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I. Introduction 
The concepts of linear 2-normed spaces were initially introduced by Gahler [5] in 1964.  Since 

then many researchers (see also [2,4]) have  studied  the geometric structure of 2-normed spaces and 

obtained various results.  This paper mainly deals with existence, characterizations and unicity of best 

uniform approximation with respect to 2-norm.  Section 2 provides some important definitions and 

results that are used in the sequel. Some main results of the set of best uniform approximation in the 

context of linear 2-normed spaces are established in Section 3. 

 

II. Preliminaries 

Definition 2.1.  Let  X  be a linear space over real numbers with dimension greater than one and let  ·, 

·   be a real-valued function on X × X  satisfying the following properties for all  x ,  y ,  z  in  X . 

(i)  x, y  = 0 if and only if x  and  y are linearly dependent,  

(ii)  x, y  = y, x  , 

(iii)  αx, y  = |α| x, y  , where  α  is a real number, 

(iv)  x, y + z  ≤ x, y  + x, z  . 

Then   ·, ·    is called a 2-norm and the linear space X    equipped with  2-norm is called a linear 2-

normed space. It is clear that 2-norm is non-negative. 

 

Example 2.2.  Let X = R3   with usual component wise vector additions and scalar multiplications.  For  

x = (a1, b1 , c1 )  and  y = (a2, b2 , c2 )  in  X , define 

x, y  = max{|a1 b2 − a2 b1 |, |b1 c2 − b2 c1 |, |a1 c2 − a2 c1|}. 

Then clearly ·, ·   is a 2-norm on X. 

Definition 2.3.  Let G be a subset of a real linear 2-normed space  X  and  x ∈ X . Then  g0 ∈ G is said 

to be a best approximation to x  from the elements of G  if 

x − g0 , z  = inf x − g, z , z ∈ X \V ,G)  

g∈G 
where V (x, G)  is the subspace generated by  x  and  G . 
 

The set of all elements of best approximation to x ∈ X f r om  G with respect to the set z is denoted by  

PG,Z (x) . 

 

Definition  2.4.  A linear 2-normed space (X, ·, · ) is said to be strictly convex if 

a + b, c  = a, c  + b, c , a, c  = b, c  = 1 and c  ∈/ V (a, b)  a = b . 

or 
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A linear 2-normed space (X, ·, · ) is said to be strictly convex if and only if 

x, z  = y, z  = 1 ,  x   y and  z ∈ X \V (x, y) 
1

( ), 1
2

x y z     

Example 2.5.   Let X = R3    with 2-norm defined as follows: For x  = (a1, b1 , c1 ) 

and y = (a2, b2 , c2 )  in  X , let 

x, y  = {(a1b2  − a2b1 )
2 + (b1c2 − b2 c1 )

2 + (a1 c2 − a2c1

1

2 2) }  

 

Then the space (X, .,. ) is strictly convex linear 2-normed space. 

Definition 2.6.  For all functions h ∈ C ([a, b] × [c, d]) 

h ∞ = {sup |h(t, t′)| : t ∈ [a, b], t′  ∈ [c, d]} . 

The  set  of  extreme  points  of  a  function   h   ∈  C ([a, b] × [c, d])   is  defined  by E(h)  =  {x ∈ [a, b], y 

∈ [c, d] : |h(x, y)| = h ∞} . Best approximation with respect to this norm is called best uniform 

approximation. 

 

Definition 2.7.    Let G be a subspace of   C ([a, b] × [c, d]) = {f: [a, b] × [c, d]R 

 

A function  g0 ∈ G is called a strongly unique best uniform approximation of 

f ∈ C ([a, b] × [c, d])  if there exists a constant  kf  > 0 such that for all  g ∈ G , 

f − g ∞ ≥ f − g0 ∞ + kf g − g0 ∞ . 

Example 2.8.   Consider the space G = span{g1 } of C ([−1, 1] × [−1, 1]) , where g1 (t, t
∗)  = t ∈ [−1, 

1]   and   f ∈  (C [−1, 1] × [−1, 1]) .   Then   (0, 1) i s  the best approximation of [1, 1]. 
 

Definition 2.9.  Let  G  be a subset of C ([a, b] × [c, d])  and let  f ∈ C ([a, b] × [c, d]) have  a unique  best  

uniform  approximation  g0   ∈ G .   Then t h e  projection  PG    : C ([a, b]×[c, d])P  OW(G) is called 

Lipchitz-continuous at f if there exists a const kf  > 0 such that for all f̄  ∈ C ([a, b] × [c, d]) and all gf̄  ∈ 

PG (f̄), gf  − gf̄ ∞  ≤ kf f − f̄ ∞ . 

 

III. Main Results 
Theorem 3.1.   Let G be a finite-dimensional subspace of a real linear 2-normed space X . Then for every 

x ∈ X, there exists a best approximation from  G . Proof.                                                       Let            

x                 ∈                X. 

Then by the definition of the infimum there exists a sequence {gn } ∈ G  such that 

,nx g z  inf , .
g G

x g z


  

This implies that there exists a constant k>0 such that for all n, 

, , , inf ,n n
g G

g z x z x g z x g z k


       

                                    , .x z k   

 

Hence for all n ,   gn , z  ≤ 2 x, z  + k . 

{gn } is  bounded  sequence.    Then t h e r e  exists a   subsequence   {gnk } of  {gn } 

converging to g0 ∈ G . 
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2 

0 , lim inf , , \ ( , )nkk g G
x g z x g x g z z X V x G

 
        

 

g0 ∈ PG,Z (x)  , wh i c h  c om p l e t e s  t h e  p r o o f .  

 

Theorem 3.2. Let G be a finite –dimensional subspace of a strictly convex linear 2- normed space X. 

Then for every x X ,there exists a unique best approximation from G. 

 

Proof. Let x X .Since G is a finite-dimensional, by Theorem 3.1 there exists an element 
0

g G    

Such that , g0 ∈ PG,Z (x)  , \ ( , ).z X V x G  

N o w w e  s h o w  t h a t , PG,Z (x) = {g0 } . For that first we prove that PG,z (x)  is convex. Let g1 , g2 ∈ 

PG,Z (x)  and  0 ≤ α ≤ 1 . Then, 

x − (αg1  + (1 − α)g2 ), z  = α(x − g1) + (1 − α)(x − g2 ), z  

  ≤ α x − g1 , z  + (1 − α) x − g2 , z  

               inf , (1 )inf ,
g G g G

x g z x g z 
 

      

               inf ,
g G

x g z


   

               , ,x g z  for all .g G  

Since  αg1  + (1 − α)g2   ∈ G ,  αg1  + (1 − α)g2   ∈ PG,Z (x) .  We shall suppose that 

g∗ ∈ PG,Z (x) . Then   1 (g0 + g∗) ∈ PG,Z (x) , which implies that 
 

0 0

1 1
{( ) ( )}, ( ),

2 2
x g x g z x g g z        

                                          = inf ,
g G

x g z


 1 

 

Since x − g0 , z  = x − g∗, z  = inf x − g, z  and  X  is strictly convex, we  

                                                                                    g∈G 
obtain 

x − g0 = x − g∗ 


   g0 = g∗ . This proves that PG,Z (x) ={g0 } . 

Theorem 3.3.   Let G be a finite-dimensional subspace of a real linear 2-normed space X w i t h  the 

property that every function with domain X  × X h a s  a unique best approximation from G . Then for all  

f1, f2 ∈ X × X , 

1 2 1 2inf , inf , , , \
g G g G

f g z f g z f f z z X G
 

      and :GP X x X G is continuous.Proof. 

Suppose that PG   is not continuous.  Then there exists an element f ∈ X ×X 

and a sequence {fn } ∈ X ×X such that {fn × gn } . 

PG,z (fn )  does not converge to  PG (f ) .   Since  G  is finite  dimensional,  there  ex- ists                  a                  

subsequence                   {fnk }         of                  {fn } such  that  PG,Z (fnk ) 0g    ∈ G ,  g0     

PG (f )  and  we shall  show that the mapping 

  inf ,
g G

f f g z


   is continuous ( )f X X   

Let 1 2, .f f X X  Then there exists a 2g G  such that  

f2  − g2 , z  = inf f2  − g, z  
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  inf g∈G f1  − g, z  ≤ f1  − g2 , z  

 ≤ f1  − f2 , z  + f2  − g2 , z   

=
1 2 2, inf ,

g G
f f z f g z


    

 inf f1  − g, z  − inf f2  − g, z  ≤ f1  − f2 , z , z ∈ X \G . 

g∈G 

This proves that  

g∈G 

1 2 1 2inf , inf , , , \
g G g G

f g z f g z f f z z X G
 

       

 

By continuity it follows that 

 

fnk  − PG (fnk ), z  = inf fnk  − g, z  

 

     inf lim ,nkg G k
f g z

 
   

 

    inf ,
g G

f g z


   

 

and      
0lim ( ), ,n G nk k

f P f z f g z    

 

lim( ( ), ( ),n G n Gk k
f P f z f P f z     

 

0g and ( )GP f are two distinct best approximation of f and G which contradicts the uniqueness of best approximation. 

 

Therefore :GP X X G   is continuous. 

 

A 2 –functional is a real valued mapping with domain A C with A and C  are linear manifolds of a 2- normed space X. 

 

 

A linear 2- functionals is 2- functional such that  

 

(i) ( , ) ( , ) ( , ) ( , ) ( , )F a c b d F a b F a d F c b F c d       

 

(ii) ( , ) ( , )F a b F a b   . 

 

F is called a bounded 2-functional if there is a real constant 0k  such that ( , ) ,F a b k a b for all a,b in 

the domain of F and  

 

                          inf : ( , ) , , ( , ( )F k f a b k a b a b D F    

 

                                  sup ( , ) : , 1,( , ) ( )f a b a b a b D F    
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( , )

sup : , 0, ( , ) ( )
,

f a b
a b a b D F

a b

  
   

  

 

 

Theorem 3.4.  Let G be a subspace of C ([a, b] × [a, b]) ,  f ∈ C ([a, b] × [a, b])  and 

g0 ∈ G. Then the following statements are equivalent: 

((i)  The function  g0   is a best uniform approximation of f from  G . (ii)  For every function g ∈ G, 

min 

t,t∗ ∈E(f −g0 )f (t, t
∗
) − g0 (t, t

∗
)) (g(t, t

∗
)) ≤ 0 

 

Proof. (ii)     (i).  Suppose that (ii) holds and let g ∈ G .  Then by (ii) there exist the points t, t′  ∈ E 

(f − g0)  such that 

(f (t, t∗) − g0(t, t∗))(g(t, t∗) − g0 (t, t
∗)) ≤ 0. Then we have 

 

f − g ∞ ≥ |f (t, t
∗
) − g(t, t

∗
)| 

= |f (t, t
∗
) − g0(t, t

∗
) + g0(t, t

∗
) − g(t, t

∗
)| 

= |f (t, t
∗
) − g0(t, t

∗
)| + |g(t, t

∗
) − g0 (t, t

∗
)| 

≥ f (t, t
∗
) − g0 (t, t

∗
) ∞ 

 

which shows that (i) holds. 

 

(i)     (ii).  Suppose that (i) holds and assume that (ii) fails. Then there exists a function  g1 ∈ G such 

that for all t, t∗  ∈ E(f − g0) , (f (t, t∗) − g0(t, t∗))g1(t, t∗) > 0 . Since E(f − g0)  is compact,  there  exists a 

real number   c > 0  such that for all t, t∗  ∈ E(f − g0 ) 

(f (t, t
∗
) − g0(t, t

∗
))g1(t, t

∗
) > c.                                    (1) 

 

Further, there  exists  an  open  neighborhood   U  of  E(f − g0 )  such  that for all 

t, t∗  ∈ U ,andc(f (t, t
∗
) − g0 (t, t

∗
))g1 (t, t

∗
) >2    (2) 

|f (t, t
∗
) − g0 (t, t

∗
)| ≥2 

f − g0 ∞                                        (3)
 

Since [ a, b]\U   is compact, there exists a real number   d > 0 s u c h  that for all 

t, t∗  ∈ [a, b]\U , 

|f (t, t
∗
) − g0(t, t

∗
)| < f − g0 ∞ − d                                (4) Now we shall assume that 

 

g1 ∞ ≤ min {d, f − g0 }.                                     (5) 

Let  g2 = g0 + g1 . Then by (4) and (5) for all t, t∗  ∈ [a, b]\U , 

 

|f (t, t
∗
) − g2 (t, t

∗
)| = |(f (t, t

∗
) − g0(t, t

∗
)) − g1 (t, t

∗
)| 

≤ |f (t, t
∗
) − g0 (t, t

∗
)| + |g1 (t, t

∗
)| 

≤ f (t, t
∗
) − g0 (t, t

∗
) ∞ − d + g1 (t, t

∗
)  

                                    ≤ f (t, t
∗
) − g0 (t, t

∗
) ∞. 
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For all t ∈ U, by (2), (3) and (5), 

 

|f (t, t
∗
) − g2 (t, t

∗
)| = |(f (t, t

∗
) − g0 (t, t

∗
)) − g1 (t, t

∗
)| 

≤ |f (t, t
∗
) − g0(t, t

∗
)| − |g1 (t, t

∗
)| 

                                            ≤ f − g0 ∞. 

 

 f − g2 ∞ ≤ f − g0 ∞ 

 

g0  is not the best uniform approximation of f which is a contradiction.  Hence the proof. 

 

Theorem 3.5.  Let G be a subset of C ([a, b] × [c, d]) and  f has a strongly unique best uniform 

approximation from  G , then 

 

PG  : C ([a, b] × [c, b]) POW (G) i s  Lipschitz-continuous at f . 

Proof.   Let   f  ∈  X   = C ([a, b] × [c, b])   have  a  strongly  unique  best  uniform approximation  gf  ∈ G 

. Then there exists  kf  > 0 such that for all  g ∈ G. 

 

f − g ∞ ≥ f − gf ∞ + kf g − gf ∞ . 

Then for all 

f̃  ∈ X  and for all  gf̃  ∈ PG (f̃) . 

 

We obtain   kf gf  − gf̃ ∞  ≤ f − gf̃ ∞ − f − gf ∞ 

≤ f − f̃ ∞ + f̃  − gf̃ ∞ − f − gf ∞ 

≤ f − f̃ ∞ + f − f̃ ∞  = 2 f − f̃ ∞.
2

f

f

L
k

 is the desired constant.       

Theorem 3.6.   Let G be a finite dimensional subspace of X = C ([a, b] × [c, d]) , 

f ∈ X \G  and  g0 ∈ G . Then the following statements are equivalent: 

 

(i)  The function  g0   is a strongly unique best uniform approximation of f from 

G . 

(ii)  For every nontrivial function g ∈ G, 

min 

x,y∈E(f −g0 )(f (x, y) − g0 (x, y))g(x, y) < 0 

(iii)  There exists a constant  kf  > 0 such that for every function  g ∈ G , 

min 

x,y∈E(f −g0 )(f (x, y) − g0 (x, y))g(x, y) ≤ −kf f − g0 ∞ g ∞ . 

 

Proof. (iii)     (i).  We shall suppose that (iii) holds and let g ∈ G.  Then by (iii) there exist the 

points x, y ∈ E(f − g0 )  such that 

(f (x, y) − g0(x, y))(g(x, y) − g0 (x, y)) ≤ −kf f − g0 ∞ g − g0 ∞ . This implies that 

 

f − g ∞ ≥ |f (x, y) − g(x, y)| 

= |f (x, y) − g0 (x, y) − (g(x, y) − g0(x, y))| 

= |f (x, y) − g0 (x, y)| + |g(x, y) − g0 (x, y)|     ≥ f − g0 ∞ + 
0 0

0( , ) ( , )

fk f g g g

f x y g x y

 
 


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= f − g0 ∞ + kf g − g0 ∞. 

 

(i)     (iii).  Suppose that (iii) fails, i.e.  there exists a function  g1  ∈ G such that for all  x, y ∈ E(f − g0 

) , 

 

(f (x, y) − g0(x, y))g1 (x, y) > −kf f − g0 ∞ g1 ∞ . 

Since  E(f − g0 )  is compact,  there  exists an open neighborhood  U  of  E(f − g0) 

such that for all x, y ∈ U 

(f (x, y) − g0(x, y))g1 (x, y) > −kf f − g0 ∞ g1 ∞ 

 

and 

1 

|f (x, y) − g0(x, y)| ≥ 
2 

f − g0 ∞.                                 (6)
 

Further,  we can  choose  U  sufficiently  small  such  that for  all  x, y  ∈  U  with 

(f (x, y) − g0 (x, y))g1 (x, y) < 0 

|g1 (x, y)| < kf g1 ∞.                                             (7) Since [a, b] × [c, d]\U i s  compact, there exists a real 

number c  > 0 such that for all 

x, y ∈ [a, b] × [c, d]\U , 
 

|f (x, y) − g0 (x, y)| ≤ f − g0 ∞ − c.                                (8) 

 

 

We may assume that without loss of generality 

 

1 

g1 ∞ ≤  
0

1
min ,

2
c f g



 
 

 

                                  (9)
 

 

Let  g2 = g0 + g1 . Then by (8) and (9) for all x, y ∈ [a, b] × [c, d]\U , 

 

|f (x, y) − g2(x, y)| = |f (x, y) − g0(x, y) − g1 (x, y)| 

≤ f − g0 ∞ − c + g1 ∞ 

                                         ≤ f − g0 ∞. 

 

Again, by (6) and (7), for all  x, y ∈ U  with 

(f (x, y) − g0(x, y))g1 (x, y) < 0 , 

 

|f (x, y) − g2(x, y)| = |(f (x, y) − g0(x, y)) − g1 (x, y)| 

= |f (x, y) − g0 (x, y)| + |g1(x, y)| 

≤ f − g0 ∞ + kf g1 ∞ 

= f − g0 ∞ + kf g2 − g0 ∞. 

 

By (6) and (9) for all x, y ∈ U with 

(f (x, y) − g0(x, y))g1 (x, y) ≥ 0 , 

 

|f (x, y) − g2(x, y)| = |(f (x, y) − g0(x, y)) − g1 (x, y)| 

= |f (x, y) − g0 (x, y)| − |g1 (x, y)| 

                                             ≤ f − g0 ∞ 
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       f − g2 ∞ < f − g0 ∞ + kf g2 − g0 ∞ , 

 

 (i) fails. (ii)     (iii) suppose that (ii) holds. 

Let F:  {g ∈ G : g ∞=1}R         RBe the mapping, defined by 

 

0

, ( )0
0

( ( , ) ( , )) ( , )
( ) min

x y E f g

f x y g x y g x y
F g

f g 






                                                           

 

Since  G  is finite dimensional,  the set  {g ∈ G : g ∞ = 1}  is compact.  Therefore, since by (ii) F (g) 

< 0 for all {g ∈ G : g ∞ = 1} , there exists a constant  kf   > 0 

Such that 
g

F
g 

 
  
 

≤ −kf    for all  g ∈ G , wh i ch  pr oves ( i i i )  

 

( ) ( )iii ii  is obvious 

Hence the proof of the theorem is complete. 

 
 

Theorem 3.7.   Let G be  a finite dimensional subspace of a real 2-Hilbert space X . Then for every x ∈ X , 

there exists a unique best approximation from  G .  

Proof.  Let   (X, ·, · )   be a 2-Hilbert space and l et    G b e  a  finite  dimensional subspace of X . 

 

Let  x, y ∈ X  and  x   y then by parallelogram  law 

 

x + y, z
2 

+ x − y, z
2 

= 2( x, z
2 

+ y, z
2 

).                    (10) 

 Let  x, z  = y, z  = 1 . 

Then by (10)                           x + y, z
2 

= 4 x − y, z
2
< 4 

 

2

, 1
2

x y
z


                 

 

X is strictly convex.Therefore, by Theorem 3.2 there exists a unique best approximation to x ∈ 

X \G  from  G . 
Theorem 3.8.  Let  G  be a subspace of a real 2-Hilbert space  X ,  x ∈ X \G  and 

g0 ∈ G . Then the following statements are equivalent: 

 

(i)  The element  g0   is a best approximation of x  from  G . (ii)  For all  g ∈ G,  (x − g0 ,  g/z) = 0   z ∈ X 

\V (x, G) . 

Proof. (ii)     (i).  Suppose that (ii) holds and let g ∈G . Then by (ii)  x − g, z 2 − x − g0 , z
2 

= (x − g, x − g/z) − (x − g0, x − g0 /z) 

= (x, x/z) + (g, g/z) − 2(x, g/z) − (x − x/z) − (g0 , g0 /z) + 2(x, g0 /z) 

≥ 0 

= (g − g0 , g − g0 /z) + 2(x − g0 , g0 − g/z) ≥ 0 

= g − g0 , z
2 

≥ 0 

 

That is x − g, z  ≥ x − g0 , z  which proves (i) 
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(i)     (ii).  Suppose that (ii) fails, i.e., there exists a function g′ ∈ G such that 

(x − g0 , g
′)   0 . 

 

 

 

2

0

0

, /
/

, /

x g g z
x g g z

g g z

 
     

 

 

 =
 

 

2

2 0

0

, /
/

, /

x g g z
x g z

g g z


 

 
 

2

0 /x g z  Which implies that g0   is not a best approximation of x. 

Hence the proof. 

Corollary 3.9.   Let G = span (g1, g2 , · · ·  , gn )  be an  n -dimensional subspace of a 

real 2-Hilbert space  X ,  x  ∈ X \G  and  g0  = 

statements are equivalent:
1

n

i i

i

a g G


 .   Then the following 

 

(i)  The element  g0   is a best approximation of x from  G . 

(ii)  The coefficients  a1 , a2 , · · · an  satisfy the following system of linear equations 

1

n

i

 ai (gi, gj /z) = (x, gj /z),  j = 1, 2, · · ·  , n. 

 

Proof. The condition (f − g0, g/z) = 0 in Theorem 3.8 is equivalent to 

(f − g0 , g/z) = 0, j = 1, 2, . . . , n. 

           

Since    0

1 1

, , / , /
n n

i i i i j j

i i

g a g a g g z f g z
 

   is equivalent to(f − g0 , gj ) = 0, j = 1, 2, . . . , n . 
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