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Abstract:  Operator regularization is one of the excellent prescriptions for studying gauge theories. Among the 

many regularization prescriptions Dimensional regularization and Pre-regularization are the best methods for 

evaluating loop diagrams perturbatively. On the other hand Operator regularization can also be said one of the 

best methods for studying gauge theories because of its two-fold use. With this prescription one can adopt path-

integral method with the combination of background field quantization and Schwinger expansion to find the 

result of the required problem without considering any Feynman diagrams. Also from this prescription one can 

consider Feynman diagrams and evaluating these diagrams using the Operator regularization prescription. In 

this paper we have shown how one can use both the options of Operator regularization method to evaluate 

Feynman diagrams in QED in (3+1) dimensional space-time. 

Keywords: Operator regularization, Dimensional regularization, Feynman diagrams in QED, Path-integral 
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I.  Introduction 
         Feynman diagrammatic technique is a standard way of studying of gauge theories in a perturbative 

way. The problem is when one tries to evaluate the loop diagrams arising from the theory in consideration using 

Feynman integrals. Most of the time divergencies arise in these integrals. So one has to use some regularization 

method to overcome this problem.  

         Evaluating loop integrals using different regularization procedures give results which are very often 

dependent on the regulating parameters which are not expected. However in some cases choosing the 

appropriate value of the parameter one can get the exact result. In this paper three basic diagrams in QED in 

(3+1) dimensional space-time is studied by the method of Operator regularization [1] in two different 

approaches and Dimensional regularization [2]. We have shown here how the results in these three approaches 
are same. 

          Operator regularization is a little bit different than that of other regularization methods. Because all the 

methods mentioned here are perturbative method. That is one has to draw all possible Feynman graphs and 

following any regularization method one can find the transition amplitude of the required problem. But Operator 

regularization method can be used in a two-fold way. That is without considering Feynman graphs [1] which 

depend only on path integral method and also considering Feynman graphs [4]. In the first case one has to use 

back-ground field quantization in the Lagrangian then the operators and inverse operators have to regulated 

following a given prescription [1, 3]. After some simplification Schwinger expansion [5] has to be taken. From 

the expansion one can choose appropriate terms for the problem in consideration. It means that we do not have 

to consider Feynman graphs. In this method we do not have to face any divergencies at any stage of calculation. 

However, after quantizing with operator regularization, there is a way to consider Feynman graphs. Then 

following any regularization method one can find transition amplitudes of the problem. In this case this is a 
combination of Operator regularization and other regularization methods. 

          In this paper at first we will show how the second option of Operator regularization can be used in 

evaluating loop diagrams. That means from the path integral form of the Operator regularization how one can 

choose the part of the prescription which can be applied to find the amplitude of the basic Feynman graphs and 

then we will show how these problems can be obtained from the first option that is from path integral form of 

the method and the results will be compared later on.  

 

II.      Operator Regularization Prescription 
          Operator regularization is an alternative way of computing quantum correction in quantum field theory 
in context of background-field quantization, which was given by D.G.C. McKeon et.al. [1, 3]. In this method the 

Feynman diagrams of the usual perturbation series can be avoided because this method depends on path 

integrals. But at one stage there is an option to consider Feynman diagrams. That is from this prescription one 

can choose either path integral method or Feynman diagrammatic approach. In this approach we regulate 
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operators and inverse operators rather than the initial Lagrangian. To one-loop order this scheme reduces to a 

perturbative expansion of the well-known  - function regularization [6-9] associated with the superdeterminant 

of an operator. 
           This prescription is given in ref. [3] but for completeness let us briefly describe it here. The 

background-field method in context of path-integral quantization [10-12] is the starting point of this procedure. 

We consider the general case where a field  xi  which may be either fermionic or bosonic. Let us consider a 

field  xi  is quantized into its background classical part  xf i  and quantum part  xqi .That is                        

                             xi  =  xf i  +  xqi                                                                                                            (2.1) 

The general form of the Lagrangian L  ii qf   that we will consider is  

                    L  ii qf ,  =   jjiji qfMq
2

1
 +   kjijijk qqqfa

!3

1
 + lkjiijkl qqqqb

!4

1
                                            (2.2) 

The generating functional for Green’s functions in the theory in the presence of a source function  xJ i  is 

given by                      

                      ji JfZ ,  =  dxdqk exp [ L  ii qf  + ]iiqJ                                                                           (2.3) 

 For simplicity let us deal only with one-loop effects. Then from the generating function we have to restrict our 

attention only to those terms in Eq. (2.2) that are bilinear in iq .We thus consider only                       

                            L  (2) =   jjiji qfMq
2

1
                                                                                                           (2.4) 

 Upon substituting Eq. (2.4) into Eq. (2.3) we arrive at the one-loop generating functional  

                        0,ifZ  =     











jiijik qfMqdxdq

2

1
exp                                                                               (2.5) 

Evaluation of the functional integral in Eq. (2.5) involves a determinant which we call as superdeterminant 

of ijM , as iq  may be either fermionic or bosonic [13-16]. 

That means from equation (2.5) the one-loop generating functional for Green’s functions is  

                        0,1 ifZ =   iij fMs 2
1

det


                                                                                                         (2.6) 

 Equation (2.6) tells us that we have to regularize the superdeterminant of the operator ijM  and it’s inverse. 

 The superdeterminant of an operator   can be written as  

                           det  =  lnexp tr                                                                                                                 (2.7) 

Let us regularize ln  in the following way:  

                             

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1
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,  (n = 1, 2, 3, ... )                                                                  (2.8) 

In facing no divergences we can always choose n to be greater than or equal to the number of “loop momentum 

integrals” or in other words order in  . 
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and  
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                                                                           (2.9b) 

If we now rewrite 
  as  

                            
  = 

 
 ttdt 

 


 exp
1

0

1


                                                                                     (2.10) 

 in eq. (2.9) we arrive at the result  
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                            0expdet                                                                                                      (2.11a)  

where we have defined the  - function  

                            =
 

 ttrdtt 
 



 exp
1

0

1


                                                                                           (2.11b) 

This is the usual  - function regularization of the determinant of an operator.  

 

         Equations (2.8) and (2.9) are the main steps of the Operator regularization which is used in (2.6) to 

evaluate the Green’s function of any problem. From this point we can divide the prescription in two fold way. 

That means if we use Schwinger expansion for the operator like  
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       where, I 0  with 0  is independent of the background field if  and I  is at least linear in if .  

Then following the steps described in ref.[3] we can find the result of the problems in consideration. 

 

        Also these equations can be used in evaluating Feynman loop-diagrams. For one-loop take n =1, for two-

loops take n = 2 and so on.  

Following (2.9b) we can write the general prescription of Operator regularization for the Feynman diagrams as 

follows [4]:  
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         where the n s are arbitrary. For one-loop diagrams it is enough to use n = 1.When m = 2 and n = 1, then 

eq. (2.13) taken the form              

                                       2

0

2 1lim 



  


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d

d
                                                                                  (2.14) 

 
Now applying this to the three divergent one loop Feynman diagrams in QED. 

 

2.1 One Loop Correction to the Fermion Line in (3+1) Dimensions   
        Starting with the Feynman diagram for the one loop correction to the fermions line which is represented 

by    p : 

 

               

              

             

                 

                   

                                           Fig.-1: One loop Feynman diagram for external fermion lines. 

 

Using the Feynman rules one can write    p  as,       

                               p    = 2ie
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 Using the Feynman identity, we can write 
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Shifting the variable of integration as pxll   and simplifying we get 

                                 p = 2ie 
1

0

dx
 

  
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The term linear in l   integrates to zero because of symmetric integration, so 

              

                                 p = 2ie 
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                                                    (2.1.1) 

 Which is taken as the common starting point for both Dimensional and Operator regularization. 

         Now proceeding with operator regularization, following the rule cited in Eqs. (2.11) and (2.12), the above 

result becomes, 

                               p = 2ie 
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Using the standard integral  
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we get, 

           p = 2ie
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 Here,  
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     = uln1                                                                                                                                               (2.1.5) 

  
Therefore Eqn. (2.1.5) becomes,        

                   p  = 2ie
 24

1

 
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The advantage of this method is that here we can use 4-dimensional  -algebra. We do not have to go from 4 to 

n as in dimensional regularization.  

Doing the  -algebra we arrive at    

                  p = 22ie
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Let us now separate the finite part and divergent part from (2.1.6) as follows:   
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                                                                                                    where 2  taken from the arbitrary . 
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 Thus the finite part of    p  is,           
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and the divergent part is, 
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Comparing this to the result from Dimensional regularization [17-18], the finite part is  
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 and the divergent part is  
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 where 5772.0  is the Euler- Mascheroni constant. 

There is a constant difference between these two methods that stems from dimensionally continuing the gamma 

matrices, but the resulting over all phase should not effect the physics. 

 

2.2 One Loop Correction to the Boson (Photon) Line in (3+1) Dimensions 

          

        Let us consider the Feynman diagram for the one loop correction to the photon line which is represented by  

 p  : 

 

 

 

 

 

 

     

 

                     
Fig.-2: One loop Feynman diagram for external boson lines. 

 

The QED one loop correction to the photon line in 4-dimensions is 
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Combining the denominator using the Feynman identity and simplifying, we get 
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Now putting pxll  in Eq. (2.2.1), then we get, 
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                      =     xmxxpxxplxl 2222 112        222222 1121 xmmxxpxplxl   

                      =   2222 1 xxpml   

and 
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                     =4        xpl  1    2mpxl   
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 Hence equation (2.2.1) with ll   becomes, 
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                                                                                                                                                                         (2.2.2) 

 If we apply the following integrals in the first and third terms in the integrand of equation (2.2.2), 
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We arrive at, 

           p = -8 2e   2ppp  
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                                         (2.2.3) 

Which is again taken as the common starting point for both Dimensional and Operator regularization for one 

loop correction to the photon lines. 

 

Using the operator regularization rule which describe in section-2 in above eq., we obtain,    
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Due to the momentum integral (2.1.3), from eq. (2.2.4) we get, 2 A , 2w ,  xxpmM  1222 , then 

Eq. (2.2.4) becomes,       
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From Eq. (2.1.5) we get, 
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Thus equation (2.1.4) becomes, 
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                                                                                          where 2  taken from the arbitrary . 
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Therefore the finite part of  p  is,  

                       8 2e
 24

1


  2ppp  

1

0

dx  xx 1
 











 
2

22

4

1
ln



mxxp
                                            (2.2.6) 

and     the divergent part is,                    

                      -8 2e
 24

1


  2ppp  

1

0

dx  xx 1  1                                           

                     =-
3

4

 2
2

4

e   2ppp   1                                                                                          (2.2.7)     

 

Comparing this against the result of Dimensional regularization [17-18], the finite part is  
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and the divergent part of  p  is, 

                                  
 
 2

22

4

8



 pppie 


1

0

dx  xx 1 







 



2
 

                                 =
 
 2

22

43

4



 pppie 








 



2
                                                                                 (2.2.9)                             

We see that both results are the same in form. 

 

2.3 One Loop Correction to the Vertex in (3+1) Dimensions 
           Let us now consider the Feynman diagram for the one loop correction to the vertex which is represented 

by  qp, . 

 

 

 

 

 

 

 
 

 

 

Fig.-3: One loop Feynman diagram for vertex function. 

  

 The QED one loop correction to the vertex in 4-dimensions is 
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 Now we introduce the 3-parameter Feynman formula for combining the denominator,    
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 in the eqn. (2.3.1), we obtain, 
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 If we change the variables qypxll   and simplify the denominator and numerator, we obtain, 
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 This integral contains convergent and divergent pieces. The part of the numerator quadratic in l  is divergent, 

the rest convergent, so separating the divergent piece    qp,1
  and convergent piece    qp,2

  , i.e. 
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Thus the divergent piece is, 
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                                     where,       qxypyyqxxpyxmM .211 2222  . 

Which is taken as the common starting point for both Dimensional and Operator regularization for one-loop 

correction to the vertex. 

  

Again, using the operator regularization rule which describe in section-2 in above eq., we obtain,    
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Now performing the momentum integral, we get 
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Here,  

                
 d

d

0
lim


 
 

 

  









 












u
.

3

1
  , where u = M2. 

            =  
 d

d

0
lim


 
  
















u23

1
2

 

            =
0

lim


      
 









22

2

]23[

32123








u

uu  
  











22

2

]23[

ln23








u

uu
 

            = 
4

ln232 u
  

  

Again performing the  -algebra in 4-dimentions, eq. (2.3.4) reduces to,   
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 and the divergent part is  
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Comparing this result with the Dimensional regularization [17-18] result, the finite part is  
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                                             where,       qxypyyqxxpyxmM .211 2222   

 and   the divergent part is, 
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Which agree in form, recalling that Operator regularization goes further than Dimensional regularization in so 

much as that it actually removes the divergences. 

     

III.   Path Integral Form of Operator Regularization for One Loop 

Generating Functional in QED 
 Let us consider the QED Lagrangian, 
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 Let us expand this Lagrangian taking background field quantization of the fields. Let the background field 

expansion of gauge field   and fermionic field   are respectively,  
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 where V  and   are the classical fields and Q  and q  are the quantum fields. 

Therefore Eq. (3.1) becomes,  
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
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Q +  




 VqqQ    

          qQqQqqVq 






     2

2

1



QV                                                                    (3.2) 

 

To find the one-loop 1PI generating functional we need to consider only the terms in the Lagrangian bilinear in 
the quantum fields; then from Eq b .(3.2) we obtain     

     L  (2) =  qeViq 
        










22

2
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4

1



QQQ  qQe 

  
Qqe  

           

              = qDq  


 QpppQ 

















1
1

2

1 2
qQe   Qqe                                                                (3.3)                             

                                                             where,   VepeViD  
 . 

   

The formalism of Section-2 cannot be directly applied to the bilinear Lagrangian L  (2) of Eq.(3.3) as q and q  

are independent quantum fields in the associated path integral. However, it is possible to rewrite L  (2) in the 

form of Eq. (2.4) by the following device. We introduce the notation  
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












Tq

q
 ,  qqTT ,   and we identify the quantum field 























nq

q

q

.

.

2

1

 of the original formalism of the background 

field method with 










Q
 i.e. 

















Tq

q

Q

. 

Thus the Lagrangian (3.3) can be written as, 

                L  (2)=  Q
2

1
  Tq   q   














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




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
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e

e
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1
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D

e





0


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
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
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


















Tq

q

Q

  

                       = jij
T
i hMh

2

1
, where,



















T

j

q

q

Q

h



                                                                                               (3.4) 

Evaluation of the path integral (2.5) leads at once to the one-loop generating functional  

                1Z =   











jiijik hfMhdxdq

2

1
exp                                                                                                  (3.5) 

Evaluation of the functional integral in Eq. (3.5) involves the “superdeterminant’’ [13-16] of ijM  as ih  may be 

either fermionic or bosonic. 

Now we can proceed in two ways: either (a) complete the square in the fermionic variables f and f  or (b) 

complete the square in the bosonic variable b [1, 3]. 

 

Following ref. [1] let us complete the square in fermionic variables in the argument of the exponential on the 

right-hand side of Eq. (3.5), then we get 

 

               



  bMMMbbMbdfdbfdI fbffbf

T
bb

T 1

2

1
exp    bMMfMMbMf

bfffffffbf
11                     (3.6) 

The change of variables,       

 

            bMMff
bfff

1  and  1
ffbf MbMff  , then we get, 

               







  fMfbMMMMbdbfdfdI

fffbffbfbb
T 12

2

1
exp                                                 (3.7) 

Now using the standard Gaussian integrals  

  

                           







Abbdb T

2

1
exp = A2

1

det


 

                   and     fBffdfd exp  = Bdet                      

 

in Eq. (3.7), we obtain,   

                      I = 

 fbffbfbb

ff

MMMM

M

12
1

2det

det


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Thus one-loop generating functional for Green’s functions 1Z in Eq. (3.5) becomes, 

        

                1Z =






















 


 
121222

1 1
1det

det

DeDeppp

D
=

B

A

det

det
(say)                                          (3.8)                                               

 

             Here we see that 1Z  is the ratio of determinant of operators. Each of the determinants occurring in Eq. 

(3.8) requires regularization and a corresponding  -function. The numerator and denominator separately 

contribute to Green’s functions with only external boson lines and with both external fermions lines and vertex 

function in massless QED respectively.  

 

3.1 One-Loop Generating Functional and Loop Corrections for External Boson Lines 

  To find the loop corrections or to write the generating functional for external boson lines one has to 

make a close look at the numerator of eq. (3.8) and on the other hand for external fermion lines one has to take 

care of the denominator of eq. (3.8). So for bosonic case we have to regulate the  Adet  through the use of  -

function in Eq. (2.11a) yielding 

                                   Adet = AZ1 =   


ALit 
0

exp ,                                                                                 (3.1.1)      

                    where,   =
 

 ttrtdt 
 



 exp
1

0

1


   with Vep  .                                                       (3.1.2) 

 

 As we mentioned in section-II, after regularization we have to consider Schwinger expansion, to this view let 

us now identify the operator 0  and I  with p  and Ve  , respectively, then by Eq. (2.10), Eq. (3.1.1) can be 

written as,     

                AZ1 =epx
 

 tptp teetrdtt
d

d
Lim 









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



 
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1

0
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 
+  Ve       VeeVedue

t tputpu
 


1

0

1
2

2
 

                                    tpuedvudu
t



 1

1

0

1

0

3

3
     tpvueVe 

 1    VeeVe tpuv
  +...  









...                     (3.1.3)  

          To one-loop order this series plays the same role as Feynman rules in the usual perturbation theory. Here 

we want to evaluate the one-loop correction to the two-point function for external photon in QED; we restrict 

our attention to the term bilinear in V  on the right-hand side of Eq. (3.1.3). This leaves us with 

                     A
VVZ1 =

 
 

 









0
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0 2
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 

t
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e

d

d
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 






















 

 VeVduetr tputpu

1

0

1                                          (3.1.4)                                                                                         

 Now let us complete the functional trace 

                          T=  













 

 VeVduetr tputpu

1

0

1                                                                                                   (3.1.5) 

          Schwinger has pointed out that such traces are most easily evaluated in momentum space. We introduce a 

complete orthonormal set of states p  that are eigenstates of the operator p , where, in n dimensions, 

                      px  =
  2

.

2
n

xpi
e




                                                                                                                 (3.1.6a)       

and            qfp   = 
 

  22
n

qpf



                                                                                                ( 3.1.6b) 

 

On the right-hand side of Eq. (3.1.6b),  qpf   is the Fourier transform of  xf : 

                    qpf  =
 

   qpix

n

n

exf
xd




.

22
                                                                                                (3.1.7)              
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Equation (3.1.5) takes the form,  

          

                         T=   sdrdqdpd 4444   qep tpu


 1 rVq  ser tpu
  rVs                                           (3.1.8) 

 

Upon inserting the complete set pppd  
41   at the appropriate places, and using (3.1.6), we rewrite Eq. 

(3.1.8) as, 

                      T =   sdrdqdpd 4444  

 
  tpue

qpV
 1
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
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


2

.

2
                            

                         =
   2

4

4

44

22 

rdqdpd 


     sqVqpVe tpu
 1   psee psitqu
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                         =
 


4

44

2

qdpd      pqVqpVe tqutpu
 1                                                                             (3.1.9) 

After shifting the variable of integration qpp  , Eq. (3.1.9) becomes, 

                             T=
  4

44

2

qpdd       pVpVe tpuq  1                                                                              (3.1.10) 

 

Upon substituting Eq. (3.1.10) into Eq. (3.1.4), we find that  

                       A
VVZ1 =  






 




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  where,       A
VV =

 2
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0




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1
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du    pVpVpd 
4  

 
  tpuqe

qd



1

4

4

2
                                    (3.1.11b) 

 
We use Eq. (2.10) to integrate over t, then (3.1.11b) becomes,            

                     A
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Now the last integral 1I  (say) of Eq. (3.1.12) can be calculated as follows: 

                         1I  = 
 
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Differentiating eq. (3.1.11b) with respect to   and taking 0 , we see that the product terms in   will 

vanish. Hence in the numerator of 1I only the first and last term will contribute. 
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To evaluate this integral let us consider the standard integral, 
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Using eq. (3.1.14) in (3.1.13) we get, 
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Thus Eq. (3.1.12) becomes, 
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Now differentiating Eq. (3.1.15) w. r. to , we get               
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Substituting of Eq. (3.1.16) into Eq. (3.1.11a) yields our final expression for
A

VVZ1  as, 
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 This contributes to the to the one–loop generating functional for external bosons (photon) lines. 

 

To find one-loop correction for external boson lines from above generating functional, we have to take 

logarithm on Eq. (3.1.17) and then functional differentiation of the expansion with respect to momentum p . 

 

Thus the one-loop correction for the external boson lines is, 
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where,  
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            and    the divergent part is  1ln
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          The result in (3.1.18) is of the same form as we obtained by the diagrammatic form of Operator 

regularization and Dimensional regularization methods in section-II. In this section we have shown and 

explained how one can choose the appropriate terms from the Schwinger expansion for the problem in hand.      

 

3.2 One-Loop Generating Functional and Loop Corrections for External Fermion Lines and Vertex   

       Function 

 In this case we focus on the denominator in Eq. (3.8), so that let us regulate the Bdet  through use of 

the  - function in Eq. (3.11a) yielding 
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In Eq. (3.2.2) it is understood that the exponential is   tBtr exp , where 
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   where, 0B is independent of the background field   and  , and IB is at least linear in   and  . 
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 Now as before to use Schwinger expansion in this case let us use the eq. (2.10) and then taking bilinear in  and 

  on the on the right-hand side of Eq. (3.2.1), we end up with 
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The exponential factor in the trace of Eq. (3.2.4) can be simplified using the complete set of orthonormal 

projections operators: 
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and let us expand 1D   in powers of the back-ground field in the  -function Eq. (3.2.4):  
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          It is interesting to note that at this stage this is straightforward to apply the perturbative expansion of Eq. 

(2.10) to this  -function and to select from the expansion those terms appropriate for any particular Greens 

function. This means that from the expansion we can choose appropriate terms that are associated with the 

related problems that we are interested in. Let us consider here the  -function for the fermion two-point 

function and the vertex function, we find 

                      B

  



0

2

trtdt
e 

 


















































  LeTe

p
Ve

pp

tp
tp

2

2111
                         (3.2.7) 

        Following ref. [19] in the approach-A, we compute from Eq. (3.2.7) the  -function in the limit of zero 

momentum transfer to the photon: 
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 Therefore by Eq. (3.2.1) the contributions to the one-loop generating functional is  

                 BZ1  










pd
e 4

2

2

82

1
exp










 2lnln

2

3
p      pV

e
pp 








 


 0

4 2
 

4

3

16


e
        

                                                          
 












 2

4 0.

p

Vp
ppppd                                                                (3.2.9) 

This contributes to the one-loop generating functional for external fermion (electron) lines and vertex function 

in QED. 

 

         To obtain the one-loop correction for external fermion lines and vertex function, we have to take logarithm 

of Eq.(3.2.9) and then functional differentiation with respect to momentum p . 
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Hence from Eq. (3.2.9), we get 
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                                                                                                                                                                       (3.2.10)     

From the expansion (3.2.10) we can find the one-loop correction for the external fermion lines and one-loop 

vertex function by choosing the appropriate terms. This expression is of the same form as obtained by DR and 

OR methods with Feynman diagrams in section- II. 

Thus the one-loop correction for the external fermion lines is, 
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and   the one-loop correction to the vertex function is,                      
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                                                                              (3.2.12) 

The result in (3.2.11) and (3.2.12) is of the same form as we obtained by the diagrammatic form of   Operator 

regularization and Dimensional regularization methods in section-II. 

 

IV.     Conclusion 

          In this paper we have evaluated basic QED loop diagrams in (3+1) dimensions with and without 

considering Feynman diagrams by the Operator regularization. We have compared the results of both procedure 
of Operator regularization and that of Dimensional regularization. We have seen that in both cases the result is 

of the same form with Dimensional regularization except a finite constant term difference. This will not affect 

the renormalization procedure. 
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