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Abstract:  A unified approach is attempted to bring the descriptive statistics in to a more refined frame work. 

Different measure of central tendencies such as arithmetic mean, median, mode, geometric mean and harmonic 

mean are derived from a generalized notion of a measure of central tendency developed through an optimality 

criteria. This generalized notion is extended to introduce the concept of an interval of central tendency. 

Retaining the spirit of this notion, measure of central tendency may be called point of central tendency. The 
same notion is further extended to obtain confidence interval for population mean in a finite population model 

and confidence interval for probability of success in Bernoulli population. 
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I. Introduction 
Descriptive statistics or Elementary data analysis is used to describe the basic features of the data 

gathered from an experimental study, a survey or from a similar situation. Here no assumption is made on the 

nature of the population and hence there is no explicit mention of a parameter. Usually we try to extract some 

characteristic features of the available data and use them for comparative and other purposes. A fairly good 

account of exploratory data analysis can be found in (Tukey, J.W.[4]). Two fundamental characteristics of the 

data frequently used in practice are measures of central tendency and measures of dispersion. A measure of 

central tendency is a point around which majority of the observations are clustered. Arithmetic mean, Median, 
Geometric mean and Harmonic mean is important measures of central tendencies used in practice. A limitation 

of a measure of central tendency is that the loss of information in condensing the whole data in to a single point 

is substantial.  

This loss is partially recovered by supplementing it with a measure of dispersion. Our aim in this note 

is to suitably combine these two measures in to a pair of related entities, one representing a measure of central 

tendency and the other representing dispersion. 

. 

II. Measures of central tendencies 
Arithmetic mean is probably the most commonly taught and encountered statistic today, appearing in 

numerous everyday contexts. Given n observations x1 , x2 , . . . , xn  it has the interesting property that the sum of 

the squared deviations taken about a point A given by 

 D1(A) =   ∑ (xi – A)2,   is minimum at A = x̅ (AM)                                                                                (1) 

The square root of the average of this minimum squared deviation is called standard deviation. Thus we can say 

arithmetic mean and standard deviations are a related pair of measures. Similarly 

D2(A) =   ∑ | xi – A |,   is minimum at A = Median = M                                                                          (2) 

The quantity 
1

𝑛
𝛴| 𝑥𝑖 − 𝑀 |  is called mean deviation. Again median and mean deviation are related pairs. Again 

D3(A) =   ∑ (log xi – log A)2,   is minimum at A = Geometric mean = GM                                             (3) 

And Antilog 
1

𝑛
  𝛴(𝑙𝑜𝑔 (

𝑥𝑖

𝐺𝑀
)2)1/2 is the measure of dispersion associated with GM. This measure finds use in 

averaging ratios where it is desired to give each ratio equal weight, and in averaging percent changes, discussion  

of which are found in Croxton, Couden and Klein [5].  Finally  

 𝐷4   𝐴 = 𝛴(1/𝑥𝑖 − 1/𝐴)2,   is minimum at A =𝑛/(𝛴 1/𝑥𝑖)   =  Harmonic mean =   HM                     (4) 

It is occasionally used when dealing with averaging rates.  And the reciprocal of the quantity 

  (1/n ∑1/xi – 1/A)2)1/2 is the measure of dispersion associated with HM. 

Motivated by the different measures of central tendencies we are going to have a unified definition for measure 
of central tendencies. First a suitable metric ’d’ is defied on the data space. Let our data set be {x1, x2 , , ,xn}  

With frequencies f1 , f2 , . . , fn ,with fi = N. For convenience we use S to denote the data set 

 {(x1 , f1 ), (x2 , f2 ), . . . , (xn , fn )}. In general x1 , x2 , . . . , xn need not be real numbers. They can be elements of 

any metric space. Now define a deviation from a point A to the data set S by 

D(S,A) = ∑ρ(d(xi , A) φ (fi)                                                                                                                       (5) 

Where ρ is an increasing function and φ is again a suitable nonnegative non decreasing function. In general a 

point of central tendency is defined as the value of A that minimizes D(S, A). Different measures of central 

tendencies are defined by choosing an appropriate metric d, function ρ and φ. 

Example 1:- Let X = R, d(x, y) = | x − y |, ρ(t) = t2 , φ(t) = t (identity function) Then D(S,A) =   =   ∑ (xi – A)2 fi 
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, is minimized at the mean = 1/n ∑ (xi fi. = X̅ 

 Example 2:- In the above example put ρ(t) = t, the identity function Then D(S, A) = ∑ | (xi − A) | fi and is 

minimized at the sample median M. 
 Example 3:- In the example 1 if we choose d(x, y) = | log x – log y | then D(S, A) = ∑ ( log xi −  log A)2 fi  and 

is minimized at the  G M. 

Example 4:-Choosing, d(x, y) = |1/x – 1/y |, in example 1 Then D(S ,A) =   ∑ (1/xi – 1/A)2 fi ,attains minimum 

at A = HM 

Example5:- Mode is the value that occurs most frequently in a data set or a frequency distribution. Mode is in 

general different from mean and median especially for skewed distributions. In the example 1 choose φ(fi ) as 

φ(fi )  = 1    if  fi=  Max fi , 0 otherwise then D(S, A) will be minimized at the mode. 

 

III. Interval of central tendency 
Now we see how the notion of point of central tendency can be extended to derive interval of central 

tendency. The idea is initiated by defining a distance from a point to an interval. Naturally the distance from a 

point x to an interval is defned as d(x, I) = inf y {d(x, y), y ∈ I} 

In particular if we choose the interval of length l in the form  𝐼𝑎
𝑙  = (a – l, a) and d(x, y) = | x – y |, then 

  

d(x, Ia )  =        

0  𝑖𝑓   a −  l ≤  𝑥  ≤  𝑎,

  a –  l –  x      if   x ≤  (𝑎 –  𝑙)

 x –  a  , if x  ≥  𝑎

                                                                         (6) 

Now use the above definition to arrive at an aggregate deviation from a data set to the interval Ia
l 

, minimize it with respect to a. If a∗ is the optimum choice of a, (a∗ − l, a∗) is the desired interval.  

Using this procedure the interval of central tendency associated with arithmetic mean, Median, Geometric mean 
and Harmonic mean are obtained by minimizing 

 

𝐷1 𝑆, 𝐼𝑎  
𝑙   =     ( (𝑎 −  𝑙) –  𝑥𝑖)2 𝑓𝑖

𝑥𝑖<𝑎−𝑙

 +   (𝑥𝑖 –  𝑎)2 𝑓𝑖
𝑥𝑖>𝑎

  

𝐷2 𝑆, 𝐼𝑎  
𝑙   =       ∣ (𝑎 −  𝑙) –  𝑥𝑖 ∣  𝑓𝑖

𝑥𝑖<𝑎−𝑙

 +   ∣ 𝑥𝑖 –  𝑎 ∣  𝑓𝑖
𝑥𝑖>𝑎

  

 𝐷3   𝑆, 𝐼𝑎 
𝑙  =       ( 𝑙𝑜𝑔(𝑎 −  𝑙) – 𝑙𝑜𝑔  𝑥𝑖)2  𝑓𝑖

𝑥𝑖<𝑎−𝑙

 +  (𝑙𝑜𝑔  𝑥𝑖  −   𝑙𝑜𝑔 𝑎)2 𝑓𝑖
𝑥𝑖>𝑎

  

  𝐷4   𝑆, 𝐼𝑎  
𝑙  =       (

1

𝑥𝑖
−

1

𝑎 − 𝑙
)2   𝑓𝑖

𝑥𝑖<𝑎−𝑙

 +   (
1

𝑥𝑖
−

1

𝑎
)2   𝑓𝑖

𝑥𝑖>𝑎

 

respectively. Now the question of fixing the length of the interval is to be addressed.  This can be done 

incorporating it with a confidence measure. As there is no probability measure defined on the sample space we 

should be satisfied by crude measure of confidence governed by the data. The ratio of the number of 

observations falling in the estimated interval to the total number of observations in the data set can be chosen as 

a confidence measure. Clearly the above measure varies from 0 to 1 as the length of the interval varies from 0 to 

the range of the data set. Another confidence measure is obtained in the following way. For the optimum 

interval of length l chosen say  la∗
l   define confidence measure by 

µ(𝑙)  =  1 –  {𝐷 (𝑆, 𝑙𝑎∗
𝑙  ) ÷  𝐷(𝑆,  𝐴∗)}                                                                                                                (7) 

where A* is the associated measure of central tendency and a* is the estimated value of a. A graph can be 

plotted taking the length of the interval along X axis and confidence measure on Y axis. The shape of this graph 

will shed more light in to the nature of the data. 

 

IV. Simulation studies 
Twenty five values are simulated from Lognormal distribution. Interval of central tendency associated 

for arithmetic mean and Geometric mean are estimated and their confidence calculated. The results are 

displayed in the table (1).The table values clearly show that the interval of central tendency of given length 

associated with GM captures more observations than the interval of central tendency associated with AM of that 

length. Thus we can say that GM is a better measure of central tendency to represent the above data than AM. In 

general different intervals of central tendencies can be compared to choose an appropriate measure of central   

tendency for a given data. 
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Table (1):  Confidence coefficient associated with GM and AM 

Length 20          40 60           

80 

100          

120 

140        

160 

 180       

200      

250       

500 

CC GM 0.12       

0.20 

0.32      

0.44 

0.52        

0.56 

0.56       

0.64 

0.64       

0.64 

0.68        

0.84 

CC AM 0.04       
0.04 

0.04       
0.08 

0.12        
0.12 

0.12        
0.12 

0.12        
0.16 

0.32        
0.40 

 

Twenty five values are simulated from N(5,1) and from N (5,5). Interval of central tendency associated with 

arithmetic mean is computed for various lengths and their confidence coefficients are graphically displayed in 

thefigure (1). It shows how the dispersion of the data is reflected in the nature of the graph. 

 

 

figure(1) Confidence for samples of different standard deviations 

 

V. Finite population situations 
The method of constructing interval of central tendency described in this paper can be used to construct  

confidence interval for population mean in a finite population model. In a finite population situation even 

though there is no specific model assumption on the nature of the population, the statistical investigation is 

targeted towards one or two parameters. The parameters of interest are usually population mean, population total 

etc. In the present case we confine our attention to the population mean Y̅ = 
 1

𝑁
𝛴𝑌𝑖 , where Y1 , Y2 , . . . , YN are 

unknown population observations. We can consider Y̅, as the value ’A’ that minimizes 𝛴(𝑦𝑖 − 𝐴)2. Based on the 

sample y1, y2, …,yn  an estimate of Y is supposed as  the quantity a that minimizes Σ  𝑦𝑖 − 𝐴 2. Clearly the 
estimator is y̅, the sample mean. One can extend the same optimality criteria to arrive at a confidence interval 

for Y . The answer coincides with the interval of central tendency associated with arithmetic mean discussed in 

the last section. But it lacks a method of evaluating the confidence coefficient. The following indirect method 

may be used in practice. Use asymptotic normality to construct a confidence interval of required confidence 

coefficient Choose the length of that interval and construct the interval of central tendency of that length. What 

is the real advantage? Since no probability model is involved we cannot make a comparison but we can say that 

the new method is based on an optimality principle. 

 

VI. Statistical inference on population proportion 
In the statistical inference concerning proportion, the under laying model is Bernoulli distribution and 

the parameter of interest is the probability of success. The data is always the number of successes x in n trials. If 

we look at individual data x , they are either 0 or 1 with  Σ xi = x. Thus there are x ones and n-x zeroes. Since 

E(xi ) = p, xi is an unbiased estimator of p. For every point p in the parameter space consider the distance  

d(p, xi ) = | p − xi |, clearly d(p, xi ) is either p or 1-p according as x is 0 or 1.Define the aggregate deviation  

from the point p to the data set S = {x1,x2,….,xn} as 

D(p,S) = Σ (p – xi)
2 = x(1-p)2 + (n - x)p2.                                                                                                             (8) 

 It is immediate to see that D(p, S) is minimized at p = x/n which is also MLE of p. A confidence interval for p 

is usually obtained using asymptotic normality. We now see how a confidence interval for p can be obtained 

using the method described in this paper. As before consider an interval of length of length l as la 
l= (a – l, a), 

then 

 
Therefore 
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D(  𝑙𝑎
𝑙 , S) = Σ (d(  𝑙𝑎

𝑙  , xi ))
2 = (n – x) (a – l)2 + x(1 –a)2 

Consequently D((  𝑙𝑎
𝑙  , S) is minimized at 𝑎 = 

𝑥

𝑛
+ 𝑙(1 −

𝑥

𝑛
). Hence confidence interval is  

  𝑎ᵔ − 𝑙,𝑎 = (
𝑥

𝑛
−

𝑥

𝑛
𝑙,
𝑥

𝑛
+  1 −

𝑥

𝑛
 𝑙. The performance of this estimator is compared with the interval suggested 

using asymptotic normality using simulation. Samples of different sizes are generated with various success 

probability p = 0.2,0.3, …,0.8. In each case 95% confidence intervals are constructed using asymptotic 

Normality. Then interval of same length is obtained using the present approach. Exact confidence coefficient of 

both intervals are evaluated using the frequency approach based on 5000 simulations. The results are reported 

for comparison. In the table (2) CC1 denote estimated confidence coefficient using asymptotic normality and 
CC2 denote the confidence coefficient based on the new approach. 

Table(2) Confidence for p using Normal approximation and New method 

p Size 20 

CC1                 CC2 

Size 30 
CC1         CC2 

Size 10 

CC1       CC2 

0.2 0.90                  0. 90 0.93                        0.79 0.92                     0.89             

0.3 0.94                  0.96 0.95                        0.92 0.94                     0  94 

0.4 0.92                  0.97                             0.94                        0.98 0.95                     0.98 

0.5 0.93                  0.98    0.95                        0.98 0.91                     0.98 

0.6 0.93                  0.99                         0.93                        0.98 0.95                     0.98 

0.7 0.94                  0.98 0.95                        0.96 0.94                     0.95 

0.8 0.91                  0 .91 0.95                        0.84 0.92                     0.85 

 

The result clearly shows that the new method has better confidence level than the interval based on asymptotic  

Normality. In particular the new estimator shows substantially improved performance when p is close to 0.5. 

 

VII. Concluding Remarks 
In classical inference point estimators as well as the interval estimators suggested are based on 

optimality principle (cf. G. Casella, R.L.Berger [1]). The situations are also not different in a Bayesian set up 

(cf. Berger.J.O. [2]). But various measures suggested in elementary data analysis generally lacks any optimality 

criteria behind it. Our aim through this paper is to bring the elementary data analysis to that level by introducing 
suitable optimality criteria. It is also found that optimality principle used here has also its natural extension in 

classical inference. For example, the estimation of the population proportion discussed in this paper is closely 

associated with the concept of U – statistics (cf. Serfling R.J.[3]). But we had gone a step further by suggesting 

new optimality criteria for deriving confidence interval for the parameter. This idea can be found a further 

exposition in a forth coming paper. 
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