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Abstract: In this paper we define Scheduling, Batch Scheduling, Coloring, Subcoloring, Hypocoloring, 

Chromatic number, Subchromatic number, and Hypochromatic number for a given graph. A batch Scheduling 

problem has been obtained by using the above discussed concepts.An exponential algorithm has been developed 

for triangle free graphs. The solution is obtained by introducing  COCA - ‘Contract or Connect” Principle. The 

Subchromatic and Hypochromatic number for shell graphs has been illustrated. A Hypocoloring model for 
personnel assignment problem has been briefly discussed. 
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I. Introduction 
 Vertex Coloring models to a number of scheduling problems. In the cleanest form, a given set of jobs 

need to be assigned to time slots, each job requires one such slot. Jobs can be scheduled in any order, but pairs 

of jobs may be in conflict in the sense that they may not be assigned to same time slot, for example because they 
both rely on a shared resource.   

 

II. Definitions 
1.1 Batch Scheduling 

 The scheduling of jobs or operations in batches is called Batch Scheduling. 

1.2 K – vertex coloring 

 A k – Vertex Coloring of a graph G is an assignment of k- colors   1, 2,…,k to the vertices of G. The 

coloring is proper if no two distinctadjacent vertices have the same color. Thus a proper k- vertex coloring or k-

coloring of a loop less graph G is a partition (v1, v2,...,vk) of V into k-independent sets. 
G is k- colorable if and only if G has proper k- Coloring. 

 
Figure 1.2.1 Coloring of Peterson Graph  

 

1.3 Chromatic number 
 The Chromatic number χ (G) of a Graph G is the minimum k for which G is k – Colorable. If χ (G) =k, 

then G is said to be k – Chromatic. 

 In Figure 1.1, note that the chromatic number of the Peterson graph is 3. 

 

1.4 Sub coloring 

 A Subcoloring is a vertex coloring of a graph G in which every color class induces a disjoint union of 

cliques. 
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Figure 2.4.1ASubcoloring of Peterson Graph 

 For example, the Peterson graph can be subcolored with three colors as in figure 2.4.1 

  
Let S1= {(a, e), (g)}    S2 = {(b, c), (f)} S3 = {(d, i), (h, j)} 

 Here S1, S 2, S3 are the three Subcolor class each of which induces a union of disjoint cliques. 

 

1.5 Subchromatic Number 

 The Sub Chromatic Number χ s (G) of the graph G is the minimum k for which G is k – sub colorable. 

Note that, if χ s (G) = k, then G is said to be k – chromatic. χ s(G) = 3. 

 From Figure 1.1, the chromatic number of Peterson graph is 3 and from figure 1.2, the subchromatic 

number is also 3. 

 

1.6 Hypocoloring 

 Given a graph G, and integral weights on vertices we want to partition the vertices of G into Subcolor 

class such that sum of the weights of the heaviest cliques in each Subcolor class is minimized. This partition of 

the vertices is known as the Hypocoloringof the graph G. 

 
1.7 Hypochromatic number 

 The Hypochromaticnumber χh (G) of the graph G is the smallest  

k for which G has a k–Hypocoloring.  

Let us color the weighted Peterson graph as in figure 2.7.1 

 
Figure 2.7.1 A Hypocoloring of weighted Peterson Graph  

 

Then the Subcolor classes are given by, 

S1 = {(a, e), (g)}  S2 = {(b, c), (f)}  S3= {(d, i), (h, j)} 

The weights of each Subcolor class is given by, 

 S1 = {(a, e), (g)} = max {6, 5} = 6 

 S2 = {(b, c), (f)} = max {7,1} = 7 

 S3= {(d, i), (h, j)}       =            max {3, 7} = 7 

      20 
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The total weight of this Hypocoloring of the Peterson graph is 20. 

 Now let us color the Peterson graph with another Subcolor classes as in   figure 1.4 

Let S1 = {(d, i), (c)} S2 = {(b, c), (g)} S3 = {(a, b), (e, j)} 

The weights of each Subcolor class is given by, 

 S1 = {(d, i), (c)} = max {3, 4} = 4 

 S2 = {(d, i), (g)} = max {4, 5} = 5 

 S3 = {(a, b), (e, j)} = max {5, 8} = 8 
             17      

 By proceeding like this we can obtain the minimized weight Subcoloring of the weighted Peterson 

graph. Note that the minimum weight of the weighted Peterson sub graph as in figure 2.7.1 is 17. Hence the 

Hypochromatic number of the weighted Peterson graph is 3. 

 
III. The Chromatic scheduling model 

3.1 Introduction  
 Chromatic scheduling is the domain of scheduling problems which can be formulated in terms of graph 

coloring or more precisely of generalized graph coloring. 

The applications of Chromatic scheduling 

 Course Timetabling 

 Satellite Communication 

 Processor scheduling problems 

 Here the concept of weighted coloring has been introduced to generalize classical coloring models and 

to handle situations where operations occur with possible different processing times. 
 We shall generalize a weighted coloring model for studying same types of batch scheduling problems. 

 In this chapter we give a brief introduction to Chromatic scheduling and explain the Chromatic 

scheduling model for a graph.  

 

3.2 A chromatic scheduling model 

 In order to describe our generalized weighted coloring model, we shall consider an instance of batch 

scheduling problem which can be stated as follows: 

 Given a finite set V of operations v to be processed on some identical processors. 

 Each operation v has a positive processing time w (v) which does not depend on the processor. 

 No preemptions (superiority) will be allowed during the processing of an operation. 

 Each processor will handle one operation at a time 

 There are some incompatibilities between pair of operations  (Incompatibility = not suitable, 

do not agree with each other) 

 If u and v is incompatible then operations u and v cannot be processed simultaneously (or) different 

processors. 

 We take each operations v as a vertices (nodes) of a graph              G = (V, E) and the set E= the 

set of incompatible pair of operations. 

 Each vertex v will have a weight w(v)  

 S = Collection of pair wise compatible operations. 

 The operations in S are assigned to different processors and they are processed simultaneously.  

 All operations in S are completed when the operation v with the largest processing time w(v) is 

completed 

 Weight w(S) = max {w (v) / vS}. 

 Assigning each operation to some batch corresponds them to partitioning the node set V(G) of the 

graph G into a number of  

k stable sets. 

 The problem is of finding of k-coloring f = (S1, S2…………Sk)  of G such that cost of f = C (f) = w 

(S1) + w (S2)+………. + w (SK) is minimum. 

 All operations in a batch are assigned to different processors and processed simultaneously. 

 In our batch scheduling model, we define the weight w(kn) of a clique kn as  W (kn) =

 nKv

w (v)  

 Our batch scheduling problem now consists of in finding a   k-Hypocoloring. (S1…Sk) of  

the nodes of G, (i.e.) a particular of the node set into hypostable sets such that: 
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 Ќ (δ) = 


k

1i
w (Si) is minimum. 

 Observe that k is generally not given; the value results from the minimization of Ќ. 

 The above model may also be used for representing some machine scheduling problems we are for 

instance given a collection of jobs v with processing times w (v) in a flexible manufacturing system; we link the 

nodes representing two jobs if these share a certain number of tools; it will be interesting to assign these jobs to 

a same machine on which the appropriate tools will be installed. A batch will consist of an assignment of jobs to 
some machines in which we try to assign to a same machine jobs which share some tools.  Since there is only a 

limited number of a tool of each type, we will try to assign to different machines jobs which do not need the 

same tools.  Hence a batch will be represented by a hypostable set in the graph of compatibilities and the 

processing time of a batch will again due the maximum load of machine (maximum of the sums of processing 

times of jobs assigned to the same machine). 

 We shall concentrate on this model of weighted Hypocoloring which is motivated in a natural way by 

the batch scheduling context. 

 

3.3 Conclusion 

 In this chapter, we give a model for chromatic scheduling and we obtained chromatic scheduling 

number for a cactus and cactus with a pendent edge 
 

IV. Properties of optimal Hypocoloring 
4.1 Introduction 

 In this chapter, we observe some of the properties of optimal Hypocoloring for any graph. That is, we 

obtain the minimum number of colors used in a optimal weighted coloring of a simple graph G does not exceed 

Δ (G) +1. 

Lemma 4.1 

 In a weighted graph I = (G, w) such that   vV, w (v)>0, any k- hypo coloring δ with minimum cost 

k^ (δ) satisfies k Δ (G) +1. 

Proof 

 We shall show that any   - hypo coloring δ'= (S1', . . ., S  ') with               > Δ (G) +1 can be 

transformed into a k-hypocoloring δ with K Δ (G) +1 and k^ (δ) < k^ (δ‟). This is done in polynomial time. 

 We assume, w (S1') > w (S2') >…………..> w (S  ')      

 Assume S  ' ≠ Ф so there is a vertex (node)   x ∈ S  ' such that it has almost Δ (G) neighbors. (since Δ 

(G) is the maximum degree of G) 

Since l>Δ (G) +1, there is at least one color say s, which satisfies s  Δ (G) +1           and which does not occur 
in the neighborhood N(x). So we can recolor „x‟ with and setting Ss‟ = Ss‟ υ {x}, we have w (Ss*) = w (Ss‟) 

[(since w(x) 𝑤(𝑠𝑙
′ )  𝑤(𝑠𝑠

′ )] 

Setting Si* = Si‟ (i ≠ s, i ≠l), we get a hypo coloring δ* with |𝑆𝑙
∗ | < |𝑆𝑙

′ | and  

k^ (δ*) k^(δ‟)  

[Since 𝑆𝑙
′  is the last one such that w (S1') > w (S2') >…………..> w (S  ')]    

 We repeat this process with for nodes in S * have been recolored with a smaller color, then we 
continue until there are no more nodes with colors s > Δ (G) +1. 

 Thus at the end, the cost of the resulting hypocoloring verifies k^ (δ*) k^ (δ‟),since we have assumed 

 vV, w (v)>0.  
Hence the proof. 

 

Theorem 4.1 

 If I= (G, W) is a weighted graph with maximum degree Δ (G) then there exists a K-hypo coloring = 

(S1, S2…, Sk) with minimum cost satisfying the following  

(i) K     Δ (G) 

(ii) i k, v  Si, dGi,v(v) i-1 where Gi,v is the sub graph of H induced by S1υ S2 υ… Si-1 υ {v} 
(iii) Si Contains no KΔ (G)+3-i 

Proof: 

(i) Let us consider a k-hypocoloring δ .From the Lemma; we have k ≤Δ (G) + 1 

If k ≤ Δ (G), then it is proved. 
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Let us assume k= Δ (G) + 1. 

We have a k – hypocoloring with a minimum number of nodes with colork. 

|Sk| is minimum. 

Let v be a node in Sk. If there is some color S  Δ (G) missing in the neighborhood then we can recolor v with s 

and we obtain a k-hypo coloring δ‟ with k^ (δ‟) k^ (δ) 

k-hypocoloring δ‟ with k^ (δ‟) k^ (δ) 
This is a contradiction (since |Sk| is minimum)  

So we assume all the colors 1, 2,…, Δ (G) occurs in N (v). 

Let u be a neighbor of v in S Δ (G). 

uN (v) ∩ S Δ (G). 

'u' has some color c   Δ (G) missing in N(u) .  
Since v  S Δ (G) +1 (Sk, k = Δ (G) +1) is in N(u).(  v is in neighborhood of u) 

 If c< Δ (G), then we can recolor u with 'c' and then we can be recolored with Δ (G), we still have a k-

Hypocoloring and the cost has not increased. 

But |Sk'| < |sk'| a contradiction. 

So we must have color c = Δ (G) missing in N (u). 

We recolor v with color c = Δ (G) and we get a new k-Hypocoloring. 

 Repeating this process until there are nodes (vertex) with color k= Δ (G) +1, we will finally have a 

Δ(G) hypo coloring. 

δ‟ = (S1‟, S2‟…., SΔ(G)‟) with k^ (δ‟) k^(δ) because w(S Δ (G)‟)w(S Δ (G))+w(S Δ (G)+1) 
This is a contradiction again. 

Thus we have examined for all cases and we get a contradiction. 

k ≠ Δ (G) +1 

k < Δ (G) +1   kΔ (G) 

This is the best possible bound. 

(ii) The proof is exactly the same as previous. If suppose dGi,v(v) <i-1 for some v Si, then we can 

recolor v with some color missing in {1,2,…,i-1} without increasing the cost of the 
Hypocoloring. 

 We repeat thus as long as possible. Again we get a contradiction as  

before. 

 Our assumption dGi,v(v) < i-1 is wrong . 

 dGi,v(v)   i-1 . 

Hence the proof 

(iii) If Si contains no KΔ (G)+3-i 

 Assume that Si contains a KΔ (G)+3-i and let v be a node of this clique.  

 Since dG(v)≤ Δ (G), we deduce that 

 dGi,v(v) ≤dG(v) –( Δ (G) +3 –i-1) 

 ≤dG(v) – ( Δ (G) +2-i) 

 dGi,v(v) ≤ Δ(G) - Δ(G)-2 –i 

 ≤ i - 2 

 This is a contradiction. 

 Hence Si does not contain KΔ (G) +3-i   Hence Proved. 

Remark 4.1 

 The bound in theorem 3.1 is the best possible. For every integer p, there exists a tree G with Δ (G)-p 
and weights w (v) for the nodes of G such that all optimal k-Hypocoloring have k=p colors.    

 

G is constructed as follows:  

Start from tree T2 for p = 2 

 
Figure 4.1   A Tree (T2) 
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 It consists of a chain a, b, c where nodes have labels     (a) =  (c)=2,   (b) =1 and w (a) = w(c) =10 
and w (b) = 10 

 Generally, having tree Ti-1 (where nodes have labels1, 2 … i-1 and weights almost (10i-2), we construct 

Ti by introducing at each node of Ti-1 a chain of two additional nodes v', v'' and weights (½) (10i-1) 

 Now in Ti we take one of these chains v', v'' such that the node adjacent in Ti-1 has a cost 10i-2 and we 

condense the edge [v‟, v”] into the node vi. 

[The weight of the new node is w (vi) = w (v') + w (v'')= ½ 10 i-1 + ½ 10 i-1 =10 i-1] 

 
Figure 4.2 Tree G from T2 

 One can verify that the graph Ti is a tree with maximum degree i, one also observes that the labels 

define p-Hypocoloring δ= (S1, S2,…, Sp) where Si= {v/ ι(v) = p+1-i}.  We can verify that I is the unique 
optimum Hypocoloring. 

Theorem 4.2 

 Let I = (G, W) we a weighted Graph such that w (v) >0   for each   vV then any Hypocoloring   δ*= 

(S1, S2,...,Sk) with minimum cost Ќ (δ) satisfies k = δ*  1+ |w| ((G) –1) | w| = the number of distinct values of 

the weights. 

 

Proof: 

 Let I = (G, W) be a weighted Graph such that | w| ≤1 and  
δ*= (S1, S2…, Sk) be an optimal hypocoloring of G with  

w (S1) ≤ w S2) ≤ … ≤ w (S  ) 

We show that   = |δ*| ≤ 1+|w| (∆(G) – 1) 

We use induction hypothesis on | w |. 

Let t = max {i: w (Si)  ≤maxvV w (v)} 

We have t ≤ ∆(G) 

 Otherwise, an optional coloring gives a better solution. Moreover if t=   =|δ*|, then we have, Ќ (δ*)≤

wmax 

Ќ (δ*)    = 




1i
w (Si) 

   =w (S1) +w (S2) +…. +w (S  ) 

   ≤w(𝑠𝑙) [since w (S1)≤ w (S2) ≤….≤w (S  )] 

    Ќ (δ*)≤wmax 

Also, an optimal coloring is a feasible solution with a cost almost w max∆(G) 

                 Ќ (δ*)≤ wmax ∆(G) 

 From, above equations, we have, 

wmax≤ Ќ (δ*) ≤wmax ∆(G) and since |w| >1,        

We also have, ∆(G)<1+|w|(∆(G) -1) 

 Now assume t < |δ*|, we deduce t ≤ (G)-1), since otherwise an optional coloring of G gives a better 
solution. 

 Observe that δ' = (St+1 ,…., Sk) is an optional Hypocoloring on the sub-instance I'= (G',w')    where G‟ is 
the sub graph of G induced by               
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 V' = St+1∪… ∪ S   and w' is the restriction of w to G'. 

By construction I' ≠ 0 (since t <|δ*|) 

Moreover |w‟| |w| -1 
Thus, using an inductive hypothesis, we have,  

 - t = | δ ‟| < 1+| w‟|  ((G‟)-1) 

 < 1 + (|w|-1) ( (G‟)-1) 
 

  - t<  1+[|w|( (G)-1 – ((G)-1)] 

 - t (G)-1)-t    (t (G)-1) 

  1+ |w| ((G)-1) 

Any hypo coloring δ* = (S1 ……. 𝑆𝑘)with minimum cost Ќ (δ) satisfies 

k = | δ*|  1 + |w| ((G)-1) 
   Hence proved. 

 

4.2 Conclusion 

 In this chapter, we have obtained some of the properties of optimal hypocoloring .we have obtained the 

best possible bound k≤ Δ 

 

V. An exponential algorithm for triangle free graphs 
5.1Introduction 

 In this chapter, we define an exponential algorithm for triangular free graphs and hence we apply the 

algorithm for a triangular free graph. 

 We shall consider graphs containing no induced triangles; these are precisely the Graphs G for which 

the largest size w (G) of a clique is two. 

 In such graphs, hypo stable sets consist of nodes and of edges (Cliques of size 2). Such Graphs can 

have arbitrarily large chromatic numbers, it follows that they can also have arbitrarily large hypochromatic 

number, and indeed a triangle-free graph G with Δ(G) ≤ 2k has 𝜒ℎ (G) ≤ k 

 If we had 𝜒ℎ  (G) <k, then we could take a minimum Hypocoloring  δ = (S1….Sr) of G with r<k.  Each 

Si could be decomposed into two stable sets Si', Si'' (Since Si could be decomposed of nodes of edges) and we 

would get a 2r coloring (δ= (S1',…,Sr', S1'',…, Sr'') of G with 2r<2k, which is a contradiction. 
 We shall now show that, based on the separation principle (link two nodes or merge them) described 

for usual colorings of graphs, we can develop a “light version” procedure for determining a Hypocoloring δ with 

minimum cost Ќ (δ) in a weighted triangle free graph. This procedure will in addition exhibit in a striking way the 

symmetry between usual colorings andHypocoloring. Forusual colorings, one separates the possible colorings of 

a graph G into two classes by repeatedly choosing a pair of non adjacent nodes x and y. There is a one to 

onecorrespondence between the colorings of G where  

x and y have the same color and the colorings of the graph G, obtained from  

G by merging nodes x, y into a single nodes x'. 

 In the same way there is a one-one correspondence between the colorings of G where x and y have 

different colors and the colorings of the graph G2 obtained from G by introducing an edge <x, y> 

 So, G can be replaced by G1 and G2.  We repeat this operation for each one of G1 and G2 as long as 
possible (i.e.) until nodes x, y in xy we       set w (xy) = max {w(x), w(y)}. The above algorithm can be applied 

as before. The clique with minimum weight will give the optimal cost of a weighted coloring. 

 

5.2 Contract or connect principle (COCA) 
 Our purpose is to give an algorithm for finding a Hypocoloring 

δ with minimum cost Ќ (δ) in a weighted triangle free graphs by using an additional separation principle. Since 

we are handling hypostable sets we will have to introduce some blocking mechanism which will prevent us 

from introducing some edges into hypostable sets. If e is in some Si, then no adjacent edge can be introduced 

into the same hypostable set Si. 

 The algorithm will be based on a „Contract or Connect” Principle; we call it the Contract or Connect 

Algorithm or shortly COCA. It is described in Table 5.1. 
 It enumerates in an implicit way all Hypocoloring of G and finds the minimum value of the cost Ќ (δ) 

of such Hypocoloring δ. 

 Edges which are no longer allowed to be introduced into a hypostable set are blocked. 
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 While II (H) separates the usual colorings of H as described above, procedure II (H) separates the 

Hypocoloring into two classes; the Hypocoloring where x and y (linked) are in the same hypostable set and the 

Hypocoloring where x and y in different sets. 

 

Table 5.2.1 The COCA Algorithm 

We now describe the two separation procedures: 

Separation Procedure I (H) 

(1) 

(2) 
 

 

(3) 

 

Separation Procedure II (H) 

(1) 

(2) 

(3) 

 

Choose a free edge <x,y> in H; 

Let H1 be obtained from H by condensing <x,y> into a node xy 
with w(xy) = w(x) + w(y) all edges adjacent to xy are blocked; 

Let H2 be obtained from H by blocking <x,y>; 

 

Choose two non-adjacent nodes x,y in H; 

Let H1 be obtained from H by condensing <x,y> into a node xy 

with w(x,y) = max {w(x), w(y)}; all edges adjacent to xy remain 

blocked. 

Let H2 be obtained from by introducing the edge <x,y>, is 

blocked  

 

 At the final stage, a graph H will be clique with all edges blocked; the corresponding colorings can be 

we constructed by looking at the name of each node which is obtained by concatenation of the names of the 
nodes  

which have been sequentially merged.  The light version of the COCA algorithm is just the enumeration 

algorithm for usual (unweighted) colorings. 

 Even if G contains no triangles by assumption, the auxiliary graphs constructed by the separation 

procedures I and II may contain triangles. 

 

Data:  Weighted triangle free graphs G. 

Output:  A Hypocoloring δ with minimum cost 


K (δ  ) 

(1) Initialization: All edges are free; L (G) 

 S(G) = best solution so far, w *= ∞ 

(2) While L (G)≠  do 

 (a) Choose a graph H in L(G); 

 (b) If H has at least one free edge then apply procedure I (H) 

 else (all edges are blocked) 

           (i) If H is not a clique then apply procedure II (H) 

 else (H is a clique with all edges blocked) 

               (A) w = 
 )H(Vv

w(v) ;     

                (B) If w < w* then S (G)   = H and w* = w; 

(3) Remove H from L and introduce the graphs H1 and H2 (Procedure by separation procedure) if they 

exist into L. 
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Figure 4.1 An Illustration of the COCA Algorithm 

       5.3 Conclusion 

 In this chapter, we describe the properties of optimal coloring and the COCA algorithm were described 

and illustrated for weighted triangular free graphs. 

 
VI. Chromatic number, Subchromatic number and Hypochromatic of a shell graph. 

6.1 Introduction 

 In this chapter we define shell graphs C (n, n-3) and we find the chromatic number, Subchromatic 

number and the Hypochromatic number of the shell graphs with examples. 

 

 6.2 Shell Graph 
 A graph obtained from the cycle Cn: <v0,v1,v2,...,vn-1> of order n by adding n-3 consecutive chords 

incident with a common vertex say v0, is called Shell Graph. The shell graph of order n is denoted by C (n, n-3).  

The common vertex v0 is called apex of the shell. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.1 A Shell Graph C (9, 6) 

6.3 The chromatic number of a shell graph  

Result 6.3.1 

𝜒C (n, n-3)) = 3 for  n≥3 
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6.4 TheSubchromatic number of a shell graph  

Result 6.4.1 

  1, when n = 3 

𝜒s(C (n, n-3)) =  2, when n = 4,5,6,7 

   3, when n ≥ 8 

 

  

 

Consider the shell graph C (4, 1) 

 
Figure 6.4.1 A Shell Graph C (4, 1) 

 
Figure 6.4.2 A Shell Graph C (n, n-3) 

In particular, when n=8, we have, 

 
Figure 6.4.3 A Subcoloring of C (8, 5) 
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Result 6.4.2 

 If G is a connected graph with 𝜒s(G) = r and weight of each edge   is 1, then (G) = r. 

Result 6.4.3 

𝜒s(C(n,n-3)) =    1 when  n=3 
2when n= 4,5,6,7 

  3   when n≥ 8   

 

 

6.5.1 Chromatic number of a shell graph 

 
Figure 5.5 A shell Graph C (7, 4) Figure 5.6 A Shell Graph C (10, 7)                 

6.5.2 Sub chromatic number of a shell graph 

 
Figure 5.7 C (3, 0) having χs=1, Figure 5.8 C (4, 1) having χs=(C (4,1)) = 2 

 
Figure 5.9 C (5, 2) with χs=2  Figure 5.10 C (16, 3) with χs=2 

 
Figure 5.11 C (7, 4) with χs=2 
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Figure 5.12 C (9, 6) with χs=3 

 

VII. Subcoloring of Bipartite graphs 

7.1 Sub chromatic number of complete bipartite graphs 

 
 

7.1.1Sub chromatic number for the above graph is 2 

 

 
7.1.2 Sub chromatic number for the above graph is 3  

Hence from the above examples we can generalize the result of Subchromatic number of complete bipartite 

graph as, 

 

𝜒𝑠 𝐺 =  𝑛 + 1, when𝑚 > 𝑛 

m+1 , when𝑚 < 𝑛 

m or n  ,when m = n  

 

7.2 Personnel Assignment Problem 

7.2.1 Introduction 

Consider a fuzzy graph where each vertex bears a weight which denotes the necessity/ efficiency 

needed/ available according to their meaning of representation. The edge weight represents the reliability 

between the two vertices. 

Now the objective is to find an optimal assignment in such a way that the required efficiency is almost 

satisfiedand applicants are assigned to the jobs so that the reliability is maximized. 

 

7.2.2 Definitions 

7.2.2.1 Fuzzy graphs 

  A fuzzy graph is defined to have a set of vertices and edges where each vertex bears a weight which 

varies depending on their attributes. The edges hold weights with respect to the relation between the vertices 

connecting them. 
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Example 7.2.2.1 

There are four hills named a, b, c and d whose heights are 0.6, 0.3, 0.7, and 0.5     

                       respectively. The distance between two hills are given as ab = 0.83, ad = 0.4, bd = 0.65   

and  bc = 0.78.  

                                 The above data can represented using fuzzy graphs where the vertex weight  

                        denote the altitudes of the hills and the edge weights relate the distance between the  

                        two hills.  

 

 
Here V= {a, b, c, d} and E= {ab, bc, bd, da} 

                             Here each vertex and edge holds weights. The weights are represented between the  

range 0-1.Hence the above graph is a fuzzy graph. 

 

                             Two hills a and b each of height 0.6 units and 0.3 units are at a distance 0.4 units 

 

7.2.2.2 Fuzzy bipartite graphs  
                                 A bipartite graph in which vertex and edge holds weight is called as the fuzzy  

                          bipartite graph.  

 

Example 7.2.2.2 

  Here the vertex set denotes two different category- ingredients and food product. 

 
 

The weights of the vertices (a, b) denotes the costs of the ingredients and the  

weights of the vertices (x, y) denotes the costs of the products. 

The weights of the edges indicate the cost of the product made from the  

corresponding ingredients. 

 

7.2.2.3 A Hypocoloring model for Personnel Assignment Problem 

 

 Given a fuzzy graphwith the vertex denoting the efficiency of each category and the edge weight denotes 

the reliability between the two vertices(category) 

 We obtain the Subcolor classes for the graph considering only the weights of the vertices. 

 The Subcolor classes are partitioned into disjoint union of cliques in such a way that the difference of the 

weights of the two vertices in each clique is to be minimum. 

 The Hypocoloring classes are obtained by considering the weights of the edges which yields the maximum 

value. 

Consider the below graph. 
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Fig 7.2.2.3.1A Personnel Assignment Problem (CBG) 

 

 

There are four jobs and four group applicants with varying efficiencies. 

The reliability (edge weights)are given by, 

(J1,G1)= 0.8   (J2, G1) = 0.9 (J3, G1) = 0.7 (J4, G1) = 0.6    

(J1,G2)= 0.7(J2,G2)= 0.4(J3, G2) = 0.5(J4, G2) = 0.7    

(J1, G3) = 0.2(J2, G3) = 0.3 (J3,G3)= 0.4   (J4, G3) = 0.6  

(J1, G4) = 0.4   (J2, G4) = 0.5   (J3, G4) = 0.8   (J4, G4) = 0.4 

 
 For example, (J3, G1) = 0.7 represents the efficiency of group 1 for the job 3. 

 

Now finding the possible sub coloring for the above graph, we have, 

𝑆1 =    𝐽1, 𝐺1 ,  𝐽2, 𝐺2  𝐽3, 𝐺4 ,  𝐽4, 𝐺3  with each class having the efficiency deficient  

0.02, 0.05, 0.1 and 0.1 respectively. The total efficiency deficient   = 0.27  

The Subchromatic number 𝜒𝑠(𝐶𝐵𝐺)= 4. 

 

𝑆2 =    𝐽1, 𝐺3 ,  𝐽2, 𝐺2  𝐽3, 𝐺4 ,  𝐽4, 𝐺4  with each class having the efficiency deficient  

0.2, 0.05, 0.1 and 0.08 respectively.   The total efficiency deficient   = 0.43 

          Here again the Subchromatic number 𝜒𝑠(𝐶𝐵𝐺)= 4. 

 

                  Now by considering the weights of the edges and finding the Hypocoloring we have, 

 

For𝑆1, the total reliability is 2.6 whereas for𝑆2, the total reliability is 2.0 and also the total  

efficiency deficient is low for 𝑆1 is low when compared with 𝑆2 

                 Thus we choose the first assignment (𝑆1) as the required solution. 

 

𝐽1   → 𝐺1 

𝐽2   → 𝐺2 

𝐽3   → 𝐺4 

𝐽4   → 𝐺3 
 

withtotal reliability 2.6. 

 

VIII. Conclusion 

 In this project we developed hypocoloring model for batch scheduling problems. We also found the sub 

chromatic number for shell graphs. We obtain some properties of optimal hypocoloring for any graph. Hence we 

developed an exponential algorithm for hypocoloring technique and it is illustrated. In this direction, we can 

find the subchromatic number and hypochromatic number for many family graphs.  

Finally finding the solution of personnel assignment problem using hypo coloring model given the applicant‟s 

efficiencies as weights has been briefly discussed. 

 

IX. Further research 
 Further research can be focused on considering our graph as fuzzy where each vertex and edge would 

bear a weight. We can proceed by relating the fuzzy graphs with the real time problem, and finding the solution 

for it using the Hypocoloring model. 
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