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Abstract: The purpose of this paper is to discuss the importance of algebraic coding theory and to investigate 

the special case in which BIB designs and codes are constructed from planar near-rings. Application of planar 

near-rings to binary codes were first explored by Modisett [12] and by Fuchs, Hofer and Pilz [14]. 
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I. Introduction: 
Over the last 60 years, algebraic coding theory has become one of the most important and widely 

applied aspects of abstract algebra. Coding theory forms the basis of all modern communication systems, and is 

the key to another area of study, Information theory, which lies in the intersection of probability and coding 

theory. Algebraic codes are now used in essentially all hardware-level implementations of smart and intelligence 

machines, such as sensors, optical devices, telecom equipments. It is only with algebraic codes that we are able 

to communicate over long distances, or are able to achieve megabit bandwith over a wireless channel. 

 Algebraic coding is most prevalent in communication system, and has been developed and engineered 

because of one inescapable fact of communication: noise. Noise will always be a part of communication and has 
the potential to corrupt data and voice due to its presence. The following diagram provides a rough idea of a 

general information system: 

 

 

 

 

 

                                      

 

 

                                   

  The most important part of the diagram, as far as we are concerned, is the noise, for without it there 
would be no need for the theory. 

Consider these basic applications of algebraic codes. Let us suppose that in the case of two warring 

nations, a message is to be sent indicating an intention of surrender or an intention of war. If a binary 1 is sent, 

the nation surrenders. If a binary 0 is sent, then war it is. In this time of such redundancy communication, there 

is the concept of noise or error correction, and so it is possible, if not likely that due to noise a transmitted 0 to 

be received as a 1, or vice-versa. To make this system substantially more robust, a party can transmit five bit and 

the receiver then infers a message based on the majority contents. For instance, if 00000 meant surrender and 

was sent, though due to a noise 00100 was received, the message remains intact and the white flag is raised. 

Based on the sender receiver agreement, up to three errors can occur before the message intent is reversed and 

ultimately lost. The probability of three bit error occurring can be shown to be lower than a single error and so 

the addition of this decoding makes the system more robust. This decision process is called the maximum likely 
hood decoding process. 

 Two main branches of coding theory are source coding and channel coding. They are so named 

because the former manipulates the source to allow more efficient transmission (i.e. small size message) while 

the latter addresses the errors that may be introduced in the transmission channel. The fundamental theorem of 

source coding was given by Claude Shannon [7] in 1948, widely considered the father of information theory. 

Shannon‟s theorem describes the best possible error correction of a code given certain parameters. Source 

coding is more within the computer science and engineering discipline, with main applications being 

compression of data prior to transmission.  
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1. Definitions:  
1.1. Word: A word is a sequence of digits. 

1.2 Length of a word: The length of a word is the number of digits in the word. 

1.3. Binary Code: A binary code is a set C of words. The code consisting of all words of length two is 

C = {00, 10, 01, 11} 

1.4. Block code: A block code is a code having all its words of the same length. The words that belong to a 

given code C0, will be called codewords. We shall denote the number of codewords in a code C by |C|. 

1.5. Linear code: A (n,k) linear code over a finite field F is a k-dimensional subspace V of the vector space  

                                            Fn  =         FFF……….F 
                                                                       

(n tuples) 

over F. The vectors V are called the codewords. When F = Z2, we refer to working with binary codes. 
 A (n, k) linear code over a finite field F can be thought of as a set of n-tuples from F , where each 

vectors contains both the message word and a redundancy , which are the remaining n-k components of the 
codeword. For any finite field of order q, there are their qk possible codewords. In the common base of binary 

codes, for n digits, there are 2n possible codewords. The set {0000, 0101, 1010, 1111} is a (q-2) binary code. 

1.6. Hamming distance: 
 The Hamming distance between any two vectors ,V is the number of components in when they 

differ . Let d(,) denote the Hamming distance between any two vector ,. 

1.7. Hamming weight: 

 The Hamming weight of a vector  V is the number of non-zero components. The hamming weight 

of a linear code is the minimum weight of any non-zero vector in the code. Let wt()  denote the Hamming 

weight of the vector . 

1.8. N*: [14] 
 If N is any set containing something like a “zero element” 0, N* will denote N \ {0}. 

1.9. Block: [14] 
 Let N be a near-ring, a  N* and bN. Then the aN + b is called a block determined by a, b. Blocks of 

the form aN (a  0) are called basic blocks. 

1.10. Incidence structure: [14] 

 Let P be a set and В  2p. The pair (P, В) is called an incidence structure. 

1.11 Tactical configuration: [14] 

 An incidence structure (P, В) (В  2p) is said to be a tactical configuration with parameters  

(, b, r, k)  N if   
(i) |P| = . 
(ii) | В | = b. 
(iii) Each p  P is in exactly r elements of В. 

(iv) Each B В contains exactly k elements of P, i.e.  B В: |B| = k. 
 

1.12 Planar near-rings: [14] 

 A near-ring N is said to be a planar near-ring if |N/≡| ≥3 and if every equation xa = xb + c has a unique 

solution (in N). 

 

II. Planar Near-Rings and Balanced Incomplete Block Designs: 
The study of how much experiment can be organized systematically so that statistical analysis can be 

applied is an interesting problem which is carried out by several researchers. In the planning of experiment it 

often occurs that results are influenced by phenomena outside the control of the experimenter. The introduction 

of balanced incomplete block design (BIBD) helps in avoiding undesirable influence in the experiment. In 

general, if we have to test the effect of r different conditions with m possibilities for each condition this leads to 

a set of r orthogonal latin squares.  

  A planar near-ring can be used to construct balanced incomplete block designs (BIBD) of high 

efficiency. In view of this we give the following definition.  

 

2.1. Definition:  
  A balanced incomplete block design (BIBD) with parameters ( , b, r, k, λ) is a pair (P, B) with the 

following properties:  

(i) P is a set with  elements,  

(ii) B = (B1,………,Bb) is a subset of p(P) with b elements,  
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(iii)  Each Bi has exactly k elements where k <  ,      

  Each unordered pair (p, q) with p, q  P, p ≠ q occurs in exactly λ elements in B.  

  The set B1 ,………, Bb are called the blocks of BIBD. Each aP occurs in exactly r sets of B. Such a 

BIBD is also called a ( , b, r, k, λ) configuration or 2 - ( , k, λ) tactical configuration or design. The term 

balance indicates that each pair of elements occurs in exactly the same number of block, the term incomplete 

means that each block contains less than   - elements. A BIBD is symmetric if  = b. 

  The incidence matrix of a ( , b, r, k, λ) configuration is the  × b matrix a = (aij) where  

 

 

     aij = 

 

 

   

Here i denotes the ith element of the configuration. The following conditions are necessary for the 

existence of a BIBD with parameters , b, r, k, λ.  

1. bk = r  , 

2. r(k-1)=  λ( -1), 

3. b  λ, 
  Recall that a near-ring N is called planar if for all equations x o a = x o b + c (a, b, cN, a ≠ b) have 

exactly one solution x  N.  

 

III. Planar Near-Rings and Coding theory: 
  Today a great deal of information is transmitted from point A to point B in the form of 0s and 1s. A 
sequence a1 a2……….an of 0s and 1s represents a datum. If this sequence   a1 a2……….an leaves A, one hopes 

that the same sequence a1 a2………. an arrives at B. But, it may be that a1 a2………. an is transmitted from A and 

b1 b2………. bn is received at B, and ai ≠ bi for some i. 

In transmitting ai there is possibility that bi is received, and ai ≠ bi  

  As an example, suppose 0010101 represents the letter x. If 0010101 is sent from A and 1010101 is 

received at B, then there is an error in transmission. If 1010101 represent the letter y, then the recipient at B 

must assume that letter y was sent, even though, in truth, x was sent. In this example only one small error was 

made, but yet false information was received, and it was not detected. 

  How could the receiver at B (1) know that information had been received, and (2) correct the false 

information? An elementary example will quickly illustrate a possibility. 

  Suppose a communication system is designed to transmit exactly one of two values at a given time, a y 
for „yes‟ and an n for „no‟. Suppose 11110000 represents y and 00001111 represents n. If one wants to transmit 

a y, then one transmits 11110000. But what if 11110001is received? Obviously an error has occurred and if only 

one error has occurred then interpreting 11110001 at B as 11110000 will correct the error. So error detection 

and error correction can take place. If the communication system is highly reliable, then one is reasonably 

assured that a received 11110001 was meant to be a 11110000. But suppose 11001010 was received at B. The 

receiver at B can not be confident of what was sent from A. Errors can be detected, but not necessarily 

corrected.  

  Certainly there are 2n distinct sequences a1 a2………. an  of 0s and 1s. Perhaps this is significantly more 

than we need. For example, perhaps all we need are the 26 letters of the Roman alphabet, the 10 digits, 13 

punctuation symbols, and one symbol for a blank. So, with a total of 50 symbols required, we take n=6 and with 

26= 64, we have more than enough sequences a1 a2………. an to represent the 50 symbol needed for effective 

communication. However, with n=10, we have 1024 such sequences             a1 a2………. a10 . In order to detect 
and correct errors, we will want to isolate 50 of these 1024 sequences as much as possible.  

  Exactly what do we mean when we say „we want to isolate‟ a sequence? Let a = a1 a2………. an and b= 

b1 b2………. bn be two sequences of 0s and 1s of length n.  

Define  

                d(a,b) = |{i|1 i n, ai ≠ bi}|  

  So d(a,b) counts the number of places where a differs from b , and so it is a measure of how much a 

differs from b. If a is transmitted from A and b is received at B, then d(a,b) errors have occurred. Let 
nZ 2 denote 

all sequences a1 a2………. an of 0‟s and 1‟s. Then d is a metric on
nZ 2  . That is for all          a,b,c  nZ 2 , 

(i)  d(a,b) = d(b,a),   

(ii) d(a,c)   d(a,b) + d(b,c), 
(iii) d(a,a) = 0 and  

1     if i   Bj 

0   otherwise. 

 

0   otherwise. 
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(iv) if d(a,b) = 0,than a = b. 

  To see that d is a metric on  
nZ 2

 is immediate except for (ii). Suppose   a and b differ at 

 i1, i2,……...,ik , so d(a,b) = k. Suppose b and c differ at j1, j2,……...,jl , so d(b,c) = l.  

  Also suppose a and c differ at s1, s2,……...,sm , so d(a,c)= m. If  as ≠ cs, than we can not have both      as = 
bs and bs= cs. So s{ i1, i2,……...,ik } or  s  { j1, j2,……...,jl } or   

s{ i1, i2,……...,ik } { j1, j2,……...,jl }. Hence m    k+l or d(a,c)   d(a,b)  +  d(b,c). If a1, a2, ………. ,aM  are M of 

the 2n distinct sequences   a1, a2,………. ,an  of  0‟s and 1‟s, then we want a positive r so that if           1  d(b,ai) 

  r, then    b{ a1,……. ,an } \{ ai } for each i, 1   i M. Thus a1, a2,………. ,aM  are “isolated”. We will 

return to this idea shortly.  

  Let C(n) denote a non-empty set of sequences a=  a1 a2 a3………. an of 0s and 1s where n is a positive 

integer measuring the length of the sequence. So 1   |C (n)|  2n. If a, bC(n)  and a ≠ b then    1   d(a,b)   
n, and so  

                       D = min {d(a,b) C(n), a ≠ b} exists 

 and we are assured that  1  D   n. If M = |C(n)|, then we refer to C(n) as an (n, m, D) - (binary) code. Our 

code will be binary in that each element of C(n) is a sequence of 0s and 1s . There is function      w:C(n)  

{0,1,………,n} defined by w(a1 a2………. an)= |{i|1  i  n, ai =1}|. So w(a1 a2……… an) is the weight of the 

codeword a= a1 a2………. anC(n). Of all the possible codes C(n), some have advantages over others. When 

one has a finite tactical configuration (N, B,), one can easily construct two codes, a row code CA( )  and 

column code CA(b). Following the conventions in MacWilliam and Sloane [M&S] [13], we define for a finite 

tactical configuration (N, B,) an incidence matrix A, a b×  matrix of 0s and 1s. Let    B= (B1, B2,………. , 

Bb) and     N=( x1, x2,……,x ).  

Define 

                     
         A = (aij)  where                   

aij = 

 

   

Let CA( ) consist of the codewords a1, a2,……. ,ab where ai= ai1, ai2,……. ,ai . Let CA(b) consist of the 

distinct codewords b1, b2, ………. ,b , where bj= a1j, a2j,………. ,abj. That is, CA( ) consists of the b-rows of A 

and CA(b) consists of the distinct columns from the   columns of A. Then CA( ) is a     ( ,b, D ) - code for 

some, D and CA(b) is a (b, ΄,Db) -code for some  ΄,1 ΄ . Actually, any      (n, M, D)-binary code 

C(n) has several incidence matrices A. Let C(n)= { a1, a2,………. ,aM} with ai= ai1, ai2,………. ,ain, and then let A 

= (aij). Now CA(n) = C(n) and CA(M) are as before. If one takes any s × t matrix A = {aij}, where each aij 
{0,1}, then let CA(t) consists of the distinct rows of A and let CA(s) consists of distinct columns of A. So CA(t) 

and CA(s) are binary codes. 

  The codes CA( ) and CA(b) are nice in that they are constant weight codes. A code C(n) is a constant 

weight code if there is a number W so that w(a) = W for each aC(n). Hence W = K for CA( ) and w = r  for 

CA(b). This is because each block BB has exactly k elements and each xN belongs to exactly r blocks. 
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1    if xj   Bi 

0    otherwise. 

0   otherwise. 


