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Abstract: This paper deal with the inverse version of capacitated transportation problem, in which the unit 

transportation cost of some cells in the original problem are adjusted as little as possible so that the given 
feasible solution become an optimal one. In our proposed method, first we reduce the capacitated transportation 

problem into linear programming problem and then obtained its inverse problem using dual and the optimality 

conditions. The method has been illustrated by a numerical example also. 
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I. Introduction 
Inverse optimization is a relatively new area of research and study of inverse optimization is useful in 

many branches. Since last 20 years, many applications of inverse optimization have been found in different 
areas such as: geophysical sciences, traffic equilibrium, isotonic regression, portfolio optimization etc. 

Generally, in an optimization problem, it is assumed that all the parameter associated with the objective function 

and constraints are known and solve the problem for a solution which is optimal for the given parameter values. 

In practice, there are many situations where the parameter values are not known with certain, but some estimates 

of these parameters are given and also from the past experience or past practice, we have an optimal solution. In 

such situations, inverse optimization can be used to adjust the parameter values as little as possible so that the 

given feasible solution becomes optimal. 

Burton and Toint [1] were the first who investigate the inverse optimization for shortest path problem 

under l2 norm, since then a lot of work has been done on inverse optimization but most of the work is based on 

combinatorial optimization problems. Zhang and Liu [2] have first been calculated some inverse linear 

programming problem and further investigated inverse linear programming problems in [3]. Ahuja and Orlin [4] 
provide various references in the area of inverse optimization and compile several applications in network flow 

problems with unit weight and develop combinatorial proofs of correctness. Huang and Liu [5] and Amin and 

Emrouznejad [6], have considered applications of inverse problem. Yibing, Tiesong and Zhongping [7] worked 

on inverse optimal value problem  Zhang and Zhang [8-10] worked on inverse quadratic programming 

problems, and Wang [11] has given the cutting plane algorithm for inverse integer programming problem. Milan 

Hladik [12] have first been considered inverse problem for generalized linear fractional programming and Jaing, 

Xiao, Zhang and Zhang [13] worked on inverse linear programming. Jain, Arya [14] have given an inverse 

model for linear fractional programming problems. 

A transportation problem is a minimization problem of the cost of transportation from some origins to 

some other destinations. The minimum cost planning plays an important role for solving the transportation 

problem from origins to different destinations, such as from factories to warehouses or from warehouses to 

supermarkets, etc. A transportation problem in which total availability of origins and total requirement of 
destinations is not met then it is known as unbalanced transportation problem. 

A capacitated transportation problem seeks to optimize a linear objective function subject to linear 

constraints and non negative, upper bound restrictions on the variables. Hitchcock [15] was the first, who 

formulated and solved the classical transportation problem, Kantorivich [16] worked on the translocation of 

masses, Kantorivich, and Gavurin [17] authored an application base study on capacitated transportation 

problem. Dantzig and Thapa [18] compile the literature on linear programming problems, Jain[19] have given 

the dual matrix approach for unbalanced transportation, and a lot of work have been done by numerous 

researchers on different types of transportation problems. 

This paper is organized as follows. In section 2 the problem and its mathematical formulation are 

presented. In section 3 the method is stepwise stated. In section 4 an example is given to illustrated our proposed 

method. Finally conclusion is given in the last section. 
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II. The Problem 
In this paper, we have discussed an inverse optimization method for capacitated transportation 

problem. Ahuja, Orlin [4] play the key role in our discussion, they have given the inverse version of linear 

programming problem and formulate it as a linear programming problem. In the similar way, we have 

considered the following linear programming formulation of the capacitated transportation problem 

Min f(x) =   𝑐𝑖𝑗  𝑥𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1            

s.t.   𝑥𝑖𝑗
𝑛
𝑗=1 =  𝑎𝑖  ,  i = 1, 2, . . . , m,     

   𝑥𝑖𝑗
𝑚
𝑖=1 =  𝑏𝑗  ,  j = 1, 2, . . . , n,     

 0 ≤ 𝑥𝑖𝑗 ≤ ℎ𝑖𝑗 , i = 1, 2, . . . , m,   j = 1, 2, . . . , n.  (1) 

If x0 is the given feasible solution then the inverse problem under l1 norm is the following linear program: 

Min       𝛼𝑖𝑗 + 𝛽𝑖𝑗  𝑗𝑖             

s.t.   𝑢𝑖 + 𝑣𝑗 + 𝜆𝑖𝑗 − 𝛼𝑖𝑗 +  𝛽𝑖𝑗 = 𝑐𝑖𝑗      for all (𝑖, 𝑗) ∈ 𝐿  

  𝑢𝑖 + 𝑣𝑗 − 𝜙𝑖𝑗 −  𝛼𝑖𝑗 +  𝛽𝑖𝑗 = 𝑐𝑖𝑗      for all (𝑖, 𝑗) ∈ 𝑈   

  𝑢𝑖 + 𝑣𝑗            −  𝛼𝑖𝑗 +  𝛽𝑖𝑗 = 𝑐𝑖𝑗      for all (𝑖, 𝑗) ∈ 𝐹   

 𝛼𝑖𝑗  , 𝛽𝑖𝑗  , 𝜆𝑖𝑗 , 𝜙𝑖𝑗  ≥ 0 , i = 1, 2, . . . , m,   j = 1, 2, . . . , n. (2) 

Where L, F, U are index sets defined as 𝐿 =    𝑖, 𝑗 / 𝑥𝑖𝑗
0  =  0 , 𝐹 =    𝑖, 𝑗 / 0 < 𝑥𝑖𝑗

0  <  ℎ𝑖𝑗   and 𝑈 =

   𝑖, 𝑗 / 𝑥𝑖𝑗
0  =  ℎ𝑖𝑗  . 

 

III. The method 

In our proposed method, we have considered the linear programming formulation of the capacitated 

transportation problem and obtained its inverse problem as a linear program using its dual and optimality 

conditions. Then we obtained the modified cost coefficients using the optimality conditions for the 

transportation problem. At the and of this discussion we have shown through an example that the optimal dual 

variables calculated in the final transportation table of two phase method can be used to obtain the modified cost 

and alternate optimal solution. 

 

Inverse capacitated transportation problem 
Dual of the LPP (1) is the following linear program:   

Max     𝑎𝑖  𝑢𝑖 +   𝑏𝑗  𝑣𝑗
𝑛
𝑗= 1

𝑚
𝑖=1 −   ℎ𝑖𝑗 𝜙𝑖𝑗

𝑛
𝑗 = 1

𝑚
𝑖=1         

s.t.  𝑢𝑖 + 𝑣𝑗 + 𝜆𝑖𝑗 − 𝜙𝑖𝑗 =  𝑐𝑖𝑗  , i = 1, 2, . . . , m,   j = 1, 2, . . . , n,  

  𝜆𝑖𝑗 ≥ 0, 𝜙𝑖𝑗 ≥ 0, i = 1, 2, . . . , m,   j = 1, 2, . . . , n.  (3) 

Where 𝑢𝑖 , 𝑣𝑗 ,𝜆𝑖𝑗  and 𝜙𝑖𝑗  are the dual variables. 

One form of the optimality condition for linear programming states that the primal solution x and dual solution 

(𝑢, 𝑣, 𝜆, 𝜙)are optimal for respective problems if both x and (𝑢, 𝑣, 𝜆, 𝜙) are feasible for their respective problems 

and the primal-dual pair satisfy the following complementary slackness conditions: 

         𝑥𝑖𝑗 > 0  then 𝜆𝑖𝑗 = 0            

 𝑥𝑖𝑗 < ℎ𝑖𝑗   then 𝜙𝑖𝑗 = 0      (4) 

Let 𝑥𝑖𝑗
0  be the given feasible solution of (1) and if we define 𝐿 =    𝑖, 𝑗 / 𝑥𝑖𝑗

0  =  0 , 𝐹 =    𝑖, 𝑗 / 0 < 𝑥𝑖𝑗
0  <

 ℎ𝑖𝑗 and 𝑈 = 𝑖, 𝑗/ 𝑥𝑖𝑗0 = ℎ𝑖𝑗, then the complementary slackness conditions can be restate as:  

 𝜆𝑖𝑗 = 0    for all  𝑖, 𝑗 ∉ 𝐿        

𝜙𝑖𝑗 = 0   for all  𝑖, 𝑗 ∉ 𝑈      (5) 

Now the inverse problem is to adjust the cost coefficients in such a way that the given solution 𝑥𝑖𝑗
0  becomes 

optimal and the total adjustment in the cost coefficients is minimum under l1, l2, or l∞ norm. 

Let d is the adjusted value of c, if we replace all cost coefficients 𝑐𝑖𝑗  by 𝑑𝑖𝑗  in the dual constraints and apply the 

complementary slackness conditions (5) then we have the following characteristics of the modified cost 𝑑𝑖𝑗 : 

 𝑢𝑖 + 𝑣𝑗 +  𝜆𝑖𝑗 =  𝑑𝑖𝑗   for all  𝑖, 𝑗  ∈  𝐿 

 𝑢𝑖 + 𝑣𝑗 −  𝜙𝑖𝑗 =  𝑑𝑖𝑗   for all  𝑖, 𝑗  ∈  𝑈    

 𝑢𝑖 + 𝑣𝑗             =  𝑑𝑖𝑗   for all  𝑖 , 𝑗  ∈  𝐹      

 𝜆𝑖𝑗 ≥ 0, 𝜙𝑖𝑗 ≥ 0,  i = 1, 2, . . . , m,   j = 1, 2, . . . , n.   (6) 

If we consider the l1 norm, which is defined as ‖𝑑 − 𝑐‖ =  |𝑑𝑗 −  𝑐𝑗 | then the inverse problem under l1 norm is 

to minimize    |𝑑𝑖𝑗 −  𝑐𝑖𝑗 | 𝑗𝑖 . We know that minimizing |𝑑𝑖𝑗 −  𝑐𝑖𝑗 |  is equivalent to minimize 𝛼𝑖𝑗 +  𝛽𝑖𝑗 , 

subject to the condition 𝑑𝑖𝑗 − 𝑐𝑖𝑗 = 𝛼𝑖𝑗 −  𝛽𝑖𝑗  ,Where 𝛼𝑖𝑗 ≥ 0, 𝛽𝑖𝑗  ≥ 0 are respective increment and decrement 

in cij, therefore both 𝛼𝑖𝑗  and 𝛽𝑖𝑗  can not take positive values. Using this transformation the inverse transportation 

problem can be formulated as: 
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Min       𝛼𝑖𝑗 + 𝛽𝑖𝑗  𝑗𝑖             

s.t.   𝑢𝑖 + 𝑣𝑗 + 𝜆𝑖𝑗 − 𝛼𝑖𝑗 +  𝛽𝑖𝑗 = 𝑐𝑖𝑗      for all (𝑖, 𝑗) ∈ 𝐿  

  𝑢𝑖 + 𝑣𝑗 − 𝜙𝑖𝑗 −  𝛼𝑖𝑗 +  𝛽𝑖𝑗 = 𝑐𝑖𝑗      for all (𝑖, 𝑗) ∈ 𝑈   

  𝑢𝑖 + 𝑣𝑗            −  𝛼𝑖𝑗 +  𝛽𝑖𝑗 = 𝑐𝑖𝑗      for all (𝑖, 𝑗) ∈ 𝐹   

  𝛼𝑖𝑗  , 𝛽𝑖𝑗  , 𝜆𝑖𝑗 , 𝜙𝑖𝑗  ≥ 0 , i = 1, 2, . . . , m,   j = 1, 2, . . . , n. (7) 

If we define 𝑐 𝑖𝑗 =  𝑐𝑖𝑗 −  𝑢𝑖 − 𝑣𝑗 , where 𝑢𝑖  and 𝑣𝑗  are dual variables then (7) can be written as: 

Min         𝛼𝑖𝑗 +  𝛽𝑖𝑗  𝑗𝑖           

s.t.    𝜆𝑖𝑗  − 𝛼𝑖𝑗 + 𝛽𝑖𝑗 =  𝑐 𝑖𝑗       for all  𝑖, 𝑗 ∈ 𝐿  

    −𝜙𝑖𝑗  − 𝛼𝑖𝑗 + 𝛽𝑖𝑗 =  𝑐 𝑖𝑗      for all  𝑖, 𝑗 ∈ 𝑈  

         −𝛼𝑖𝑗 + 𝛽𝑖𝑗 =  𝑐 𝑖𝑗   for all  𝑖, 𝑗 ∈  𝐹       

  𝛼𝑖𝑗  , 𝛽𝑖𝑗  , 𝜆𝑖𝑗 , 𝜙𝑖𝑗  ≥ 0 , i = 1, 2, . . . , m,   j = 1, 2, . . . , n. (8) 

Where𝑐 𝑖𝑗 =  𝑐𝑖𝑗 −  𝑢𝑖 − 𝑣𝑗 , 𝑢𝑖  and 𝑣𝑗  are dual variables. Now using the optimality condition of capacitated 

transportation problem, we can consider the following cases: 

Case (1) when  𝑐 𝑖𝑗 > 0   

The non negativity of  𝛼𝑖𝑗  and 𝛽𝑖𝑗  and the fact that we wish to minimize 𝛼𝑖𝑗 + 𝛽𝑖𝑗   implies that  

(i)  𝑖, 𝑗  ∈  𝐿  than 𝜆𝑖𝑗 =  𝑐 𝑖𝑗 , 𝛼𝑖𝑗 =  𝛽𝑖𝑗 = 0 and hence 𝑑𝑖𝑗 =  𝑐𝑖𝑗 = |𝑐 𝑖𝑗 | 

(ii)  𝑖, 𝑗  ∈  𝐹 ∪ 𝑈  than 𝜆𝑖𝑗 = 𝜙𝑖𝑗 =  0,   𝛽𝑖𝑗 =  𝑐 𝑖𝑗 = |𝑐 𝑖𝑗 | and hence 𝑑𝑖𝑗 =  𝑐𝑖𝑗 −  |𝑐 𝑖𝑗 | 

Case (2)  when  𝑐 𝑖𝑗 < 0  

 (i) if  𝑖, 𝑗  ∈  𝑈  then 𝜙𝑖𝑗 = −𝑐 𝑖𝑗 = |𝑐 𝑖𝑗 | , 𝛼𝑖𝑗 =  𝛽𝑖𝑗 = 0 and hence 𝑑𝑖𝑗 =  𝑐𝑖𝑗 = |𝑐 𝑖𝑗 | 

(ii)  𝑖, 𝑗  ∈  𝐹 ∪ 𝐿 then   𝛽𝑖𝑗 = 𝜆𝑖𝑗 = 0, 𝛼𝑖𝑗 = −𝑐 𝑖𝑗 = |𝑐 𝑖𝑗 |, and hence 𝑑𝑖𝑗 =  𝑐𝑖𝑗 + |𝑐 𝑖𝑗 | 

Case (2)   when  𝑐 𝑖𝑗 = 0 

In this case 𝛼𝑖𝑗 =  𝛽𝑖𝑗 =  𝜆𝑖𝑗 = 0 and hence 𝑑𝑖𝑗 =  𝑐𝑖𝑗 . 

Using above case analysis the optimal cost vector 𝑑𝑖𝑗
∗  can be given as 

𝑑𝑖𝑗
∗ =   

𝑐𝑖𝑗 −  |𝑐 𝑖𝑗 |           if 𝑐 𝑖𝑗 > 0  𝑎𝑛𝑑 𝑥𝑖𝑗
0 > 0 

 𝑐𝑖𝑗 +  |𝑐 𝑖𝑗 |          if 𝑐 𝑖𝑗 < 0  𝑎𝑛𝑑 𝑥𝑖𝑗
0 < ℎ𝑖𝑗

     𝑐𝑖𝑗                        otherwise.                             

     (9) 

Thus we can solve the inverse problem by solving equation (7) and optimal cost vector 𝑑𝑖𝑗
∗  can be obtained by 

(9), but instead of solving (7) we can calculate the optimal dual variables by using two phase method and the 

modified costs can be calculated with the help of (9). 

 

IV. Numerical Example 
Let us consider a capacitated transportation problem 
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In the above rectangular array; the numbers written in the top right corner of each cell represents the upper 

bound of each variable, the numbers at the bottom right corner represent the unit transportation cost and the 

numbers written in the last column and last raw represent the available quantities and requirements at each 

source and destination respectively.  

Solving the problem using two phase method we obtain the final transportation table as follows: 
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Where u1= -1, u2= -1, u3= 0, v1= 9, v2= 3, v3= 7, v4= 8 are the optimal dual variables, 𝑥∗ =  𝑥13 = 5, 𝑥14 = 20,
  𝑥22=16,   𝑥24=9,   𝑥31=15,   𝑥32=4,  𝑥33=25,𝑥34=6 is the optimal solution and z* = 551 is the minimum 

transportation cost. The number written on the bottom left corner of each cell in the last table is 𝑐 𝑖𝑗 . 

Now let us assume that 𝑥0  =  𝑥13 = 5, 𝑥14 = 20, 𝑥22 = 17,   𝑥24 = 8,   𝑥31 = 15,   𝑥32 = 3, 𝑥33 = 25, 𝑥34 =
7 is the given feasible solution. Using (9) the modified costs can be calculated as 

 𝑑24
∗ = 𝑐24 +  𝑐 24 = 𝑐24 +  𝑐24 − 𝑢2 − 𝑣4 = 6 + 1 = 7 

We can easily verify that x0 is an optimal solution of the modified transportation problem. 

 

V. Conclusion 
Inverse optimization is an important area in both academic research and practical applications. Using 

the inverse optimization this paper suggested an inverse based methodology for the solution of capacitated 

transportation problem. An illustration observation used to demonstrate the advantage of the new approach. For 

the future work this approach can be used on transportation problem with linear fractional objective function 
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