On qp*I***-Irresolute Mappings**

Mandira Kar¹, S. S. Thakur²

¹(Department of Mathematics. St. Aloysius College, Jabalpur, India) ²(Department of Applied Mathematics, Government Engineering College, Jabalpur India)

Abstract : In the present paper the concept of qpI-Irresolute mappings have been introduced and studied. Keywords: Ideal bitopological spaces, qpI- closed sets, qpI- open sets and qpI- Irresolute mappings AMS Subject classification 54A05, 54C08

I. Preliminaries

Mashhour [6] introduced the concept of preopen sets in topology. A subset A of a topological space (X, \Box) is called preopen if $A \subset Int(Cl(A))$. Every open set is preopen but the converse may not be true. In 1961 Kelly [3] introduced the concept of bitopological spaces as an extension of topological spaces. A bitopological space (X, \Box_1, \Box_2) is a nonempty set X equipped with two topologies \Box_1 and \Box_2 [3]. The study of quasi open sets in bitopological spaces was initiated by Dutta [1] in 1971. In a bitopological space (X, \Box_1 , \Box_2) a set A of X is said to be quasi open [1] if it is a union of a \Box_1 -open set and a τ_2 -open set. Complement of a quasi open set is termed quasi closed. Every \Box_1 -open (resp. τ_2 -open) set is quasi open but the converse may not be true. Any union of quasi open sets of X is quasi open in X. The intersection of all quasi closed sets which contains A is called quasi closure of A. It is denoted by qcl(A) [5]. The union of quasi open subsets of A is called quasi interior of A. It is denoted by qInt(A) [5]. In 1995, Tapi [8] introduced the concept of quasi preopen sets in bitopological spaces. A set A in a bitopological space (X, \Box_1, \Box_2) is called quasi preopen [8] if it is a union of a τ_1 -preopen set and a \Box_2 -preopen set. Complement of a quasi preopen set is called quasi pre closed. Every \Box_1 preopen (τ_2 -preopen, quasi open) set is quasi preopen but the converse may not be true. Any union of quasi preopen sets of X is a quasi preopen set in X. The intersection of all quasi pre closed sets which contains A is called quasi pre closure of A. It is denoted by qpcl(A). The union of quasi preopen subsets of A is called quasi pre interior of A. It is denoted by qpInt(A).

The concept of ideal topological spaces was initiated Kuratowski [4] and Vaidyanathaswamy [10]. An Ideal I on a topological space (X, \Box) is a non empty collection of subsets of X which satisfies: i) $A \in I$ and B $\subset A \Rightarrow B \in I$ and ii) $A \in I$ and $B \in I \Rightarrow A \cup B \in I$ If $\mathcal{P}(X)$ is the set of all subsets of X, in a topological space (X, \Box) a set operator $(.)^*: \mathcal{P}(X) \to \mathcal{P}(X)$ called the local function [2] of A with respect to \Box and I and is defined as follows:

 $A^*(\Box, I) = \{x \in X \mid U \cap A \notin I, \forall U \in \Box(x)\}, \text{ where } \Box(x) = U \in \Box \mid x \in U\}.$

Given an ideal bitopological space (X, \Box_1, \Box_2, I) the quasi local function [3] of A with respect to \Box_1 , \Box_2 and I denoted by A_q^* (\Box_1, \Box_2, I) (in short A_q^*) is defined as follows:

 $A_{q}^{*}(\Box_{1},\Box_{2},I) = \{x \in X | U \cap A \notin I, \forall \text{ quasi open set } U \text{ containing } x\}.$

A subset A of an ideal bitopological space (X, \Box_1, \Box_2) is said to be qI- open[2] if $A \subset qInt A_q^*$. A mapping f: $(X, \Box_1, \Box_2, I) \rightarrow (Y, \sigma_1, \sigma_2)$ is called qI- continuous[2] if $f^{-1}(V)$ is qI- open in X for every quasi open set V of Y. Recently the authors of this paper[9] defined qpI- open sets and qpI- continuous mappings in ideal bitopological spaces.

Definition1.1. [9] Given an ideal bitopological space (X, \Box_1, \Box_2, I) the quasi pre local mapping of A with respect to \Box_1 , \Box_2 and I denoted by $A^*_{qp}(\Box_1, \Box_2, I)$ (more generally as A^*_{qp}) is defined as $A^*_{ap}(\Box_1, \Box_2, I) = \{x \in X | U \cap A \notin I, \forall \text{ quasi pre-open set U containing } x\}$

Definition1.2. [9] A subset A of an ideal bitopological space (X, \Box_1, \Box_2, I) is qpI- open if $A \subset qpInt(A_{qp}^*)$ and qpI-closed if its complement is qpI- open.

Remark1.1. [9] Every qI- open set is qpI- open but the converse is not true

Remark1.2. [9] The concepts of qpI- open sets and quasi pre open sets are independent.

Definition1.3 [9] A mapping f: $(X, \Box_1, \Box_2, I) \rightarrow (Y, \sigma_1, \sigma_2)$ is called a qpI- continuous if $f^{-1}(V)$ is a qpI- open set in X for every quasi open set V of Y

Remark1.3. [9] Every qI- continuous mapping is qpI- continuous but the converse is not true

Definition1.4. [9] In an ideal bitopological space (X, \Box_1, \Box_2, I) the quasi * -pre closure of A of X denoted by $\operatorname{qpcl}^*(A) = A \cup A_{qp}^*$

Definition1.5. [9] A subset A of an ideal bitopological space (X, \Box_1, \Box_2, I) is said to be a qpI- neighbourhood of a point $x \in X$ if \exists a qpI- open set O such that $x \in O \subset A$

Definition1.6. [9] Let A be a subset of an ideal bitopological space (X, \Box_1, \Box_2, I) and $x \in X$. Then x is called a qpI-interior point of A if $\exists V a qpI$ - open set in X such that $x \in V \subset A$. The set of all qpI- interior points of A is called the qpI- interior of A and is denoted by qpIInt(A).

Definition1.7. [9] Let A be a subset of an ideal bitopological space (X,τ_1,τ_2,I) and $x \in X$. Then x is called a qpI-cluster point of A, if $V \cap A \neq \emptyset$. for every qpI- open set V in X. The set of all qpI-cluster points of A denoted by qpIcl(A) is called the qpI-closure of A.

II. qpI- Irresolute Mappings

Definition2.1. A mapping $f: (X, \Box_1, \Box_2, I) \to (Y, \sigma_1, \sigma_2)$ is called qpI- irresolute if $f^{-1}(V)$ is a qpI- open set in X for every quasi pre open set V of Y.

Remark2.1. Every qpI- irresolute mapping is qpI- continuous but the converse may not true. For,

Example2.1. Let X = { a, b, c } and I = { ϕ ,{a}} be an ideal on X. Let $\Box_1 = {X, \phi, \{c\}}, \Box_2 = {X, \phi, \{a, b\}}, \sigma_1 = {X, \phi, \{b\}}$ and $\sigma_2 = {\phi, X}$ be topologies on X. Then the identity mapping f: $(X, \Box_1, \Box_2, I) \rightarrow (X, \sigma_1, \sigma_2)$ is qpI-continuous but not qpI- irresolute.

Theorem2.1. Let f: $(X, \Box_1, \Box_2, I) \rightarrow (Y, \sigma_1, \sigma_2)$ be a mapping, then the following statements are equivalent:

(a) f is qpI- irresolute.

(b) $f^{-1}(V)$ is qpI- closed set in X for every quasi pre closed set V of Y

(c) for each $x \in X$ and every quasi pre open set V of Y containing f(x), \exists a qpI- open set W of X containing x such that $f(W) \subset V$.

(d) for each $x \in X$ and every quasi pre open set V of Y containing f(x), $f^{-1}(V)_{qp}^*$ is a qpI-neighbourhood of X.

Proof: (a) \Leftrightarrow (b). Obvious.

(a) \Rightarrow (c). Let $x \in X$ and V be a quasi pre open set of Y containing f(x). Since f is qpI- irresolute, $f^{-1}(V)$ is a qpI- open set. Put $W = f^{-1}(V)$, then $x \in W$. Hence $f(W) \subset V$.

(c) \Rightarrow (a). Let A be a quasi pre open set in Y. If $f^{-1}(A) = \emptyset$, then $f^{-1}(A)$ is clearly a qpI- open set. Assume that f $^{-1}(A) \neq \emptyset$ and $x \in f^{-1}(A)$, then $f(x) \in A \Rightarrow \exists$ a qpI- open set W containing x such that $f(W) \subset A$. Thus $W \subset f^{-1}(A)$. Since W is qpI- open, $x \in W \subset qpInt(W_{ap}^*) \subset$

 $qpInt(f^{-1}(A)_{qp}^{*})$ and so $f^{-1}(A) \subset qpInt(f^{-1}(A)_{qp}^{*'})$. Hence $f^{-1}(A)$ is a qpI- open set and so f is qpI- irresolute.

(c) \Rightarrow (d). Let $x \in X$ and V be a quasi pre open set of Y containing f(x) then \exists a qpI- open set W containing x such that $f(W) \subset V$. therefore $W \subset f^{-1}(V)$. Since W is a qpI- open set, $x \in W \subset qpInt(W_{qp}^*)) \subset qpInt(f^{-1}(V)_{qp}^*)$ $\subset (f^{-1}(V)_{qp}^*)$. Hence $f^{-1}(V)_{qp}^*$ is a qpI- neighbourhood of x.

(**d**) \Rightarrow (**c**). Obvious.

Definition2.2. A mapping f: $(X, \Box_1, \Box_2) \rightarrow (Y, \sigma_1, \sigma_2, I)$ is said to be :

(a) qpI- pre open if f(U) is a qpI- open set of Y for every quasi pre open set U of X.

(b) qpI- pre closed if f(U) is a qpI- closed set of Y for every quasi pre closed set U of X.

Theorem2.2. Let f: $(X, \Box_1, \Box_2) \rightarrow (Y, \sigma_1, \sigma_2, I)$ be a mapping. Then the following statements are equivalent: (a) f is qpI- pre open

(b) $f(qpInt(U)) \subset qpIInt(f(U) \text{ for each subset } U \text{ of } X.$

(c) $qpInt(f^{1}(V)) \subset f^{1}(qpIInt(V))$ for each subset V of Y.

Proof: (a) \Rightarrow (b). Let U be any subset of X. Then qpInt(U) is a quasi pre open set of X. Then f(qpInt(U)) is a qpI-open set of Y. Since f(qpInt(U)) \subset f(U), f(qpInt(U)) = qpIInt(f(qpInt(U)) \subset qpIInt(f(U).

(b) \Rightarrow (c). Let V be any subset of Y. Obviously $f^{1}(V)$ is a subset of X. Therefore by (b), $f(qpInt(f^{1}(V))) \subset qpIInt(f(f^{1}(V))) \subset qpIInt(f^{1}(V))$. Hence, $qpInt(f^{1}(V)) \subset f^{1}(qpInt(f^{-1}(V))) \subset f^{1}(qpInt(V))$

(c) \Rightarrow (a). Let V be any quasi pre open set of X. Then qpInt(V) = V and f(V) is a subset of Y. So $V = qpInt(V) \subset qpInt(f^1(f(V))) \subset f^1(qpIInt(f(V)))$. Then $f(V) \subset f(f^1(qpIInt(f(V))) \subset qpIInt(f(V) and qpIInt(f(V)) \subset f(V)$. Hence, f(V) is a qpI-open set of Y and f is qpI-open.

Theorem2.3. Let $f: (X, \Box_1, \Box_2) \to (Y, \sigma_1, \sigma_2, I)$ be a qpI- pre open mapping. If V is a subset of Y and U is a quasi pre closed subset of X containing $f^1(V)$, then there exists a qpI- closed set F of Y containing V such that $f^1(F) \subset U$.

Proof: Let V be any subset of Y and U a quasi pre closed subset of X containing $f^{1}(V)$, and let $F = Y \setminus (f(X \setminus V))$. Then $f(X \setminus V) \subset f(f^{1}(X \setminus V)) \subset (X \setminus V)$ and $X \setminus U$ is a quasi pre open set of X. Since f is qpI- pre open, $f(X \setminus U)$ is a qpI- open set of Y. Hence F is a quasi pre closed subset of Y and $f^{1}(F) = f^{-1}(Y \setminus (f(X \setminus U)) \subset U$.

Theorem2.4. A mapping $f: (X, \Box_1, \Box_2) \rightarrow (Y, \sigma_1, \sigma_2, I)$ is qpI- pre closed if and only if qpIcl($f(V) \subset f(qpcl(V))$ for each subset V of X.

Proof: Necessity. Let f be a qpI- pre closed mapping and V be any subset of X.Then f(V) \subset f(qpcl(V) and f(qpcl(V) is a qpI- closed set of Y. Thus $qpIcl(f(V)) \subset qpIcl(f(qpcl(V)))$ = f(qpcl(V). $qpIcl(V) \subset qpIcl(f(qpcl(V)))$

Sufficiency. Let V be a quasi pre closed set of X. Then by hypothesis $f(V) \subset qpIcl(f(V)) \subset f(qpcl(V) = f(V)$. And so, f(V) is a qpI- closed subset of Y. Hence, f is qpI- pre closed.

Theorem2.5. A mapping f: $(X, \Box_1, \Box_2) \rightarrow (Y, \sigma_1, \sigma_2, I)$ is qpI- pre closed if and only if ${}^1(qpIcl(V)) \subset qpcl(f^1(V))$ for each subset V of Y. **Proof:** Obvious.

Theorem 2.6. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2, I)$ be a qpI- pre closed mapping. If V is a subset of Y and U is a quasi pre open subset of X containing $f^1(V)$, then there exists a qpI- open set F of Y containing V such that $f^1(F) \subset U$.

Proof: Obvious.

References

- [1] M.C. Datta, Contributions to the theory of bitopological spaces, Ph.D. Thesis, B.I.T.S. Pilani, India., (1971)
- [2] S. Jafari. and N. Rajesh, On qI open sets in ideal bitopological spaces, University of Bacau, Faculty of Sciences, Scientific Studies and Research, Series Mathematics and Informatics., Vol. 20, No.2 (2010), 29-38
- [3] J.C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89
- [4] K. Kuratowski, Topology, Vol. I, Academic press, New York., (1966)
- [5] S. N. Maheshwari, G. I. Chae and P. C. Jain On quasi open sets, U. I. T. Report., 11 (1980), 291-292.
- [6] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt., 53 (1982), 47-53
- U. D. Tapi, S. S. Thakur and Alok Sonwalkar On quasi precontinuous and quasi preirresolute mappings, Acta Ciencia Indica., 21(14) (2)(1995), 235-237
- [8] U. D. Tapi, S. S. Thakur and Alok Sonwalkar, Quasi preopen sets, Indian Acad. Math., Vol. 17 No.1, (1995), 8-12
- [9] M. Kar, and S.S. Thakur, Quasi Pre Local Functions in Ideal Bitopological Spaces Book: International Conference on Mathematical Modelling and Soft Computing 2012, Vol. 02 (2012),143-150
- [10] R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci., 20 (1945), 51-61

f