=2 bit errors

Therefore, there are 2^5 = 32 possible codewords, C ={00000, 10000, 01000, 001000,...,11111}, is a perfect code.

IV. **Conclusions**

Constructed perfect codes on star graphs and join graphs. If exists,

- 1. $\Gamma(Z_{2p})$, is star graph and it forms a perfect code, when p > 2.
- 2. $\Gamma(Z_{2p}) + \Gamma(Z_p^2)$, is a join graphs forms a perfect code, when p > 2.
- $3.\Gamma(Z_{2p}) + \overline{\Gamma(Zp^2)}$, is a join graph and forms a perfect code, when p > 2.

References

- Coding Theory The Essential By D.G.Haffman, D.A. Leonard, C.C. Lindner, K.T.. Phelps, C.A. Rodger And Jjl.Wau. [1]. Pp.277.1992. ISBN 0-8247-8611-4
- Beck, Zero Divisor Graph Of Commutative Rings. J Algebra. 1988;116:208–226
- [3]. Michel Mollard, On Perfect Codes In Cartesian Products Of Graphs In 2011
- Rongquan Feng, He Huang And Sanming Zhou, Studied Perfect Codes In Circulant Graphs In 2017
 D. Anderson And P.S. Livingston, (1999)"The Zero Divisor Graph Of A Commutative Ring". J. Algebra 217, Pp. 434-447. [4]. [5].
- [6]. Lu Danchenga And Wu Tongsuob Studied, On Bipartite Zero-Divisor Graphs In 2009
- [7]. Nurhidayah Zaid, Studied The Perfect Codes Of Commuting Zero Divisor Graph Of Some Matrices Of Dimension Two In 2021. Journal Of Phys.
- [8]. J. Coykendall, S.S. Wagstaff, L. Sheppardon And S. Spiroff, (2012) "On Zero Divisor Graph". J. Commutative Algebra 2, Pp.241-
- [9]. J. A. Bondy And U. S. R. Murty, (2013) " Graph Theory And Application" North - Holland, New York. Amsterdam, Oxford