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Abstarct: The purpose of the study is to get some qualitative and quantitative insight into the problem of flow in 

vessels under consideration where the concentration of lubrication film of plasma is present between each red 

cells and tube wall. This film is potentially important in region to mass transfer and to hydraulic resistance, as 

well as to the relative resistance times of red cells and plasma in the vessels network. 

 

I. Introduction 
 Prothero and Burton [10,11]. It is expected that the cells are deformed elastically to enable them to pass 

through the tube which also suffer some small elastic distension.. Prothero and Buston [10] pointed out that the 

bolus of viscous plasma between two cells must perform, relative to their motion, a toroidal circulation, towards 

on the tube axis and backward near the walls. Prothero and Buston estimated from their model experimental, the 

pressure drop in the bolus of moving plasma between two red cells and deduced a contribution to over all vessels 

resistance less than that given by Poiseuille law, mainly because plasma with depleted RBC has a viscosity 

considerably lower than typical values measured for whole blood.  

               A large number of theoretical and experimental efforts have been made in the literature to explain the 

blood flow behavior when it flows through the vessels of circulatory system of the living things. To account for 

the numerous relevant and important contribution of Bayliss[2], Womeresly[18,19],  Whitemore [20], Attingn [1], 

Fung[5] and many others, mathematical modeling of blood flow has been subject to constant changes and 
modification. Above listed investigators have been used single – phase homogeneous Newtonian viscous fluid, a 

classical approach that does not account for the presence of red cells in blood while flowing the circulatory 

system. Although, this approach provides satisfactory tools to describe certain aspects of blood flow in aorta and 

large arteries, it fails to give an adequate representation of flow field, especially in the vessels of small diameter 

Srivastva and Srivastva[12-15] and Vann and Fitz-Gerald [17]. Several researcher Carmand Kurland[3],Gupta et 

al.[6], Chaturmani and Mahajan[4], Jean and Peddison[7], Jung and Cowokers[8,9] have pointed out that blood 

being a suspension of corpuscles, behave like a non-Newtonian fluid at low shear rates. Thurston [16] has 

developed a mathematical model for the flow of closely fitting incompressible elastic sphere in a tube under zero 

drag condition.  

 

II. Mathematical Analysis 
               We consider the flow of elastic incompressible sphere in a rigid tube of uniform radius. Single file flow 

of RBC surrounded by an annulus of plasma is considered. In the case of movable buoyant particle treated in the 

present study, the condition of zero drag on the particle must be satisfied in addition to the Reynolds equation. It 

can be used to eliminate leak-back (which is equal to the discharge of the fluid observed relative to a reference 

frame fixed to the particle) leaving only pressure drop as an unknown.  

The single RBC of biconcave –disk shape is deformed during the flow passage in very narrow vessels, as shown 

in figure.2.1. 
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            It is assumed that the inertial terms are negligible, the equation of motion in cylindrical polar co-ordinate 

about the axis of symmetry is  

               
𝜕𝑝

𝜕𝑧
=

𝜇

𝑟

𝜕

𝜕𝑟
 𝑟

𝜕𝑣𝑧

𝜕𝑟
                                                                           (2.2.1) 

The equation of continuity is  

               
𝜕

𝜕𝑟
 𝑟𝑣𝑟 +

𝜕

𝜕𝑧
 𝑟𝑣𝑧 = 0                                                              (2.2.2) 

where vr and vz are the radial and axial velocity respectively, μ the dynamic viscosity of fluid , p the pressure not 

varying with r. 

Boundary conditions are  

              r = R0 ;     vz = - v0 ;      vr = 0                                                      (2.2.3) 

               r = R1 ;      vz = 0  ;         vr = 0                                                    (2.2.4) 

             P(-b) – P(b) =  Δ P0 ;       h = R0 – R1                                           (2.2.5) 

For incompressible, continuity equation (2.2.2), we have  

               − 
𝜕

𝜕𝑟
 𝑟𝑣𝑟 𝑑𝑟 =  

𝜕

𝜕𝑧
 𝑟𝑣𝑧 𝑑𝑟 

Or         
𝜕

𝜕𝑧
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𝜕

𝜕𝑟
 𝑟𝑣𝑟 𝑑𝑟

𝑅0

𝑅1

𝑅0

𝑅1
       

                                  = 0 

Further,     𝑟𝑣𝑧𝑑𝑟 =
𝑅0

𝑅1
 𝐶 =  −𝑄0                                                            (2.2.6) 

where Q0 is the leak- back , given by  

                2𝜋𝑅0𝑄0 = 𝜋𝑅0
2𝑈0 − 𝜋𝑅0

2𝑉0                                                      (2.2.7) 

V0 is the average velocity of the fluid in lubrication zone.  

From equation (2.2.7), we have 

               𝑄0 =
𝑅0

2
 𝑈0 − 𝑉0                                                                        (2.2.8) 

Integrating equation (2.2.1), we get  

              𝑣𝑧 =
1

4𝜇

𝑑𝑝

𝑑𝑧
𝑟2 + 𝐴𝑙𝑜𝑔𝑟 + 𝐵                                                         (2.2.9) 

where A and B are constant to be determine, by boundary condition (2.2.3) and (2.2.4) as  
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1
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Substituting the value of A and B in equation (2.2.9), we get  

             𝑣𝑧 =
1

4𝜇

𝑑𝑝

𝑑𝑧
 𝑟2 − 𝑅1

2 +
 𝑅0
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                        (2.2.10) 

Put 𝑅0 = 𝑅1 + ℎ  in equation (2.2.10) becomes  

𝑣𝑧 =
1

4𝜇

𝑑𝑝

𝑑𝑧
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               (2.2.11)  

Integrating equation (2.2.11) and using (2.2.6), we have  
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                                                      (2.2.12) 

Under zero – drag condition, we have  

Pressure force acting on the particle + viscous stresses experienced by the particle = 0.  

i.e.          𝜋  𝑅1
2 𝑑𝑝

𝑑𝑧
𝑑𝑧 − 2𝜋𝜇  𝑅1  

𝜕𝑣𝑧

𝜕𝑟
 
𝑟=𝑅1

𝑑𝑧 = 0
𝑏

−𝑏

𝑏

−𝑏
                        (2.2.13) 

If Ω is fluid volume, then from equation (2.2.1), we have  

                
𝑑𝑝

𝑑𝑧Ω
. 𝑑Ω = µ 

1

r

𝜕

𝜕𝑟
 𝑟
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                                            (2.2.14) 
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𝑏
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                 (2.2.15) 

From equation (2.2.13) and equation (2.2.15) , we have  

               𝜋𝑅0
2  Δ P0 = −2𝜋𝜇𝑅0   

𝜕𝑣𝑧

𝜕𝑟
 
𝑟=𝑅0

𝑑𝑧
𝑏

−𝑏
                                      (2.2.16) 

Using the quantity  𝜇𝑈/𝑎 , in pressure and stress terms, the non dimensional quantities becomes,  
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ℎ
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𝑏
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  ,                                      (2.2.17) 

Velocity field vz and pressure gradient 
𝑑𝑝

𝑑𝑧
 given by equation (2.2.11) and (2.2.12) take the form,  

               𝑣𝑧
′  𝑟 ′, 𝑧′ =

1

4𝛽

𝑑𝑝 ′
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2
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                                 +𝑈′0
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                                                               (2.2.18)   

               
𝑑𝑝 ′

𝑑𝑧
= 8𝛽

 𝐶0−𝑈0 1+
1−𝑅 ′1

2

2𝑙𝑜𝑔 𝑅 ′1
  

 1−𝑅1
2   1+𝑅1+

2  1−𝑅1
2 

𝑙𝑜𝑔 𝑅1
  

                                                    (2.2.19) 

For the shake of convenience, we omit ‘`’ in proceeding expression. 

Equation (2.2.18) gives  

               
𝜕𝑉𝑧

𝜕𝑟
=

1

4𝛽

𝑑𝑝

𝑑𝑧
 2𝛽2𝑟 +
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2
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                                            (2.2.20) 

With the help of equation (2.2.20) and (2.2.16) , we obtain  

               Δ P0  = 4𝛽   
 2+
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2
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2
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𝛼 
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𝛼 
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As           Δ P0  = P −
𝛽

𝛼
 − 𝑃 

𝛽

𝛼
                                                                (2.2.22) 

Then  
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 𝐶0−𝑈0 1+

1−𝑅1
2
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2 
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𝛽

𝛼 

−
𝛽

𝛼 
                                       (2.2.23) 

If we put  

              𝐷11 = 4𝛽   
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1−𝑅1
2

𝑙𝑜𝑔 𝑅1
 

 1−𝑅1
2  1+𝑅1+

2  1−𝑅1
2 

𝑙𝑜𝑔 𝑅1
 

  𝑑𝑧
𝛽

𝛼 

−
𝛽

𝛼 
                                       (2.2.24) 

              𝐷12 = 4𝛽   
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𝛽
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                          (2.2.25) 

              𝐷21 = 8𝛽  
𝑑𝑧

 1−𝑅1
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                                               (2.2.26) 

             𝐷21 = 8𝛽  

 1+
 1−𝑅1

2 

2𝑙𝑜𝑔 𝑅1
 

 1−𝑅1
2  1+𝑅1+
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𝛽
𝛼 

−
𝛽

𝛼 
𝑑𝑧                                           (2.2.27) 

Then equation (2.2.21) takes the form  

              𝐷11𝐶0 + ∆𝑃0 = 𝐷12𝑈0                                                                  (2.2.28) 

              𝐷21𝐶0 + ∆𝑃0 = 𝐷22𝑈0                                                                  (2.2.29) 

For U0 = 1, above equation gives,  

              𝐶0 =
𝐷12−𝐷22

𝐷11−𝐷21
  ,       ∆𝑃0 = 𝐷12 − 𝐷11𝐶0                                        (2.2.30) 

               
𝑈0

𝑉0
=  1 − 𝐶0 

−1 ; 

Effective viscosity   

                𝜂 =
𝛼𝑈0∆𝑃0

16𝑉0
                                                                                   (2.2.31) 

 

III. Result and Discussion 

We have calculated the value of  
𝑈0

𝑉0
 and 𝜂 and compared the calculated value from the results obtained by 

other authors. The results are given in the form of tables.  

Variation of  velocity field vz can be obtained from equation (2.2.18). For different values of α ( = 1.5, 1.0, 0.5) 
and β ( = 0.90, 0.95,0.99), the variation of vz with respect to gap thickness H have been shown in the table s 2.1 

and 2.2. 
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Table – 2.1 
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