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Abstract: Operator regularization is one of the excellent prescriptions for studying gauge theories. Among the
many regularization prescriptions Dimensional regularization and Pre-regularization are the best methods for
evaluating loop diagrams perturbatively. On the other hand Operator regularization can also be said one of the
best methods for studying gauge theories because of its two-fold use. With this prescription one can adopt path-
integral method with the combination of background field quantization and Schwinger expansion to find the
result of the required problem without considering any Feynman diagrams. Also from this prescription one can
consider Feynman diagrams and evaluating these diagrams using the Operator regularization prescription. In
this paper we have shown how one can use both the options of Operator regularization method to evaluate
Feynman diagrams in QED in (3+1) dimensional space-time.
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l. Introduction

Feynman diagrammatic technique is a standard way of studying of gauge theories in a perturbative
way. The problem is when one tries to evaluate the loop diagrams arising from the theory in consideration using
Feynman integrals. Most of the time divergencies arise in these integrals. So one has to use some regularization
method to overcome this problem.

Evaluating loop integrals using different regularization procedures give results which are very often
dependent on the regulating parameters which are not expected. However in some cases choosing the
appropriate value of the parameter one can get the exact result. In this paper three basic diagrams in QED in
(3+1) dimensional space-time is studied by the method of Operator regularization [1] in two different
approaches and Dimensional regularization [2]. We have shown here how the results in these three approaches
are same.

Operator regularization is a little bit different than that of other regularization methods. Because all the
methods mentioned here are perturbative method. That is one has to draw all possible Feynman graphs and
following any regularization method one can find the transition amplitude of the required problem. But Operator
regularization method can be used in a two-fold way. That is without considering Feynman graphs [1] which
depend only on path integral method and also considering Feynman graphs [4]. In the first case one has to use
back-ground field quantization in the Lagrangian then the operators and inverse operators have to regulated
following a given prescription [1, 3]. After some simplification Schwinger expansion [5] has to be taken. From
the expansion one can choose appropriate terms for the problem in consideration. It means that we do not have
to consider Feynman graphs. In this method we do not have to face any divergencies at any stage of calculation.
However, after quantizing with operator regularization, there is a way to consider Feynman graphs. Then
following any regularization method one can find transition amplitudes of the problem. In this case this is a
combination of Operator regularization and other regularization methods.

In this paper at first we will show how the second option of Operator regularization can be used in
evaluating loop diagrams. That means from the path integral form of the Operator regularization how one can
choose the part of the prescription which can be applied to find the amplitude of the basic Feynman graphs and
then we will show how these problems can be obtained from the first option that is from path integral form of
the method and the results will be compared later on.

I1.  Operator Regularization Prescription
Operator regularization is an alternative way of computing quantum correction in quantum field theory
in context of background-field quantization, which was given by D.G.C. McKeon et.al. [1, 3]. In this method the
Feynman diagrams of the usual perturbation series can be avoided because this method depends on path
integrals. But at one stage there is an option to consider Feynman diagrams. That is from this prescription one
can choose either path integral method or Feynman diagrammatic approach. In this approach we regulate
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operators and inverse operators rather than the initial Lagrangian. To one-loop order this scheme reduces to a
perturbative expansion of the well-known & - function regularization [6-9] associated with the superdeterminant

of an operator.
This prescription is given in ref. [3] but for completeness let us briefly describe it here. The
background-field method in context of path-integral quantization [10-12] is the starting point of this procedure.

We consider the general case where a field ¢; (X) which may be either fermionic or bosonic. Let us consider a
field ¢;(x) is quantized into its background classical part f;(x) and quantum part g;(x).That is

o (x) = fi(x) + g;(x) 1)
The general form of the Lagrangian L (f; +g; ) that we will consider is
1 1 1
L (f,q) = EqiMij(fj)qj + gaijk(fjhiqjqk + EbijquiqjquI (2.2)

The generating functional for Green’s functions in the theory in the presence of a source function J; (X) is
given by

Z[fiijJ: J.ko exp(J.dx[L (fi+a)+Jia]) (2.3)
For simplicity let us deal only with one-loop effects. Then from the generating function we have to restrict our
attention only to those terms in Eq. (2.2) that are bilinear in (;.We thus consider only

1
L<2>:Eqi|v|ij(fj)qj @.4)
Upon substituting Eq. (2.4) into Eq. (2.3) we arrive at the one-loop generating functional
1
z[f,,0] = quk eprdx{EqiMij(fi)qj} (2.5)

Evaluation of the functional integral in Eqg. (2.5) involves a determinant which we call as superdeterminant
of M ij» @ {; may be either fermionic or bosonic [13-16].
That means from equation (2.5) the one-loop generating functional for Green’s functions is

2,[1,.0]=sdet 72[m,(f,)] (2.6)
Equation (2.6) tells us that we have to regularize the superdeterminant of the operator M j and it’s inverse.

The superdeterminant of an operator {2 can be written as
det Q = exp(trinQ) (2.7)

Let us regularize In Q2 in the following way:

dn gn—l
INQ = —lim ( Q‘g], =123 ..) (2.8)
£—0 dgn n!

In facing no divergences we can always choose n to be greater than or equal to the number of “loop momentum
integrals” or in other words order in 71 .

Hence,
gn gn—l
det Q=exp|tri— lim — Q¢ (2.93)
e—0 dgn n!
and
m-1 m
QM= Y d (InQ)
(m-1) do™
n n-1
— pim T[T m) o (2.9b)
s=0dg" |l T(m)(s)
If we now rewrite Q¢ as
) 1 7,4
Q7 = | dt t“ Texp(-Qt) (2.10)
1"(5)1[

in eq. (2.9) we arrive at the result
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det Q0 = exp[- £'(0))] (2.11a)
where we have defined the & - function

&e)= 1 J. dtt*trexp(— Qt) (2.11b)
Ie)y
This is the usual & - function regularization of the determinant of an operator.

Equations (2.8) and (2.9) are the main steps of the Operator regularization which is used in (2.6) to
evaluate the Green’s function of any problem. From this point we can divide the prescription in two fold way.
That means if we use Schwinger expansion for the operator like

) 21
det Q=exp{— lim-9_| L 'fdtt‘f‘ltr(e’Qot —te™'Q, +t—J‘due‘(1‘“)Qot Qe Q)
e-0de F(g)o 2 0

t3
3

O ey

1
duu I dve U0ty g U0Vt gty 1y ] (2.12)
0

where, Q=0Q, +Q, withQ, is independent of the background field f; and €2, is at least linear in f; .
Then following the steps described in ref.[3] we can find the result of the problems in consideration.

Also these equations can be used in evaluating Feynman loop-diagrams. For one-loop take n =1, for two-
loops take n = 2 and so on.
Following (2.9b) we can write the general prescription of Operator regularization for the Feynman diagrams as
follows [4]:
n
Q™™ =lim
-0 dgh

n
(1+a1€+a282 +...+an5”>g—le‘97m (2.13)
n!

where the «,s are arbitrary. For one-loop diagrams it is enough to use n = 1.When m = 2 and n = 1, then
eg. (2.13) taken the form

Q?%= @3% [g(1+ ag)Q_g_z] (2.14)

Now applying this to the three divergent one loop Feynman diagrams in QED.

2.1 One Loop Correction to the Fermion Line in (3+1) Dimensions
Starting with the Feynman diagram for the one loop correction to the fermions line which is represented

by(Z(p)): 1

n p—1 v p
Fig.-1: One loop Feynman diagram for external fermion lines.

Using the Feynman rules one can write (Z(p)) as,

, d?l (p—t-m)
E =—je? : 3
( (p)) .[(272_)47/# [(p_y)z_mzjz Yu
Using the Feynman identity, we can write

()= o 1(32;4 : 7 (p-1-my,

—I)Zx—m2x+I2(1—x)]2
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Shifting the variable of integration as I' =1 — px and simplifying we get

))=—ie Id Id I m[w(l x)-m-I,

I/Z

m2x+ p x(l—x)]
The term linear in |" integrates to zero because of symmetric integration, so

1 4 —_x)—
> (p))=-ie? [ox | a1 7ulpl-x)-mb, - (2.1.1)
o (27)" 12 —m2x+ p?x(1-x)
Which is taken as the common starting point for both Dimensional and Operator regularization.
Now proceeding with operator regularization, following the rule cited in Eqs. (2.11) and (2.12), the above
result becomes,

1 4 1 1—x)—
(3 (p))=—ie? [ax |imij a1l sliracly,[pi-x) nl]fz” (2.12)
,  e00de J (27) [Iz—m2x+p2x(1—x)]
Using the standard integral
j d2" 1 _ 1 r(A-w)
(

20 (12wt () T(A) (w2

2.1.3)

we get,

(> (p))=-ie?

Here,

d (l+ag) I(s)
J'dx yu[pa-x)-m, Hodg[ 1) Cotns o] (2.1.4)

(4 )

Iimi[g(l+ag). I(e) ]

>0 de | [(e+2) (—m2x+ p2x(1- x))é

I d { e+ az)

s>0de (g+1)u

. [(1+g)u a_(lmg){uu(mmnu}]
{(1+5)ug}2

=a-1-Inu (2.1.5)

} Takingu = -m?x + p2x(1-x)

&0

Therefore Egn. (2.1.5) becomes,
1
Jax 7, [pa—x)-mly, e —1—In(- m?x+ p2x(1 X))

= _je? L
(Z(p)) - (47[)2 )

The advantage of this method is that here we can use 4-dimensional y -algebra. We do not have to go from 4 to

n as in dimensional regularization.
Doing the y -algebra we arrive at

o, 1
(Z(p))——Zle an}

Let us now separate the finite part and divergent part from (2.1.6) as follows:

o, 1
(Z(p))-—me an}

NP 2 —m?x+ p?x(1-x)
=—2ie any J-dx [p@—x)+2m] {(a+|n,u )—1—In #pz }

Jl.dx [p@—x)+2m] [a—l—ln(—m2x+ p?x(1- x))J (2.1.6)

Jl.dx [p@—x)+2m] [a—l—ln(—m2x+ pzx(l—x))—lny2 +Iny2J

2

1 2 2
= _2je? L J.dx [p(L—x)+2m] {a—l—ln_m X+ P x(l—x)}
u
0

where 1% taken from the arbitrary « .
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Thus the finite part of (Z(p)) is,

2 1 2 2
e —m?x+ p?x(1—x)
~2i dx [p@—x)+2m] {m } 2.1.7)
(4”)2 .([ #2
and the divergent part is,
e |
2 = Idx [pL—x)+2m] (e -1)
0
o2
=—j —(4 7 (a-1) [p+4m] (2.1.8)
T
Comparing this to the result from Dimensional regularization [17-18], the finite part is
2 1 2 2
e p?x(1—x)—m?x
—— | dx |pl—x)+2m|In| ———~——— 2.1.9
T { [P x)+2m] { . } (2.1.9)
and the divergent part is
2, y)praml—= 2m (21.10)
@ef e (ar)" -

where y=~0.5772 is the Euler- Mascheroni constant.

There is a constant difference between these two methods that stems from dimensionally continuing the gamma
matrices, but the resulting over all phase should not effect the physics.

2.2 One Loop Correction to the Boson (Photon) Line in (3+1) Dimensions

Let us consider the Feynman diagram for the one loop correction to the photon line which is represented by
M,,(p) :
uv

l+p

!

Fig.-2: One loop Feynman diagram for external boson lines.
The QED one loop correction to the photon line in 4-dimensions is
d . {_m(ﬂ ro—m)‘n(f—m)}

I, (p)=e? r
() J-(er)"' [(I+p)2—m2[I2—m2)
Combining the denominator using the Feynman identity and simplifying, we get

n (p):ezjdxj dft Trly, (e pomly, (- m) 2.2.1)
a , (@) [(I+p)zx—m2x+(lz—m2X1—x)]2
Now puttingl’ =1+ px in Eq. (2.2.1), then we get,
1 d4r Trly, (' = px+ p—m)y, (I' - px—m)|
,,(p)=e? |dx # Y
: J; I(zﬂ)4 [(I’+ p(l—x))‘o'x—m2x+((l’—px)z—mzh—x)]2
_ Ny
D#V

Here
DHV:[{I'+ p(L— x)}*x —m?x +{(I’— px)? —mZ}(l—x)]2
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=[I’2x+2l PA—x)x+ p?(1—x)*x—m?x +1"2(1—x)—2I'p(1— x)+ p?x?(1—x)—m? erzx]2

= [I’2 -m? + pzx(l—x)]2
and
N, = Trlyﬂ{l'+ p(L—x)—mly, (I'— px—m)J
=Ty yary s U+ PA=X), (1= px), + M2y, ]
|_( nao v/i’ ,uv a/i’ ,uﬂ av){l +p1 X)} (’_ px)ﬁ+m25,qu
—4[2Iﬂ|{, 2x1—x)(pﬂ p,—p 5W)— ﬂv{l’z—m2+p2x(1—x)}J

Hence equation (2.2.1) with 1" — 1 becomes,
1 4 2
_ d”l 2 Iv ZX(]-_ X)(p P, —P o IV) 511/
Hﬂv(p)_‘lezjdx I(Zﬂ)4 {2 2 #2 2 () 2 - 2 ;2 _{Iz—mz +! 2X(:I.—X)}
0 12 -m?+p x(l—x)} {I -m%+p x(1—x)} P

(2.2.2)

If we apply the following integrals in the first and third terms in the integrand of equation (2.2.2),
d
L, _ix”? 1 | .
I Id I - _(y X [quvra_% +Egyv(_q —m )—‘(a—l—%ﬂ
2 2)“

12 +2lq- m) a (_q _

. Jdl - (-1)in"? o (V)

+2Iqm) a)(q—m)é
We arrive at,
x(1-x)
r,,(p)=-8¢*(p,p, - jdx j 12 m? + p2x(—x)/ 2.2.3)

Which is again taken as the common starting point for both Dimensional and Operator regularization for one
loop correction to the photon lines.

Using the operator regularization rule which describe in section-2 in above eg., we obtain,
1 4
Hﬂv(p)=862 (p,, P, — p25yv) dx Iimdij‘ d |4 g(l+ ag)x(l—x) -
) eo0de (27) [IZ m? 4 pzx(l—x)]g
Due to the momentum integral (2.1.3), from eq. (2.2.4) we get, A= +2,w=2,M? =-m? + p?x(1—x), then
Eq. (2.2.4) becomes,

2.2.4)

l_[ﬂv(p)=-8e2 1 (pﬂ P, — p25yv) Jl.dx X(l—x) Iimi [5(1+ag) F(g)

I(e+2) '(_mz + p2x(1— X))f

(2.2.5)

(4,,)2 e>0de
From Eg. (2.1.5) we get,

- d | ell+ae) I(e)
lim— . .
e>0ds | T(e+2) (_mz + p2x(i- x)):

Thus equation (2.1.4) becomes,

]:a—l—lnu , whereu =-m?+ p%x(1—x).

nﬂv(p):gez L (pﬂ p, — p25ﬂ,,) jdx x(1-x) loz—l—ln(—m2 + pzx(l—x))l

(4z)’

1 2 2
_ 1 -m°+p x(l— X)
=8e? — - p%s dx x(1—x -1-ln——— 7
(47:)2 (pﬂ Pv=P ”V)~([ X ( ){a " 471'/12

where 1.% taken from the arbitrary o .
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Therefore the finite part of T1 ,,(p) is,
1
1 p?x(1—x)—m?
8e? ,—p%5,,) ldx x(1—x) | In———"—— 2.2.6
= (p.p, - ;,)! ( ){ P (2.2.6)
and the divergent part is,

1
-8e? (471Z)2 (pu p, — pzéﬂv)jdx x1-x) (@ -1)
4 ez 2 0
=3 G PP PO (@) @27)

Comparing this against the result of Dimensional regularization [17-18], the finite part is

.2 2)1
~aie*(p, p, ~5,,p°) o X(l_x{.,{wﬂ (228)
0

(47[)2 27Z,L12

and the divergent part of I1,,,(p) is,

-8’ (p, P, = 5,,0°) Jl-dx x(1-x) (E_yj
&
0

(4x)?
.2 2
:—4|e (pﬂpv ;5;;vp )(g 7) (2.2.9)
3(47[) €

We see that both results are the same in form.

2.3 One Loop Correction to the Vertex in (3+1) Dimensions
Let us now consider the Feynman diagram for the one loop correction to the vertex which is represented

by T, (p.q). ]

M
n A 'p+i§ g+! o gq

Fig.-3: One loop Feynman diagram for vertex function.

The QED one loop correction to the vertex in 4-dimensions is

_ s di prt-mly @+ t-m)y, |

=—ie I(Zﬂ)4 12|(p+ 1) =m?f(q+1)? —m?

2.3.1)

Now we introduce the 3-parameter Feynman formula for combining the denominator,
1 1-x
1 1 . .
—— =2 |dx |dy 5 intheeqn. (2.3.1), we obtain,
abc '!; ;[ [all—x—y)+bx +cy]
1 1-x
: d’l yip+I-mly, (g+I-m)y
l“p(p,q):—2|e3j.dx J‘dyj' l/l( ) p( ) AJ
0 0

() .Iz(l—x—y)+{(p+l)2—m2}><+{(q+l)2 —mz}y]3
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If we change the variables | — I + px+qy and simplify the denominator and numerator, we obtain,

i ! ) Lx a4 o (t+ p@+x)+ay—mly, (1 +a@+y)+ px—m)y, |
Cp(p.a)=-2 jd J.dy J.(er)4 [I2 —m?(x+y)+ p?x(1—x)+q?y(— y)—2p.qu]3

This integral contains convergent and divergent pieces. The part of the numerator quadratic in | is divergent,
the rest convergent, so separating the divergent piece F(l)p(p,q) and convergent piece F(Z)p(p,q) ,i.e

r,(p.q) =T, (p.q) + T@,(p,q) .
Thus the divergent piece is,

1 1-x 4
: [ g o
r®,(p,q)=-2ie? Idx J'dy j P (2.32)
5 27r ( -M )3
where, M2 =m?(x+y)— p?x(1—x)-q°y(L—y)+2p.gxy .
Which is taken as the common starting point for both Dimensional and Operator regularization for one-loop
correction to the vertex.

Again, using the operator regularization rule which describe in section-2 in above eq., we obtain,
1 1-x 4
. o d o d7l 7oty ly
r®,(p,q)=-2ie3 [dx [dy lim-— | —— e+ ae) 2277 (2.3.3)
.([ .([ s—>0de (27[)4 (I 2_\ 2)f+3

Now performing the momentum integral, we get

2 1 1-x
Q) - & . d 8(1+0(8) F(s)
r p(p' q) e (4”)2 .([dx -([dy ‘!ng dg l_,(g + 3) (M 2)5 yayﬂ,yp}/z'yo' (234)

Here,

I | e | e

_ “mi{ (1+az) }

g2 +3s+2)°

:”m{(g 3¢+ 2%a — 1+ ae )26 + 3° | <32+33+2)J5Inu}

(2 +3s+ 20572 [(82+3g+2)ﬁ]2

&0

_ 2a-3-2Inu
4

Again performing the 7 -algebra in 4-dimentions, eq. (2.3.4) reduces to,

r®,(p,q)=- Ie Id de ~3+2a-2Inu) 4y,
Hence the finite part of F( )p(p,q)
2 1 1-x 2
. e M
2ie y, — |dx |dy In(—2 J (2.3.5)
(47) J; '([ p

where, M2 =m?(x+y)- p*x(1—x)-g°y(l- y)+2p.gxy

and the divergent part is

1
. e
-ie y, ( J;dx -([dy (-3+2a)
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(2.3.6)

=-iey i (—§+aj
P (472_)2 2

Comparing this result with the Dimensional regularization [17-18] result, the finite part is

_8 3 1 1-x 2
“ [ ax [ay In[ M ZJ 2.3.7)
(47[) 5 0 A
where, M? =m?(x+y)— p?x(1—x)—-q2y(l—y)+2p.axy
and the divergent part is,
—8e® 7p
( jdx de (——;/ 1)
(2.3.8)

_—4e 7p

2
(=-r-1)
() e
Which agree in form, recalling that Operator regularization goes further than Dimensional regularization in so

much as that it actually removes the divergences.

I11. Path Integral Form of Operator Regularization for One Loop
Generating Functional in QED

Let us consider the QED Lagrangian,
L=-1(,0,-0,0,F +Fl-iy"0, -ey —m}y— (a o f
- Z HEEu v) T Y e P
Let us expand this Lagrangian taking background field quantlzatlon of the fields. Let the background field
expansion of gauge field Q , and fermionic field y are respectively,
Q, =V, +Q,

w=n+0
where V,, and 7 are the classical fields and Q,, and q are the quantum fields

B mX’? + q) - i(a,uv# * a#Q# )2

(3.1)

Therefore Eq. (3.1) becomes,
L =—%(a#v# +0,Q,
= %[(@,Q# ~8,Q,)+ 0.V,
+ql-iy#a, —my + ey ™V, + 7y, + iy Qun + 17 Q,a+ A1V,
oV, +0,QuF (32)

V, —0,Q, F +(+a)-ir o, —er (v, +Q,)

-0 VV)]2 +77(—i;/“a#—m)r7+77(—i7”5y _mh

+ar*V,a+0r“Q,n+0r“Q q)
To find the one-loop 1PI generating functional we need to consider only the terms in the Lagrangian bilinear in

the quantum fields; then from Eq b .(3.2) we obtain
1 _ _
_(6;4Q,u)2:| _e’77ﬂqu _eqyﬂQ‘ur]

L (2):qy”(—iay —EVIU):] _I:%(aﬂQﬂ _a"Q")z +

1 —_— p—
‘( —gjpﬂ pv:|Qv —€77Qq —eqQ7
where, DE;/”(—iaﬂ _e\/ﬂ)z p—eV .

- aDq —%Q{pzé (33)

The formalism of Section-2 cannot be directly applied to the bilinear Lagrangian L @ of Eq.(3.3) as qand §
are independent quantum fields in the associated path integral. However, it is possible to rewrite L @ in the

form of Eq. (2.4) by the following device. We introduce the notation
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G
q gz
0= {_T} , 07 = qu ,qJ and we identify the quantum field |. | of the original formalism of the background
q
[ Gn ]
Q N
field method with { *‘} ie. [q
0 .

Thus the Lagrangian (3.3) can be written as,

2 1 _
p 5yv_(l_;jpypv —enj/ﬂ eﬂij;r, Qv
1 _ _ 0 -D7 q
L@=2[q, o a] |esl7” D o
2 D 0 q
_e7v77
! Q,
:EhiTMijhj,where,h-z q (3.4)
qT
Evaluation of the path integral (2.5) leads at once to the one-loop generating functional
1
zlzjqu eprolx[E My (f; )hJ} (3.5)

Evaluation of the functional integral in Eq. (3.5) involves the “superdeterminant” [13-16] of Mj; as h; may be
either fermionic or bosonic.

Now we can proceed in two ways: either (a) complete the square in the fermionic variables f and f or (b)
complete the square in the bosonic variable b [1, 3].

Following ref. [1] let us complete the square in fermionic variables in the argument of the exponential on the
right-hand side of Eq. (3.5), then we get

= IdfdfdbexpBbT Mypb —bT MyeM M b+ (F +bMy MM ¢ (£ + MM b (3.6)
The change of variables,
f'=f+MZM band f'=f+bMyMz", then we get,
_ 1 . _ ,
|=J’dfdfdbexp[5bT(Mbb—2be|\/|ﬁlm " +fMﬁf} (3.7)
Now using the standard Gaussian integrals
j db exp(% bT Abj —det 72 A
and J.df_df’exp(f_Bf ') = det B

in Eq. (3.7), we obtain,
. det M
det%(Mbb—ZbeM M fb)
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Thus one-loop generating functional for Green’s functions Z, in Eq. (3.5) becomes,

7,= det D _ det A (say) 39)

1 _ _ det B
det | p? 8,uv=| 1= |00, €77, D70 -7y, Dy,
a

Here we see that Z, is the ratio of determinant of operators. Each of the determinants occurring in Eq.
(3.8) requires regularization and a corresponding & -function. The numerator and denominator separately

contribute to Green’s functions with only external boson lines and with both external fermions lines and vertex
function in massless QED respectively.

3.1 One-Loop Generating Functional and Loop Corrections for External Boson Lines

To find the loop corrections or to write the generating functional for external boson lines one has to
make a close look at the numerator of eg. (3.8) and on the other hand for external fermion lines one has to take
care of the denominator of eq. (3.8). So for bosonic case we have to regulate the det A through the use of & -
function in Eq. (2.11a) yielding

detAzzlA:eXpl ngg”*( )J (3.1.1)
where, &(& :(LJ. dtt* trexp(—-Qt) with Q=p—eV . (3.1.2)
0

As we mentioned in section-11, after regularization we have to consider Schwinger expansion, to this view let
us now identify the operator Q, and Q, with p and—eV , respectively, then by Eq. (2.10), Eq. (3.1.1) can be
written as,

cod (1 T ) 2 ¢ _
21A=9px[— IEEQE{@,!M 1tr(e P_te P + (—eV)?gdue -t ey et (—ev)

3l 1
—%J.duujdve’(l’“)'zjt (—ev)e VP (Lev e Pt (—ev)+.....) } } (3.1.3)

0 0
To one-loop order this series plays the same role as Feynman rules in the usual perturbation theory. Here

we want to evaluate the one-loop correction to the two-point function for external photon in QED; we restrict
our attention to the term bilinear in V,, on the right-hand side of Eq. (3.1.3). This leaves us with

s+1 1
Ziw =exp[ Lim— { Idt tr Idue‘(l‘”)ptVe‘”ptV } } (3.1.4)
£-0 deg 0

Now let us complete the functional trace
1
T:tr[I due‘(l‘“)mVe‘”mV] (3.1.5)

Schwinger has pointed out that such traces are most easily evaluated in momentum space. We introduce a
complete orthonormal set of states | p) that are eigenstates of the operator p,,, where, in n dimensions,

X{p)= e’ 3.1.6a
_ f(p-aq)
and flg) = 3.1.6b
<p| |Q|> /(272')% ( )
On the right-hand side of Eq. (3.1.6b), f(p—q) is the Fourier transform of f(x):

H(po)= [ e e @17)
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Equation (3.1.5) takes the form,
T=Id4pd ‘ad“rds (ple =™ |q) (alv|r) (rle™"|s) (s\V|r) (3.1.8)

Upon inserting the complete set 1= Id“ p|p)(p| at the appropriate places, and using (3.1.6), we rewrite Eq.
(3.1.8) as,

3 irg _ is.p
T=[d*pd*gd*r‘s Vo) otoor € g YIS & s )

(22)’ - (2a)? C(enf o (2a)?

) d:;;jq (s;;z e PV (p—qgN(g-3) e e*Ps(s - p)

4 4
= [P ey (p g (g - p) (319)
(27)
After shifting the variable of integration p — p + ¢, Eq. (3.1.9) becomes,
4 4
T= [ e by (o) (- p) (31.10)
(27)
Upon substituting Eg. (3.1.10) into Eq. (3.1.4), we find that
Ziy = exp[— Limf\’,\’} (g)} (3.1.11a)
where, &2 (e et j du J' d*pV(p)V (- p) J' —4e ~la+-v)ek (3.1.11b)
(27)

We use Eq. (2.10) to integrate over t, then (3.1. 11b) becomes,

G e j pv (p¥ (- j du j a* ;‘ [q+ ((H)Zp)]ﬁz
_e(e+2) rg+2 J- e Id” I o [q il uu))zpsj]j : (3.1.12)

Now the last integral 1, (say) of Eg. (3.1.12) can be calculated as follows:

I d“q [[q (L—u)p)*?

q? - @-ufp’f "
J_ 4q lqs+2 (e+2)a) 5+1(1 U+t (l—u)g+2(p)g+2J
(272_)4 [q 1 U 2 2]5 +2

Differentiating eq. (3.1.11b) with respect to ¢ and takinge — 0, we see that the product terms in & will
vanish. Hence in the numerator of 1, only the first and last term will contribute.
£+2

. ,1:I(d ‘q @22 - (3.1.13)

27)' | (g2 - @-uPp?f” (42 -@-upp?f”

To evaluate this integral let us consider the standard integral,
J,dnq (@) _ ( )/)H N r(r+/)r( m-r-1, ) G114
e (o2 +c?) fuor ) oy
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Using eg. (3.1.14) in (3.1.13) we get,

. (2 11 r[g;2+2jr[g+2—5;2—2j
_ |:{7(1_u)2 pz}[ +T—g+ ]

r2)r(e+2)

+<1—u)€+2(p>8+2%<1-u>2 p2roe) T +2-2) }

r(2)r(s +2)
o ] {( 15 r(/+3)“[—— j ~uf* (p)"*(p) 1 e) }

Thus Eqg. (3.1.12) becomes,

fv%(s):ezgﬁs(‘:)Z) = g+2 J.d pV(p) (- ).([ {( 1 ’E ~u) F(/+3)F(——j
D amuF (b2 (o)) }
jd pv(p) (- p) [( 12 (p)“r(%+3)l‘(§—)

327:2 F

+
|
|
h
[y
—~~
=
N—
¥
N
—~~
=)
|
N
&
—
—~
[3>)
~—
| |

2 Jatwloven)| P Lt a0 Grep | e

2
where we have used {F[%H = (%)F(a)
Now differentiating Eq. (3.1.15) w.r. to & , we get

G2y [atpviov () + S (27 % {( 5+ 64’ +18” +16c)

327[2 (82 —55+6)2
(84 +62° +852X2‘9_5) 22, 1 2% [ +6£% +8¢2 2
_ £y T 1 | & +6e” +82% . n =
(52—58+6)2 (p) 16( ) 2 7 516 (p) (pX-1)

+ (U InCDLNe -3) H(p) A (p)  + (F1 (e -3) 7 (p) ()
+(-1 (e =3) 7 ()" In(p)p) *+ (-1) " (e =3) " (p)™*  (p)* In(p)-2) }
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~ w (0) = Lim& (2)

~p) {_1 p? In(—1)+% p? +% p? In(p)—% p? |n(p)}
- p)p’ {——'n( )—%ln pz} (3.1.16)

3

Substituting of Eq. (3.1.16) into Eq. (3.1.11a) yields our final expression for Zle as,

Zl(*,\,:exp{—G(j;)I V(oY (- p)p [__m( )—%Inpzﬂ (3.117)

This contributes to the to the one—loop generating functional for external bosons (photon) lines.

To find one-loop correction for external boson lines from above generating functional, we have to take
logarithm on Eq. (3.1.17) and then functional differentiation of the expansion with respect to momentum p .

Thus the one-loop correction for the external boson lines is,

2
__¢ pz(l—ln(—l)—%ln pzj

6(4z)  \3
- pZ(Empz_m(_l)_lj (3118)
9672 \2 3 o
where,
2
the finite part is —. pz(lln pz—lj (3.1.19)
%672 \2 3
e2
and the divergent part is v p?In(-1) (3.1.20)
T

The result in (3.1.18) is of the same form as we obtained by the diagrammatic form of Operator
regularization and Dimensional regularization methods in section-Il. In this section we have shown and
explained how one can choose the appropriate terms from the Schwinger expansion for the problem in hand.

3.2 One-Loop Generating Functional and Loop Corrections for External Fermion Lines and Vertex
Function

In this case we focus on the denominator in Eq. (3.8), so that let us regulate the det B through use of
the & - function in Eq. (3.11a) yielding

detB=Zz° = exp{—l Lit &8 (e )} (3.2.1)
2 0
17 1 _ 1
Where, B =—— t tg_l trex —1-= —82 —_—
&8(e) ) _([ p{ {p ( a)pypv ey v

. 1
- 3.2.2
eny, — Y 7,,77} (3.22)

In Eq. (3.2.2) it is understood that the exponential istr[exp(—tB)], where

1 — 1 — 1
B, =p35,, —|1-= —e? —e%qy, ——
wv=P0,, [ ajpﬂpv N7y ey T T Ty Yl
EBOyv+BI;IV (323)

where, By, is independent of the background field 7 and 77 ,and B,,, isatleast linear in  and 7 .
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Now as before to use Schwinger expansion in this case let us use the eq. (2.10) and then taking bilinear in 7 and
77 on the on the right-hand side of Eq. (3.2.1), we end up with

B o] L)y i A LT 2s (1.1 i
Zl—exp[ Z{Isirgds[r(s)z[dtt tr{exp(p Oy (1 ajpﬂpvjt( 2e°ny,D yvq)}}J (3.2.4)

The exponential factor in the trace of Eq. (3.2.4) can be simplified using the complete set of orthonormal
projections operators:

PPy
Tyv(p) = (5/1\/_ ;2 J (325&)
PPy
L.(p) = x (3.2.5h)
These allows us to write (e’tBO )ﬂv as
0 n
2 _ 1 >
exp(p 5uv_(1__]p,u pth_ nz_olﬁ|:p t[Tﬂv+g L#vj:|
tp?
=e T, e A L, (3.2.6)
and let us expand D in powers of the back-ground field in the & -function Eq. (3.2.4):
-1
pt= L1 _ = l[1—ev lJ
p-eV p P
:(l+lev l+ ieV leV l+ ........ ]
pp P P P P

It is interesting to note that at this stage this is straightforward to apply the perturbative expansion of Eq.
(2.10) to this & -function and to select from the expansion those terms appropriate for any particular Greens

function. This means that from the expansion we can choose appropriate terms that are associated with the
related problems that we are interested in. Let us consider here the & -function for the fermion two-point

function and the vertex function, we find
2 % tn2
e (11,1 2 w/
EB(g)z =—|dttotr 777/,(—+—eV—J7/V77 e T, +e /2L, (3.2.7)
F(S)! “lpp “ .

Following ref. [19] in the approach-A, we compute from Eq. (3.2.7) the & -function in the limit of zero
momentum transfer to the photon:

. ﬁ(p{mi[v(o)—zsp% p.v<o>ﬂ ) G29

Therefore by Eq. (3.2.1) the contributions to the one-loop generating functional is
3

5~ ol 1| & [qtn (2 —ainp?)| 7o) pe—vO) | p) —a—®
Z] _exp{z{gﬁzj'd p(2+alna alnp j n(p)(p+4ﬁzv(0)j77( p) @

j d*p7(p)pn(- p)%z(o)}} (32:9)

This contributes to the one-loop generating functional for external fermion (electron) lines and vertex function
in QED.

To obtain the one-loop correction for external fermion lines and vertex function, we have to take logarithm
of Eqg.(3.2.9) and then functional differentiation with respect to momentum p .
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Hence from Eqg. (3.2.9), we get

2 3 3

(] 3 2 )\ — 3 2 \— e
= —+alna-al - —+alna-al O(—p) -
5 (2+a na—alnp )ry(p)pn( p)+64ﬂ4(2+a na—alnp jn(p)v( (- p) @
_ YV, (0
707, (- p) 2
p
— eZ 3 2 | = 8 3 2 |—
= 16,2 (EW'W—MHD jﬂ(p)rzm(— Py (Emlna—alnp )n(p)v(o)n(_ p)
3 v
Ca & E o)Ay (0)n(— P.P
Lo 7(p)r*V, (0)n(- p) o
== [Srama—amnp? |i(p)pnt- p)+ - S+ atna-aing? Jr(p) vIOki(-p)
1672 (2 64\ 2
e _ PP
- vV, (0)n(- p)—~
@ 7(p)r"8,,V, (0)n(-p) ~
_e* (3 2 ) 3 (3 _
= o (§+alna—a|np )ﬂ(p)pﬂ(— p)+647z4 (E+a|na—aln p2—2aj77(p) V(0)(-p)

(3.2.10)
From the expansion (3.2.10) we can find the one-loop correction for the external fermion lines and one-loop
vertex function by choosing the appropriate terms. This expression is of the same form as obtained by DR and
OR methods with Feynman diagrams in section- 11.
Thus the one-loop correction for the external fermion lines is,
2

e 3 2
—+alna—-alnp ) (3.2.11)
1672 D(Z
and the one-loop correction to the vertex function is,
3
€ 4(§+alna—aln p2—2a] (3.2.12)
64"\ 2

The result in (3.2.11) and (3.2.12) is of the same form as we obtained by the diagrammatic form of Operator
regularization and Dimensional regularization methods in section-I1.

IV. Conclusion
In this paper we have evaluated basic QED loop diagrams in (3+1) dimensions with and without
considering Feynman diagrams by the Operator regularization. We have compared the results of both procedure
of Operator regularization and that of Dimensional regularization. We have seen that in both cases the result is
of the same form with Dimensional regularization except a finite constant term difference. This will not affect
the renormalization procedure.
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