Notions via β^* -open sets in topological spaces

J.Antony Rex Rodgio, Jessie Theodore And Hanaselvi Jansi.J

Department of mathematics, V.O. Chidambaram College, Tuticorin-62800Tamil Nadu, INDIA Ph.D. Scholar, Department of mathematics, Sarah Tucker college, Tirunelveli- 627007, Tamil Nadu, INDIA. Ph.D. Scholar, Department of mathematics, Sarah Tucker college, Tirunelveli- 627007, Tamil Nadu, INDIA.

Abstract: In this paper, first we define β^* -open sets and β^* -interior in topological spaces.J.Antony Rex Rodrigo[3] has studied the topological properties of $\hat{\eta}^*$ -derived, $\hat{\eta}^*$ -border, $\hat{\eta}^*$ -frontier and $\hat{\eta}^*$ exterior of a set using the concept of $\hat{\eta}^*$ -open following M.Caldas,S.Jafari and T.Noiri[5]. By the same technique the concept of β^* -derived, β^* -border, β^* -frontier and β^* exterior of a set using the concept of β^* -open sets are introduced.Some interesting results that shows the relationships between these concepts are brought about. **Key words:** $\hat{\eta}^*$ -border, $\hat{\eta}^*$ -frontier and $\hat{\eta}^*$ exterior, β^* -derived, β^* -border, β^* -frontier and β^* exterior

I. Introduction:

For the first time the concept of generalized closed sets was considered by Levine in 1970 [7]. After the works of Levine on semi-open sets, various mathematicians turned their attention to the generalizations of topology by considering semi open sets instead of open sets. In 2002, M. Sheik John [8] introduced a class of sets namely ω -closed set which is properly placed between the class of semi closed sets and the class of generalized closed sets. The complement of an ω -closed set is called an ω -open set. The concept of semi pre open sets was defined by Andrijevic[2] in 1986 and are also known under the name β sets.

We have already introduced a class of generalized closed sets called β^* -closed sets using semipreopen sets and ω -open sets. The complement of a β^* -closed set is called β^* -open set. In this paper the concept of of β^* -kernel, β^* -derived, β^* -border, β^* -frontier and β^* exterior of a set using the concept of β^* -open sets are introduced.

II. Preliminaries:

Throughout the paper (X, τ) , (Y, σ) and (Z, η) or simply X, Y and Z denote topological spaces on which no separation axioms are assumed unless otherwise mentioned explicitly. We recall some of the definitions and results which are used in the sequel.

Definition 2.1

A subset A of a topological space (X, τ) is called

- (i) A semi-open set [7] if $A \subset cl(int(A))$ and a semi-closed set if $int(cl(A)) \subset A$,
- (ii) A semipre open set [6] (= β -open set [1]) if A \subset cl(int(cl(A))) and a semi-pre closed set(= β closed) if int(cl(int(A))) \subset A
- (iii) ω -open [8] if cl(A) \subset U whenever A \subset U and U is semi open.
- (iv) A β^* -closed set [4] if spcl(A) \subset int(U) whenever A \subset U and U is ω -open **Theorem 2.2:**[4] Every closed(resp.open) set is β^* closed(resp. β^* open).

3.1. β^* -Open sets

Definition 3.1.1: A subset A in X is called β^* -open in X if A^c is β^* -closed in X. We denote the family of all β^* -open sets in X by $\beta^*O(\tau)$.

Definition 3.1.2: For every set $E \subset X$, we define the β^* -closure of E to be the intersection of all β^* -closed sets containing E. In symbols, $\beta^*cl(E) = \cap \{A: E \subset A, A \in \beta^*c(\tau)\}$.

Lemma 3.1.3: For any $E \subset X$, $E \subset \beta^* cl(E) \subset cl(E)$.

Proof: Follows from Theorem 2.2.

Proposition 3.1.4: Let A be a subset of a topological space X.For any $x \in X$, $x \in \beta^* cl(A)$ if and only if $U \cap A \neq \emptyset$ for every β^* -open set U containing x.

Proof: Necessity: Suppose that $x \in \beta^* cl(A)$. Let U be a β^* -open set containing x such that $A \cap U = \emptyset$ and so $A \subset U^c$. But U^c is a β^* closed set and hence $\beta^* cl(A) \subseteq U^c$. Since $x \notin U^c$ we obtain $x \notin \beta^* cl(A)$ which is contrary to the hypothesis.

Sufficiency:

Suppose that every β^* -open set of X containing x intersects A. If $x \notin \beta^* cl(A)$, then there exist a β^* closed set F of X such that $A \subset F$ and $x \notin F$. Therefore $x \in F^c$ and F^c is and β^* -open set containing x. But $F^c \cap A = \emptyset$. This is contrary to the hypothesis.

Definition 3.1.5: For any $A \subset X$, β^* int(A) is defined as the union of all β^* -open set contained in A. That is β^* int(A) = $\bigcup \{U: U \subset A \text{ and } U \in \beta^* O(\tau)\}$.

Proposition 3.1.6: For any $A \subset X$, $int(A) \subset \beta^*int(A)$.

Proof: Follows from Theorem 2..2.

Proposition 3.1.7: For any two subsets A_1 and A_2 of X.

(i) If $A_1 \subset A_2$, then β^* int $(A_i) \subset \beta^*$ int (A_2) .

(ii) β^{*} int($A_1 \cup A_2$) $\supset \beta^{*}$ int(A_1) $\cup \beta^{*}$ int(A_2).

Proposition 3.1.8: If A is β^* -open then $A=\beta^*$ int(A).

Remark 3.1.9: Converse of Proposition 3.1.8 is not true. It can be seen by the following example.

Example 3.1.10: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, X\}$ then for the set $A = \{b, c\}$, $\beta * int(A) = A$ but $\{b, c\}$ is not β^* closed.

Proposition 3.1.11: Let A be a subset of a space X. Then the following are true

(i) $(\beta^* int(A))^c = \beta^* cl(A^c)$

(ii) $(\beta^* \operatorname{int}(A)) = (\beta^* \operatorname{cl}(A^c))^c$

(iii) $\beta^* cl(A) = (\beta^* int(A^c))^c$

Proof:

(i) Let $x \in (\beta^* int(A))^c$. Then $x \notin \beta^* int(A)$. That is every β^* open set U containing x is such that $U \notin A$. Thus every β^* -open set U containing x is such that $U \cap A^c \neq \emptyset$. By proposition 3.1.4, $x \in \beta^* cl(A^c)$ and therefore $(\beta^* int(A))^c \subset \beta^* cl(A^c)$. Conversely, let $x \in \beta^* cl(A^c)$. Then by proposition 3.1.4, every β^* open set U containing x is such that $U \cap A^c \neq \emptyset$. By definition 3.1.5, $x \notin \beta^* int(A)$. Hence $x \in (\beta^* int(A))^c$ and so $\beta^* cl(A^c) \subset (\beta^* int(A))^c$. Hence $(\beta^* int(A))^c = \beta^* cl(A^c)$.

(ii) Follows by taking complements in (i).

(iii) Follows by replacing A by A^c in (i).

Proposition 3.1.12: For a subset A of a topological space X, the following conditions are equivalent.

(i) $\beta^*O(\tau)$ is closed under any union.

(ii) A is β^* closed if and only if $\beta^* cl(A) = A$.

(iii) A is β^* open if and only if β^* int(A) = A.

Proof: (i) \Rightarrow (ii): Let A be a β^* closed set. Then by the definition of β^* -closure we get β^* cl(A) = A.

Conversely, assume β *cl(A) = A. For each $x \in A^c$, $x \notin \beta$ *cl(A), by proposition 3.1.4, there exists a β * open set G_x containing x such that $G_x \cap A = \emptyset$ and hence $x \in G_x \subset A^c$. Therefore we obtain $A^c = \bigcup_{x \in A^c} G_x$. By (i) A^c is β *-open and hence A is β * closed.

(ii) \Rightarrow (iii): Follows by (ii) and proposition 3.1.11.

(iii) \Rightarrow (i): Let { $U_{\alpha}/\alpha \in \Lambda$ } be a family of β^* -open sets of X. Put U=U $_{\alpha}$ U $_{\alpha}$. For each $x \in U$, there exists $\alpha(x) \in V$ such that $x \in U_{\alpha(x)} \subset U$. Since $U_{\alpha(x)}$ is β^* -open, $x \in \beta^*$ int(U) and so U= β^* int(U). By (iii), U is β^* -open. Thus $\beta^*O(\tau)$ is closed under any union.

Proposition 3.1.13: In a topological space X, assume that $\beta^*O(\tau)$ is closed under any union. Then $\beta^*cl(A)$ is a $\beta^*closed$ set for every subset A of X.

Proof: Since β *cl(A) = β *cl(β *cl(A)) and by proposition 3.1.12, we get β *cl(A) is a β *closed set.

3.2. β-*Kernel

Definition 3.2.1: For any $A \subset X$, β *ker(A) is defined as the intersection of all β *-open sets containing A. In notation, β *ker(A) = $\cap \{U|A \subset U, U \in \beta$ *O(τ)}.

Example 3.2.2: Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{a, c\}, X\}$. Here $\beta * O(\tau) = P(X) - \{\{b\}, \{b, c\}\}$. Let $A = \{b, c\}$ then kerA = X and $B = \{a\}$, then ker $B = \{a\}$.

Definition 3.2.3: A subset A of a topological space X is a U-set if $A=\beta$ *ker(A).

Example 3.2.4: Let X={a, b, c} and $\tau = \{\emptyset, \{a\}, \{a, c\}, X\}$. Here {a}, {c}, {a, b}, {a, c} are U-sets. The set {b, c} is not a U-set.

Lemma 3.2.5: For subsets A, B and $A_{\alpha}(\alpha \in \Lambda)$ of a topological space X, the following hold,

(i) $A \subset \beta^* ker(A)$.

(ii) If $A \subset B$, then $\beta * ker(A) \subset \beta * ker(B)$.

- (iii) $\beta * ker(\beta * ker(A)) = \beta * ker(A).$
- (iv) If A is β^* -open then $A=\beta^*$ ker(A).

(v) $\beta^* \ker(\bigcup \{A_{\alpha} \land \in \land \}) \subset \bigcup \{\beta^* \ker(A_{\alpha}) \land \in \land \}$

(vi) $\beta * \ker(\cap \{A_{\alpha} | \alpha \in \Lambda\}) \subset \cap \{\beta * \ker(A_{\alpha}) | \alpha \in \Lambda\}.$

Proof:

(i) Clearly follows from Definition 3.2.1.

(ii) Suppose $x \notin \beta^* \text{ker}(B)$, then there exists a subset $U \in \beta^* O(\tau)$ such that $U \supset B$ with $x \notin U$. since $A \subset B$, $x \notin \beta^* \text{ker}(A)$. Thus $\beta^* \text{ker}(A) \subset \beta^* \text{ker}(B)$.

(iii) Follows from (i) and Definition 3.2.1.

(iv) By definition 3.2.1 and $A \in \beta^*O(\tau)$, we have $\beta^*ker(A) \subset A$. By (i) we get $A = \beta^*ker(A)$.

(v) For each $\alpha \in \Lambda$, $\beta * \ker(A_{\alpha}) \subset \beta * \ker(\bigcup_{\alpha \in \Lambda} A_{\alpha})$. Therefore we $\bigcup_{\alpha \in \Lambda} \beta * \ker(\bigcup_{\alpha \in V} A_{\alpha}) \subset \beta * \ker(\bigcup_{\alpha \in V} A_{\alpha})$.

(vi) Suppose that $x \notin \cap \{\beta^* \ker(A_\alpha) | \alpha \in \}$ then there exists an $\alpha_0 \in \Lambda$, such that $x \notin \beta^* \ker(A\alpha_0)$ and there exists a β^* -open set U such that $x \notin U$ and $A\alpha_0 \subset U$. We have $\bigcap_{\alpha \in \Lambda} A_\alpha \subset A\alpha_0 \subset U$ and $x \notin U$. Therefore $x \notin \beta^* \ker\{\cap A_\alpha \land A_\alpha \subset \Lambda \}$. $\langle \alpha \in \Lambda \}$. Hence $\cap \{\beta^* \ker(A_\alpha) \mid \alpha \in \Lambda \} \supset \beta^* \ker(\cap \{A_\alpha \mid \alpha \in \Lambda \})$.

Remark 3.2.6: In (v) and (vi) of Lemma 3.2.5, the equality does not necessarily hold as shown by the following example.

Example 3.2.7: Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, X\}$. Let $A = \{b\}$ and $B = \{c, d\}$. Here β *ker $A = \{b\}$ and β *ker $(B) = \{c, d\}$. β *ker $(A) \cup \beta$ *ker $B = \{b\} \cup \{b\} \cup \{c, d\} = \{b, c, d\}$. β *ker $(A \cup B) = \beta$ *ker $(\{b, c, d\}) = X$.

Let X= {a, b, c} and $\tau = \{\emptyset, \{a\}, X\}$. Let P= {a, b} and Q= {b, c}. Here $\beta * ker(P \cap Q) = \beta * ker(\{b\}) = \{b\}$. But $\beta * ker(P) \cap \beta * ker(Q) = \{a, b\} \cap X = \{a, b\}$.

Remark 3.2.8: From (iii) of Lemma 3.2.5 it is clear that β *ker(A) is a U-set and every open set is a U-set.

Lemma 3.2.9: Let $A_{\alpha}(\alpha \in \Lambda)$ be a subset of a topological space X. If A_{α} is a U-set then $(\bigcap_{\alpha \in \Lambda} A_{\alpha})$ is a U-set.

Proof: $\beta \operatorname{ker}(\bigcap_{\alpha \in \Lambda} A_{\alpha}) \subset \bigcap_{\alpha \in \Lambda} \beta \operatorname{ker}(A_{\alpha})$, by lemma 3.2.5. Since A_{α} is a U-set, we get $\beta \operatorname{ker}(\bigcap_{\alpha \in \Lambda} A_{\alpha}) \subset (\bigcap_{\alpha \in \Lambda} A_{\alpha})$. Again by (i) of lemma 2.4.28, $(\bigcap_{\alpha \in \Lambda} A_{\alpha}) \subset \beta \operatorname{ker}(\bigcap_{\alpha \in \Lambda} A_{\alpha})$. Thus $\beta \operatorname{ker}(\bigcap_{\alpha \in \Lambda} A_{\alpha}) = (\bigcap_{\alpha \in \Lambda} A_{\alpha})$ which implies $(\bigcap_{\alpha \in \Lambda} A_{\alpha})$ is U-set.

Definition 3.2.10: A subset A of a topological space X is said to be U-closed if $A = L \cap F$ where L is an U-set and F is a closed set of X.

Remark 3.2.11: It is clear that every U-set and closed sets are U-closed.

Theorem 3.2.12: For a subset A of a topological space X, the following conditions are equivalent.

(i) A is U-closed

(ii) $A = L \cap cl(A)$ where L is a U-set.

(iii) $A = \beta * ker(A) \cap cl(A).$

Proof:

(i)⇒(ii): Let A = L∩F where L is a U-set and F is a closed set. Since A⊂ F, we have cl(A)⊂ F and A⊂ L∩ cl(A)⊂ L∩ F = A. Therefore, we obtain L∩cl(A) = A.

(ii) \Rightarrow (iii): Let $A = L \cap cl(A)$ where L is a U-set. Since $A \subset L$, we have $\beta * ker(A) \subset \beta * ker(L) = L$. Therefore $\beta * ker(A) \cap cl(A) \subset L \cap cl(A) = A$. Hence $A = \beta * ker(A) \cap cl(A)$.

(iii) \Rightarrow (i): Since β *ker(A) is a U-set, the proof follows.

3.3. β*-Derived set

Definition 3.3.1: Let A be a subset of a space X. A point $x \in X$ is said to be a β^* limit point of A, if for each β^* -open set U containing x, U \cap (A-{x}) $\neq \emptyset$. The set of all β^* limit point of A is called a β^* -derived set of A and is denoted by $D_{\beta^*}(A)$.

Theorem 3.3.2.: For subsets A, B of a space X, the following statements hold

(i) $D_{\beta^*}(A) \subset D(A)$ where D(A) is the derived set of A.

(ii) If $A \subset B$, then $D_{\beta^*}(A) \subset D_{\beta^*}(B)$.

(iii) $D_{\beta^*}(A) \cup D_{\beta^*}(B) \subset D_{\beta^*}(A \cup B)$ and $D_{\beta^*}(A \cap B) \subset D_{\beta^*}(A) \cap D_{\beta^*}(B)$.

(iv) $D_{\beta*}(D_{\beta*}(A))$ - $A \subset D_{\beta*}(A)$.

(v) $D_{\beta^*}(A \cup D_{\beta^*}(A)) \subset A \cup D_{\beta^*}(A).$

Proof:

(i) Since every open set is β^* -open, the proof follows.

- (ii) Follows from definition 3.3.1.
- (iii) Follows by (i).

(iv) If $x \in D_{\beta^*}(D_{\beta^*}(A))$ -A and U is a β^* -open set containing x, then $U \cap (D_{\beta^*}(A) - \{x\}) \neq \emptyset$. Let $y \in U \cap (D_{\beta^*}(A) - \{x\}) \neq \emptyset$. Let $y \in U \cap \{A - \{y\}\}$. Then $z \neq x$ for $z \in A$ and $x \notin A$. Hence $U \cap (A - \{x\}) \neq \emptyset$. Therefore, $x \in D_{\beta^*}(A)$.

(v) Let $x \in D_{\beta^*}(A \cup D_{\beta^*}(A))$. If $x \in A$, the result is obvious. So let $x \in D_{\beta^*}(A \cup D_{\beta^*}(A))$ -A, then for an β^* -open set U containing x. $U \cap ((A \cup D_{\beta^*}(A)) - \{x\}) \neq \emptyset$. Thus $U \cap (A - \{x\}) \neq \emptyset$ or $U \cap (D_{\beta^*}(A) - \{x\}) \neq \emptyset$. By the same argument in (iv), it follows that $U \cap (A - \{x\}) \neq \emptyset$. Hence $x \in D_{\beta^*}(A)$. Therefore in either $caseD_{\beta^*}(A \cup D_{\beta^*}(A)) \subset A \cup D_{\beta^*}(A)$.

Remark 3.3.3: In general, the converse of (i) is not true. For example, Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a, b\}, X\}$. Then $\beta * O(\tau) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Let $A = \{a, b\}$ then D(A) = X and $D_{\beta}*(A) = c$. Therefore $D(A) \not\subset D_{\beta}*(A)$. **Proposition 3.3.4:** $D_{\beta}*(A \cup B) \neq D_{\beta}*(A) \cup D_{\beta}*(B)$.

Example 3.3.5: Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a, b\}, X\}$. Then $\beta * O(\tau) = P(X) - [a\}, \{b\}, \{a, b\}$. Let $A = \{a, b, d\}$ and $B = \{c\}$. Then $D_{\beta}*(A \cup B) = \{a, b\}$ and $D_{\beta}*(A) = \emptyset$, $D_{\beta}*(B) = \emptyset$.

Theorem 3.3.6: For any subset A of a space X, β *cl(A)= A \cup D_{β *}(A).

Proof: Since $D_{\beta^*}(A) \subset \beta^* cl(A)$, $A \cup D_{\beta^*}(A) \subset \beta^* cl(A)$. On the other hand, let $x \in \beta^* cl(A)$. If $x \in A$, then the proof is complete. If $x \notin A$, each β^* -open set U containing x intersects A at a point distinct from x, so $x \in D_{\beta^*}(A)$. Thus $\beta^* cl(A) \subset D_{\beta^*}(A) \cup A$ and hence the theorem.

3. 4. β-*Border

Definition 3.4.1: Let A be a subset of a space X. Then the β^* border of A is defined as $b_{\beta^*}(A) = A - \beta^* int(A)$. **Theorem.3.4.2:** For a subset A of a space X, the following statements hold.

- (i) $b_{\beta^*}(A) \subset b(A)$ where b(A) denote the border of A.
- (ii) $A = \beta * int(A) \cup b_{\beta} * (A).$
- (iii) $\beta^* int(A) \cap b_{\beta^*}(A) = \emptyset$.
- (iv) If A is β^* -open then $b_{\beta^*}(A) = \emptyset$.
- (v) $\beta *int(b_{\beta}*(A))=\emptyset$.
- $(\mathbf{vi}) \qquad b_{\beta^*}(b_{\beta^*}(A)) = b_{\beta^*}(A).$
- $(\textbf{vii}) \qquad b_{\beta*}(A) = A \cap \beta*cl(A^c).$

Proof: (i),(ii) and (iii) are obvious from the definitions of β^* interior of A and β^* -border of A where A is any subset of X.

vi) If A is β^* -open, then $A=\beta^*$ int(A). Hence the result follows.

v) If $x \in \beta^*int(b_{\beta^*}(A))$, then $x \in b_{\beta^*}(A)$. Now $b_{\beta^*}(A) \subset A$ implies $\beta^*int(b_{\beta^*}(A)) \subset \beta^*int(A)$. Hence $x \in \beta^*int(A)$ which is a contradiction to $x \in b_{\beta^*}(A)$. Thus $\beta^*int(b_{\beta^*}(A)) = \emptyset$.

vi) $b_{\beta^*}(b_{\beta^*}(A)) = b_{\beta^*}(A-\beta^*int(A)) = (A-\beta^*int(A))-\beta^*int(A-\beta^*int(A))$ which is $b_{\beta^*}(A)-\emptyset$, by (iv). Hence $b_{\beta^*}(b_{\beta^*}(A)) = b_{\beta^*}(A)$.

vii) $b_{\beta^*}(A) = A \cdot \beta^* int(A) = A \cdot (\beta^* cl(A^c))^c = A \cap \beta^* cl(A^c).$

Remark 3.4.3.: In general, the converse of (i) is not true. For example, let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$. Then β *O(τ) = $\{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Let $A = \{a, c\}$, then b_{β} *(A) = $\{a, c\} - \{a, c\} = \emptyset$ and $b(A) = \{a, c\} - \{a\} = \{c\}$. Therefore $b(A) \not\subset b_{\beta}$ *(A).

3.5 β-*Frontier

Definition 3.5.1: Let A be a subset of a space X. Then β^* -frontier of A is defined as $Fr_{\beta^*}(A)$ - β^* int(A). **Theorem 3.5.2:** For a subset A of a space X, the following statements hold

- i) $\operatorname{Fr}_{\beta^*}(A) \subset \operatorname{Fr}(A)$, where $\operatorname{Fr}(A)$ denotes the frontier of A.
- ii) $\beta * cl(A) = \beta * int(A) \cup Fr_{\beta} * (A)$
- iii) $\beta^* int(A) \cap Fr_{\beta^*}(A) = \emptyset.$
- iv) $b_{\beta*}(A) \subset Fr_{\beta*}(A)$
- v) $Fr_{\beta*}(A) = b_{\beta*}(A) \cup D_{\beta*}(A)$
- vi) If A is β^* -open, then $Fr_{\beta^*}(A) = D_{\beta^*}(A)$
- vii) $\operatorname{Fr}_{\beta*}(A) = \beta* \operatorname{cl}(A) \cap \beta* \operatorname{cl}(A^c)$
- viii) $Fr_{\beta*}(A) = Fr_{\beta*}(A^c)$
- ix) $\operatorname{Fr}_{\beta*}(\beta*\operatorname{int}(A)) \subset \operatorname{Fr}_{\beta*}(A).$
- x) $\operatorname{Fr}_{\beta*}(\beta*\operatorname{cl}(A)) \subset \operatorname{Fr}_{\beta*}(A).$

Proof:

- i) Since every open set is β^* -open we get the proof.
- ii) β^{*} int(A) \cup Fr_{β^{*}}(A)= β^{*} int(A) \cup (β^{*} cl(A)- β^{*} int(A))= β^{*} cl(A).
- iii) $\beta^* \operatorname{int}(A) \cap \operatorname{Fr}_{\beta^*}(A) = \beta^* \operatorname{int}(A) \cap (\beta^* \operatorname{cl}(A) \beta^* \operatorname{int}(A)) = \emptyset.$
- iv) Obvious from the definition.

v) $\beta^* int(A) \cup Fr_{\beta^*}(A) = \beta^* int(A) \cup b_{\beta^*}(A) \cup D_{\beta^*}(A)$, is obvious from the definition. Therefore we get $Fr_{\beta^*}(A) = b_{\beta^*}(A) \cup D_{\beta^*}(A)$.

vi) If A is β^* -open, then $b_{\beta^*}(A) = \emptyset$, then by (V)Fr_{β^*}(A) =D_{β^*}(A).

- vii) $\operatorname{Fr}_{\beta^*}(A) = \beta^* \operatorname{cl}(A) \beta^* \operatorname{int}(A) = \beta^* \operatorname{cl}(A) (\beta^* \operatorname{cl}(A^c))^c = \beta^* \operatorname{cl}(A) \cap \beta^* \operatorname{cl}(A^c).$
- viii) Follows from (vii).
- ix) Obvious.

x) $\operatorname{Fr}_{\beta^*}(\beta^*\operatorname{cl}(A)) = \beta^*\operatorname{cl}(\beta^*\operatorname{cl}(A)) - \beta^*\operatorname{int}(\beta^*\operatorname{cl}(A)) = \beta^*\operatorname{cl}(A) - \beta^*\operatorname{int}(A) = \operatorname{Fr}_{\beta^*}(A).$

In general the converse of (i) of theorem 3.5.2 is not true.

Example 3.5.3: Let X={a, b, c} and $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$. Then β *cl(τ) = { \emptyset , {b}, {c}, {b, c}, {a, c}, X}. Let A = {a, b}. Then β *cl(A)- β *int(A) = Fr_{β}*(A)=X-{a, b} = {c}. But cl(A)-int(A) = Fr(A) = X-{a} = {b,c}. Therefore Fr(A) $\not\subset$ Fr_{β *}(A).

3.6.β-*Exterior

Definition 3.6.1: β *Ext(A) = β *int(A^c) is said to be the β * exterior of A. **Theorem 3.6.2:** For a subset A of a space X, the following statements hold

- (i) $\operatorname{Ext}(A) \subset \beta^* \operatorname{Ext}(A)$ where $\operatorname{Ext}(A)$ denote the exterior of A.
- (ii) $\beta * Ext(As) = \beta * int(A^c) = (\beta * cl(A))^c$.
- (iii) $\beta * Ext(\beta * Ext(A)) = \beta * int(\beta * cl(A))$
- (iv) If $A \subset B$, then $\beta * Ext(A) \supset \beta * Ext(B)$.
- (v) $\beta^*Ext(A \cup B) \subset \beta^*Ext(A) \cup \beta^*Ext(B).$
- (vi) $\beta * Ext(A \cap B) \supset \beta * Ext(A) \cap \beta * Ext(B).$
- (vii) $\beta * Ext(X) = \emptyset$.
- (viii) $\beta * Ext(\emptyset) = X.$
- (ix) $\beta^* int(A) \subset \beta^* Ext(\beta^* Ext(A)).$
- **Proof:** (i) & (ii) follows from definition 3.6.1.

iii) β *Ext(β *Ext(A)) = β *Ext(β *int(A^c)) = β *Ext(β *cl(A)^c) = β *int(β *cl(A)).

iv)If $A \subset B$, then $A^c \supset B^c$. Hence β^* int $(A^c) \supset \beta^*$ int (B^c) and so β^* Ext $(A) \supset \beta^*$ Ext(B).

v) and (vi) follows from (iv).

(vii) and (viii) follows from 3.6.1.

ix) β *int(A) $\subset \beta$ *int(β *cl(A)) = β *int(β *int(A^c)) = β *int(β *Ext(A))^c = β *Ext(β *Ext(A)).

Proposition 3.6.3: In general equality does not hold in (i), (v) and (vi) of Theorem 2.4.49.

Example 3.6.4: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a, b\}, X\}$. Then $\beta * O(\tau) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. If $A = \{a\}$,

B={b} and C={c} then β *Ext(A) ={b}, β *Ext(B) ={a} and Ext(A) = Ø. Therefore β *Ext(A) $\not\subset$ Ext(A), β *Ext(A) $\cup \beta$ *Ext(B) $\not\subset \beta$ *Ext(A $\cup B$) and β *Ext(A $\cap B$) $\not\subset \beta$ *Ext(A) $\cap \beta$ *Ext(B).

References:

- Abd EI-Mobsef M.E., EI-Deeb S.N and Mahmoud R.A., β-open sets and β-continuous mappings, Bull.Fac.Sci.Assiut Univ., 12(1983), 77-90.
- [2]. Andrijevic D., Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [3]. Antony Rex Rodrigo. J. Some Characterizations of $\hat{\eta}^*$ closed sets and $\hat{\eta}^*$ -continuous maps in Topological and bitopological spaces, Ph.D., Thesis, Alagappa university, Karaikudi(2007)
- [4]. Antony Rex Rodrigo J,Jessie Theodore and Hana selvi Jansi,β*-Closed sets in topological spaces,International journal of mathematical Archive-3(3),2012,1065-1070
- [5]. Caldas M Jafari S., and Noiri, T., Notions via g-open sets, Kochi J. of maths (accepted)
- [6]. Dontchev. J, On generalizing semi-preopen sets. Mem. Fac. Sci. Kochi Uni. Ser. A Math., (1995), 35-48.
- [7]. Levine N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963)
- [8]. .Sheik John M., A Study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D., Thesis, Bharathiar University, Coimbatore(2002).