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Abstract: This paper delineates existence, characterizations and strong unicity of best uniform
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I.  Introduction
The concepts of linear 2-normed spaces were initially introduced by Gabhler [5] in 1964. Since
then many researchers (see also [2,4]) have studied the geometric structure of 2-normed spaces and
obtained various results. This paper mainly deals with existence, characterizations and unicity of best
uniform approximation with respect to 2-norm. Section 2 provides some important definitions and
results that are used in the sequel. Some main results of the set of best uniform approximation in the
context of linear 2-normed spaces are established in Section 3.

Il. Preliminaries
Definition 2.1. Let X be a linear space over real numbers with dimension greater than one and let || ;

|| be a real-valued function on X xX satisfying the following properties for all x, y, z in X.
(i) || x,y|| =0 ifand only if x and y are linearly dependent,

@) [ xy] =] vx|

(iii) || ax,y” =|a || x,y” , where o is a real number,

@ | xy+e] <] xyl +] xz] |

Then || 'y || is called a 2-norm and the linear space X equipped with 2-norm is called a linear 2-
normed space. It is clear that 2-norm is non-negative.

Example 2.2. Let X = R3 with usual component wise vector additions and scalar multiplications. For
X = (a1, by,c1) and y = (ap, h2,c2) in X, define

| xy| =max{lazbz ~agb1],bicz ~bpc1llazcz ~azcal}-
Then clearly || || is a 2-norm on X.

Definition 2.3. Let G be a subset of a real linear 2-normed space X and x € X . Then gg € Gis said
to be a best approximation to x from the elements of G if

|| x—go,z” = inf || x—g,z|| , 2 € X\V,G)
geG
where V (x, G) is the subspace generated by x and G.

The set of all elements of best approximation to x € X from G with respect to the set z is denoted by
PG,z(X) .

Definition 2.4. A linear 2-normed space (X, || || ) is said to be strictly convex if

|| a+b,c|| = || a,c” + || b,c” || a,c” = || b,c” =1 andc £V(a b) =a=h.

or
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A linear 2-normed space (X, || || ) is said to be strictly convex if and only if

|| x,z” = || y,z” =1, xzyand ze X\V(Yy) = <1

1
‘E(x+ y),Z

Example 2.5 LetX = R3 with 2-norm defined as follows: Forx = (a1, b1,c¢1)
andy = (a2, b2,c2) in X, let

1
| xy| =A(a1b2 —agh1)? + (b1c2 ~b2c1)” + (a1 c2 ~a2c1)?}2

Then the space (X, ||,||) is strictly convex linear 2-normed space.

Definition 2.6. For all functions h € C([a, b] x[c,d])

| 0| o =€supih(tt)l: tefa bl t € [e,dl}

The set of extreme points of a function h & C([a,b] x [c,d]) is defined byE(h) = {x€[ab]y
€[c, d] : |h(x,y)| = || h|| ¥ . Best approximation with respect to this norm is called best uniform
approximation.

Definition 2.7. Let Gbe a subspace of C([a,b] x[c,d]) ={F: [a,h] x[c,d> R

A function gg € G is called a strongly unique best uniform approximation of
T € C([a,b] x[c,d]) if there exists a constant kf > 0 such that for all g € G,

| T79) =] T-00] +kf] 9-00] w-
Example 2.8. Consider the space G = span{g1} of C([-1,1] x[-1,1]), where gl(t,t*) =t e [,
1] and f € (C[-1,1] x[-1,1]). Then (0,1)is the best approximation of [1,1].

Definition 2.9. Let G be a subset of C([a,b] x[c,d]) and let f € C([a,b] x[c,d]) have a unique best
uniform approximation gg € G. Thenthe projection Pg : C([a, b]x[c, d]) =>POW(G) is called

Lipchitz-continuous at f if there exists a const kf > 0 such that for all ¥ € C([a, b] x[c,d]) and all gf €
PG (M), | of ~0f || oo <kf| F-F| .

I11.  Main Results
Theorem 3.1. Let G be a finite-dimensional sdgee of a real linear 2-normed space X . Then for every
X € X, there exists a best approximation from G. Proof. Let

X € X.
Then by the definition of the infimum there exists a sequence {gn} € G such that

[¥=9,. 2] — inf [x—g.2].

This implies that there exists a constant k>0 such that for all n,

lo,.2J [ 2] < |x—g,.2|<inf [x—g.2] +k
<[x, z|+k.
Hence for alln, || gn,z” 52” x,z” +kK.

—={ogn} is bounded sequence. Thenthere existsa subsequence {gnk} of {un}
converging to go €G.
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x—9,2],ze X \V(x,G)

~x=gy. 2] = Iime— On,

k—o0

=inf
geG
=00 €PG,z(X) ,which completes the proof.

Theorem 3.2. Let G be a finite —dimensional subspace of a strictly convex linear 2- normed space X.
Then for every x < X ,there exists a unique best approximation from G.

Proof. Let x & X .Since G is a finite-dimensional, by Theorem 3.1 there exists an element g, € G

Such that . 90 € PG,z (X) , ze X \V (X,G).

Now we show that,Pg,z(x) = {go}. For that first we prove that PG z(x) is convex. Letgy,g2 €
PG,z(x) and 0<a <1. Then,

| x=(g1 + (1 -0)g2). 2| = alx-g1)+ (L -a)x —g2),7|

<o x-g1.z| +@-0)] x-g2.2|
=ainf|x-g.7[+{1-a)inf|x-g.7
=inflx-g.7]

S||X—g,z||,forall geG.

Since agy + (1 -a)g2 € G, ag1 +(1-0)g2 € PG,z(X). We shall suppose that
g* € PG,z (x) . Then l(g() 429*) € PG,z (x) , which implies that

BESACSEDE

= inf
geG

l *
x=5(6-9).2

[x=g.2]1

Since || x—go,z” = || x—g*,z” = inf || x—g,z|| and X is strictly convex, we

geG
obtain

X—go = x—g>|< = 00 = g* . This proves that PG,z (x) ={00}-

Theorem 3.3. Let G be a finite-dimensional subspace of a real linear 2-normed space X with the
property that every function with domain X xX has a unique best approximation from G. Then for all
f1,f2 e X xX,

intllf,~.z|-inf

|f2 -g, Z|| S” f,—f,, Z||, ze X\Gand P;:XxX —>Gis continuous.Proof.

Suppose that Pg isnot continuous. Then there exists an element f € X xX

and a sequence {fn } € XxX such that {fn xgn}.
PG,z (fn) does not converge to PG (f). Since G is finite dimensional, there ex- ists a

subsequence {fnk} of {fnJ} such that PG z(fhk)—> 09, € G, g0 #
PG (f) and we shall show that the mapping

f —>ing||f —g,Z|| is continuous (f € X x X)
ge
Let f,, f, € X x X.Then there exists a g, € G such that
| f2-g2.z =inf | T2 ~g.2]
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=infgeG | f1-g.z| <| f1-g2.¢]

| f1-f2z| +| f2-02.2]

=~ ..z +inf[f, ~g.7|

3inf|| f1 —g,z” —inf || 2 —g,z” 5” f1 —f2,z|| 2 € X\G.

geG
This proves that
geG

inf £, — 9,2 -inf | fz—g,z||‘s||f1— 2],z X\G

By continuity it follows that

| frk —PG (fnk).z| = inf| frk —g.z]|

~intlim| , -9.7
—inff~9,2
and lim| £, — P (f,).2| =] f - 0,.7]

- Hlim( fo —Ps(f,), zH =|f =P,(f), 7|
= gyand P, () are two distinct best approximation of f and G which contradicts the uniqueness of best approximation.

Therefore Py 1 X x X — G is continuous.

A 2 functional is a real valued mapping with domain Ax C with A and C are linear manifolds of a 2- normed space X.

A linear 2- functionals is 2- functional such that

(i) F(a+c,b+d)=F(ab)+F(ad)+F(c,b)+F(c,d)
(i) F(aa, fb) = afF(a,b).

F is called a bounded 2-functional if there is a real constant k > O such that |F(a, b)| < k||a, b|| for all a,b in
the domain of F and

|F||=inf {k:| f (a,b) <k|a,b],(a,b e D(F)}

—sup{ f (a,b):[a,b] =1 (a,b) € D(F)}
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:Sup{w;”a,b” £0,(a,b) < D(F)}
a.b]

Theorem 3.4. Let G be a subspace of C([a,b]x[a,b]), T € C([a,b]x[a,b]) and
go € G.Then the following statements are equivalent:

(0O The function gg is a best uniform approximation of ¥ from G. (ii) For every function g € G,
min

£tk eE(Fg0)F(L 1) 00 (1) (9(t t) <0
Proof. (ii) = (i). Suppose that (ii) holds and letg € G. Then by (ii) there exist the points t,t, €E

(f —go) such that
(F(t, 1) —go(t, t¥)) (g (t, t*) —go(t, t*)) <0.Then we have

| -] o=Iftt")-gtth)

= [f(t,t*) —go(t.t*) + go(t, t*) —g(t.t")
= [f(t, %) —go(t.t*)|+[g(t.t*) —go (t, )|
>| f&t) -0t «

which shows that (i) holds.

(i) = (ii). Suppose that (i) holds and assume that (ii) fails. Then there exists a function g1 € G such
that for all t,t* e E(f-g0), (f(t, t*)fgo(t, t*))gl(t, t*) > 0. Since E(f —gp) is compact, there exists a
real number ¢ > 0 such that for allt, t* € E(f -g0)

(F(6 t) —go(t tDoa (e, t*) > ¢ )

Further, there exists an open neighborhood U of E(f —gg) such that for all

ttf e U ande(f(t t) —go (L t)e1(tt) >2 () -

Ft.t) oot t)zp| T = ®

Since [a,b]\U is compact, there exists a real number d> Osuch that for all

t,t* €[a b)\U,

|f(t,t*)—go(t,t*)| < || f-00 || o« —d (4) Now we shall assume that

” 01 ” oo <min {d, || f —g0 || 3. (5)
Let g2 =go +91. Then by (4) and (5) for all t,t" € [a,b]\U

(L t7) —g2(t ) = (F(t, t) —go(t, 1)) —g1 (1, 1)
<If(t,t) —go (L, 1)+ g1 (&, t))
<| fFE) gt t)| w-d+| .t

<| ft.t)-gott)] w.
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For allte U, by (2), (3) and (5),

(Lt —g2 (6 ) = [(F(t, ') —go (1, 1)) —g1 (1, t')|
<If(t,t") —go(t, t) g1 (&, t°)|
<| f-g0

= g2 » =] f-gof «
—>go isnot the best uniform approximation of ¥ which is a contradiction. Hence the proof.

Theorem 3.5. Let G be a subset of C([a, b] x[c, d]) and f has a strongly unique best uniform
approximation from G, then

Pc : C([a,b] x[c,b]) POW (G) is Lipschitz-continuous at f .
Proof. Let f € X = C([a,b] x[c,b]) have a strongly unique best uniform approximation gf € G
. Then there exists kf >0 such that for all g € G.

| -0 w=] o] o +ke 907 .
Then for all
feX and for all 9f €PG (f).

We obtain kf || Of *gf~|| oo§|| f*gf~|| oo*” f—of || ©
<| £-F] o+ | F-o] o] F-of|

. . . 2 _

< || f ff|| oo + || f ff|| 0 = 2|| f ff|| 0. = L =k—|s the desired constant.
f

Theorem 3.6. Let G be a finite dimensional subspace of X = C([a,bh] x][c,d]),

f e X\G and gg € G. Then the following statements are equivalent:

(i) The function gg is a strongly unique best uniform approximation of f from
G.

(ii) For every nontrivial function g € G,

min

X, YEE(F—g0 )(F(x, y) —90(x, ¥))9(x, y) <0

(iii) There exists a constant kg > 0 such that for every function g € G,

min

X,YEE(F-90 )(F(x, y) ~00 (X, Y)O(X, y) <—kf || F 00| o 9 «-.

Proof. (iii) — (i). We shall suppose that (iii) holds and let g € G. Then by (iii) there exist the
points x, y € E(f —gg) such that

(FO6 ) ~90(x, YO, ) =900, ) <—kf || F~00] «| 9-00| oo This implies that

| F-g] w=Ifxy)-g(xy)

=[F(x, y) =90 (X, ) —(9(X, ¥) —g0(x, ¥))|

K [ =gl |9 - 9ol
(%, Y) =, (X, Y)

=If(x, y) —00(x, V)| +lg(x, y) —go(x, y)| =] F-90| o+
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=|| =00 «+kf| 9-90] oo

(i) = (iii). Suppose that (iii) fails, i.e. there exists a function g1 € Gsuch that forall x,y € E(f —gp
) )

(FO6 y) ~900x V)1 (%, Y) > k£ | F-00 o | 01] oo-
Since E(f —gg) is compact, there exists an open neighborhood U of E(f —gp)
such that for all x,y e U

(FO6 y) —90(x Y))1(x, ¥) > —kf | F-g0| o | 91|

and
1

IF(x, y)—go(X,y)IEZH f—gon %- ©® -

Further, we can choose U sufficiently small such that for all x,y € U with
(F(x y) —90(x, )91 (x, y) <0
lo1 (X, ¥)| < kf || 01 || o0 (7) Since [a,b] x[c,d\U is compact, there exists a real

number ¢ > 0 such that for all
X,y €[a,b] x[c,d\U ,

Fx, y) —g0(x VI<| F-g0f -c. ®)

We may assume that without loss of generality

1
o< [ 1 T
| o) == minfe, 2t -al. ©

Let g2 =go +91. Then by (8) and (9) for all X,y €[a,b] x[c,d\U ,

F(x, y) —92(x, )= [F(X, y) —90(X, ¥) =91 (X, )|
<| F-g0f w-c+| o]
<| -] .

Again, by (6) and (7), for all x,y € U with
(F(x, y) —go(x, ¥))91(x,y) <0,

IF(x, ¥) —g2(x, Y)I = [(F(X, y) —90(X, ¥)) =91 (X, ¥)|
=[f(x, y) =90 (%, Y)I+191(X, y)|

<| f-g0| +kf| 01] oo

=|| f-go] «+kf| 92-90] .

By (6) and (9) for all x,y € U with
(F(x, y) —go(x, ¥))91(x, y) =0,

[F(x, y) —920¢ Y)I=[(F(x, y) —g0(x, ¥)) —91(x, Y)|
=[F0x y) g0 (x, y)I—lg1 (x, y)I

<[ o] =
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=| f-02| w<| f-g0| +kf| 92-90] oo.

= (i) fails. (ii) = (iii) suppose that (ii) holds.
LetF: {geG || g|| o=1}R> BRe the mapping, defined by

F@)= min (&Y= )(x.Y)
wyeEltzo) |t =g,

Since G is finite dimensional, the set {g € G : || g|| o = 1} is compact. Therefore, since by (ii) F (Q)

<0 forall{geG: || g|| o = 1}, there exists a constant kf > 0

Such that F(ﬁJs_kf for all g€ G, which proves (iii)
9l

. (i) = (i) is obvious
Hence the proof of the theorem is complete.

Theorem 3.7. Let G be a finite dmendand subspace of a real 2-Hilbert gae X . Then for every x € X,
there exists a unique best approximation from G.

Proof. Let (X, || || ) be a2-Hilbert space and let Gbe a finite dimensional subspace of X .

Let x,ye X and x # y then by parallelogram law

| x+yz] 2+ x-vz| =2 xz| 2+] vz| % (10)
et | xz] =] ye| =1,
Then by (10) || x+y,z|| 2=4|| x—y,z” 2<4
2
:“%,z <1

=> X is strictly convex. Therefore, by Theorem 3.2 there exiss a unique best approximation tox €

X\G from G.
Theorem 3.8. Let G be a subspace of a real 2-Hilbert space X, x € X\G and
go € G. Then the following statements are equivalent:

(i) The element gg is a best approximation of x from G. (ii) For all g€ G, (x—g0, 9/2) =0 zeX
\V (%, G) .
Proof. (i) = (i). Suppose that (ii) holds and let g €G. Then by (ii) || x—g,z|| 2—|| x—go,z” 2

= (x =9,x~9/2) —(x —90,Xx —090/2)
(x, x/z) +(9,9/2) —2(x, 9/2) —(x =x/z) —(90,90/2) +2(X, 90/2)

vl

0
(9 -90,9-90/2) +2(x 90,90 —9/2) =0
| 9-00.2] ?=0

That is || x—g,z|| 2” x—go,z” which proves (i)
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(i) = (ii). Suppose that (ii) fails, i.e., there exists a function g' € G such that
(x-90.9) # 0.
2
(x—0,.9'12)
" (9.9'12)
(x—go,g'/z)2
(9.9'/2)

2
<||X—gO/Z|| Which implies that gg is not a best approximation of x.

=|x-go/7[ -

Hence the proof.
Corollary 3.9. LetG = span (91, 92, ,0n) be an n-dimensional subspace of a
real 2-Hilbertspace X, x € X\G and gg =

n
statements are equivalent:Z:aigi € G. Thenthe following
i=1

(i) The element gg is a best approximation of x from G.

(ii) The coefficients a1 ,a2,an satisfy the following system of linear equations
n

> ai(gi.gj/2) = (. 9j/2), j =12, ,n.

i=1

Proof. The condition (f —gg,g/z) = 0 in Theorem 3.8 is equivalent to
(f-90.9/2) =0,j=1,2,...,n.

Since g, =iaigi,iai(gi,gj/Z)z(f,gj/z)isequivalentto(f*go,gj) =0j=12...,n.

i=1 i=1
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