Strongly Unique Best Simultaneous Coapproximation in Linear 2-Normed Spaces

R.Vijayaragavan

School of Advanced Sciences V I T University Vellore-632014, Tamilnadu, India.

Abstract: This paper deals with some fundamental properties of the set of strongly unique best simultaneous coapproximation in a linear 2-normed space.

AMS Subject classification: 41A50,41A52,41A99, 41A28.

Keywords: Linear 2-normed space, strongly unique best coapproximation, best Simultaneous coapproximation and strongly unique best simultaneous coapproximation.

I. Introduction

The problem of simultaneous approximation was studied by several authors. Diaz and Mclaughlin [2,3], Dunham [4] and Ling, et al. [12] have discussed the simultaneous approximation of two real-valued functions defined on a closed interval. Many results on best simultaneous approximation in the context of normed linear space under different norms were obtained by Goel, et al. [9,10], Phillips, et al. [16], Dunham [4], Ling, et al. [12] and Geetha S. Rao, et al. [5,6,7]. Strongly unique best simultaneous approximation are investigated by Laurent, et al. [11]. D.V.Pai, et al. [13,14] studied the characterization and unicity of strongly unique best simultaneous approximation in normed linear spaces. The problem of best simultaneous coapproximation in a normed linear space was introduced by Geetha S.Rao, et al. [8]. The notion of strongly unique best simultaneous coapproximation in the context of linear 2-normed space is introduced in this paper. Section 2 provides some important definitions and results that are used in the sequel. Some fundamental properties of the set of strongly unique best simultaneous coapproximation with respect to 2-norm are established in Section 3.

II. Preliminaries

Definition 2.1. [1] Let X be a linear space over real numbers with dimension greater than one and let $\|k\|$, $\|k\|$ be a real-valued function on $X \times X$ satisfying the following properties for every x, y, z in X.

- (i) $\|\mathbf{x}, \mathbf{y}\| = 0$ if and only if \mathbf{x} and \mathbf{y} are linearly dependent, (ii) $\|\mathbf{x}, \mathbf{y}\| = \|\mathbf{y}, \mathbf{x}\|$,
- (iii) $\| \alpha x, y \| = |\alpha| \| x, y \|$, where α is a real number,
- (iv) $\| x, y + z \| \le \| x, y \| + \| x, z \|$.

Then $\|., .\|$ is called a 2-norm and the linear space X equipped with the 2-norm is called a linear 2-normed space. It is clear that 2-norm is non negative.

The following important property of 2-norm was established by Cho [1].

Theorem 2.2. [1] For any points $a, b \in X$ and any $\alpha \in R$, $\|a, b\| = \|a, b + \alpha a\|$.

Definition 2.3. Let G be a non-empty subset of a linear 2-normed space X. An element $g_0 \in G$ is called a strongly unique best coapproximation to $x \in X$ from G, if there exists a constant t > 0 such that for every $g \in G$,

$$\parallel g - g_0, k \parallel \leq \parallel x - g, k \parallel - t \parallel x - g_0, k \parallel$$
, for every $k \in X \setminus [G, x]$.

Definition 2.4. Let G be a non-empty subset of a linear 2-normed space X. An element $g_0 \in G$ is called a best simultaneous coapproximation to $x_1, \cdots, x_n \in X$ from G, if for every $g \in G$,

$$\parallel g-g_0,k\parallel \leq \max\{\parallel x_1-g,k\parallel,\cdots,\parallel x_n-g,k\parallel \}\,, \text{ for every } k\in X\setminus [G,x_1,\cdots,x_n].$$

The definition of strongly unique best simultaneous coapproximation in the context of linear

2-normed space is introduced for the first time as follows:

Definition 2.5. Let G be a non-empty subset of a linear 2-normed space X. An element $g_0 \in G$ is called a strongly unique best simultaneous coapproximation to $x_1, \dots, x_n \in X$ from G, if there exists a constant t > 0 such that for every $g \in G$,

where $[G,x_1,\cdots,x_n]$ represents a linear space spanned by elements of G and x_1,\cdots,x_n . The set of all elements of strongly unique best simultaneous coapproximations to $x_1,\cdots,x_n\in X$ from G is denoted by $W_G(x_1,\cdots,x_n)$.

The subset G is called an existence set if $W_G(x_1,\cdots,x_n)$ contains at least one element for every $x\in X$. G is called a uniqueness set if $W_G(x_1,\cdots,x_n)$ contains at most one element for every $x\in X$. G is called an existence and uniqueness set if $W_G(x_1,\cdots,x_n)$ contains exactly one element for every $x\in X$.

For the sake of brevity, the terminology subspace is used instead of a linear 2-normed subspace. Unless otherwise stated all linear 2-normed spaces considered in this paper are real linear 2-normed spaces and all subsets and subspaces considered in this paper are existence subsets and existence subspaces with respect to strongly unique best simultaneous coapproximation.

III. Some Fundamental Properties Of $W_g(X_1, \dots, X_n)$

Some basic properties of strongly unique best simultaneous coapproximation are obtained in the following Theorems.

Theorem 3.1. Let G be a subset of a linear 2-normed space X and $x_1, \dots, x_n \in X$. Then the following statements hold.

(i) $W_G(x_1, \dots, x_n)$ is closed if G is closed. (ii) $W_G(x_1, \dots, x_n)$ is convex if G is convex. (iii) $W_G(x_1, \dots, x_n)$ is bounded.

Proof. (i). Let G be closed.

Let $\{g_m\}$ be a sequence in $W_G(x_1, \dots, x_n)$ such that $g_m \to \tilde{g}$.

To show that $W_G(x_1, \dots, x_n)$ is closed, it is sufficient to show that

 $W_G(x_1, \dots, x_n)$.

 $\tilde{g} \in Since \ G$ is closed, $\{g_m\} \in G$ and $g_m \rightarrow$

 \tilde{g} , we have $\tilde{g} \in G$. Since $\{g_m\} \in$

 $W_G(x_1, \dots, x_n)$, we have for all $k \in X \setminus [G, x_1, \dots, x_n]$, $g \in G$ and for some t > 0 that

$$\| g - g_{\mathbf{m}}, k \| \le \max \{ \| x_1 - g, k \|, \dots, \| x_n - g, k \| \} - t \max \{ \| x_1 - g_{\mathbf{m}}, k \|, \dots, \| x_n - g_{\mathbf{m}}, k \| \}$$

$$\Rightarrow \| g - \tilde{g}, k \| - \| g_m - \tilde{g}, k \| \le \max\{ \| x_1 - g, k \|, \dots, \| x_n - g, k \| \}$$

$$-t \max\{ \| x_1 - \tilde{g}, k \| - \| g_m - \tilde{g}, k \|, \dots, \| x_n - \tilde{g}, k \| - \| g_m - \tilde{g}, k \| \}.$$
 (3.1)

Since $g_m \to \tilde{g}$, $g_m - \tilde{g} \to 0$. So $\|g_m - \tilde{g}, k\| \to 0$, as 0 and k are linearly dependent.

Therefore, it follows from (3.1) that

```
\| g - \tilde{g}, k \| \le \max \{ \| x_1 - g, k \|, \dots, \| x_n - g, k \| \}
-t \max\{\|\mathbf{x}_1 - \widetilde{\mathbf{g}}, \mathbf{k}\|, \dots, \|\mathbf{x}_n - \widetilde{\mathbf{g}}, \mathbf{k}\|\},\
for all \,g \in G\,, \ k \in X \ \backslash [G,x_1\,,\cdots\,,x_n]\, and for some \,t > 0\,, when \,m \,\to \,\infty\,. Thus
\tilde{g} \in W_G(x_1, \dots, x_n). Hence W_G(x_1, \dots, x_n) is closed.
(ii). Let G be a convex set, g_1, g_2 \in W_G(x_1, \dots, x_n) and \alpha \in (0, 1).
To show that \alpha g_1 + (1 - \alpha)g_2 \in W_G(x_1, \dots, x_n), let k \in X \setminus [G, x_1, \dots, x_n]. Then
\| g - (\alpha g_1 + (1 - \alpha)g_2), k \|
\leq \alpha \| g - g_1, k \| + (1 - \alpha) \| g - g_2, k \|
\leq \alpha (\max \{ \| x_1 - g, k \|, \dots, \| x_n - g, k \| \} 
-t \max\{\|\mathbf{x}_1 - \mathbf{g}_1, \mathbf{k}\|, \dots, \|\mathbf{x}_n - \mathbf{g}_1, \mathbf{k}\|\}\
+(1 - \alpha) \max \{ \| x_1 - g, k \|, \dots, \| x_n - g, k \| \}
-t \max\{\|\mathbf{x}_1 - \mathbf{g}_2, \mathbf{k}\|, \cdots, \|\mathbf{x}_n - \mathbf{g}_2, \mathbf{k}\|\}\
= \max \{ \| \mathbf{x}_1 - \mathbf{g}, \mathbf{k} \|, \dots, \| \mathbf{x}_n - \mathbf{g}, \mathbf{k} \| \}
-t \max\{\|\alpha x_1 - \alpha g_1, k\| \|\alpha x_n - \alpha g_1, k\| \}
+ \max \{ \| (1 - \alpha)x_1 - (1 - \alpha)g_2, k \|, \dots, \| (1 - \alpha)x_n - (1 - \alpha)g_2, k \| \} 
= \max \{ \| \mathbf{x}_1 - \mathbf{g}, \mathbf{k} \|, \dots, \| \mathbf{x}_n - \mathbf{g}, \mathbf{k} \| \}
-t \max\{\|x_1 - (\alpha g_1 + (1 - \alpha)g_2), k\|, \dots, \|x_n - (\alpha g_1 + (1 - \alpha)g_2, k\|\}.
Thus \alpha g_1 + (1-\alpha)g_2 \in W_G(x_1, \cdots, x_n). Hence W_G(x_1, \cdots, x_n) is convex.
(iii). To show that W_G(x_1, \dots, x_n) is bounded, it is sufficient to show for arbitrary g_0, \tilde{g}_0 \in
W_G(x_1, \dots, x_n) that \|g_0 - \tilde{g}_0, k\| < c for some c > 0, since \|g_0 - \tilde{g}_0, k\| < c implies
that
                  sup
g_0, \tilde{g}_0 \in W_G(x_1, \dots, x_n)
finite. \parallel g_0 - \tilde{g}_0, k \parallel is finite and hence the diameter of W_G(x_1, \dots, x_n) is
Let g_0, \tilde{g}_0 \in W_G(x_1, \dots, x_n). Then there exists a constant t > 0 such that for every
g \in G and k \in X \setminus [G, x_1, \dots, x_n],
\| g - g_0, k \| \le \max\{ \| x_1 - g, k \|, \dots, \| x_n - g, k \| \}
           -t \max\{\|\mathbf{x}_1 - \mathbf{g}_0, \mathbf{k}\|, \dots, \|\mathbf{x}_n - \mathbf{g}_0, \mathbf{k}\|\}
\|g - \tilde{g}_0, k\| \le \max\{\|x_1 - g, k\|, \dots, \|x_n - g, k\|\}
-t \max\{\|x_1 - \tilde{g}_0, k\|, \dots, \|x_n - \tilde{g}_0, k\|\}.
Now,
\| x_1 - g_0, k \| \le \| x_1 - g, k \| + \| g - g_0, k \|
\leq 2 \max \{ \| x_1 - g, k \|, \dots, \| x_n - g, k \| \}
                                         -\mathsf{t}\max\{\left\| \ x_1 \ -\mathsf{g}_0,\mathsf{k} \ \right\|,\cdots,\left\| \ x_n -\mathsf{g}_0,\mathsf{k} \ \right\|\}.
```

$$\Rightarrow \| x_1 - g_0, k \| \le$$

$$\begin{split} & \max \left\{ \left\| \begin{array}{cc} x_1 - g, k \, \left\|, \cdots, \, \right\| \, x_n - g, k \, \right\| \right\}, \text{ for all } g \in G. \\ & \text{Hence } \left\| \begin{array}{cc} x_1 - g_0, k \, \right\| \leq 1 + t \, \overline{d,} \end{split} \end{split}$$

where d = inf max { \parallel x₁ - g,k \parallel , ..., \parallel x_n - g,k \parallel }. g \in G

2

Similarly,
$$\|x_1 - \tilde{g}_0, k\| \le 1 + t^d$$
.

Therefore, it follows that

$$\left\| \begin{array}{ll} g_0 - \widetilde{g}_0, k \, \, \right\| & \leq & \left\| \begin{array}{ll} g_0 - x_1 \, , k \, \, \right\| + \left\| \begin{array}{ll} x_1 \, - \widetilde{g}_0, k \, \, \right\| \\ & \leq & \frac{4}{1+t} \, d \\ & = C \, \, . \end{array} \right.$$

Whence $W_G(x_1, \dots, x_n)$ is bounded.

Let $\, X \,$ be a linear2-normed space, $\, x \in X \,$ and $\, [x] \,$ denote the set of all scalar multiplications of x .

i.e.,
$$[x] = {\alpha x : \alpha \in R}$$
.

Theorem 3.2. Let G be a subset of a linear 2-normed space $X, x_1, \dots, x_n \in X$ and $k \in X \setminus [G, x_1, \dots, x_n]$. Then the following statements are equivalent for every $y \in [k]$.

- (i) $g_0 \in W_G(x_1, \dots, x_n)$.
- (ii) $g_0 \in W_G(x_1 + y, \dots, x_n + y)$. (iii) $g_0 \in W_G(x_1 y, \dots, x_n y)$.
- $(iv) \quad g_0 + y \in W_G \, (x_1 \ + y, \cdots, x_n + y) \; . \; (v) \quad g_0 + y \in W_G \, (x_1 \ y, \cdots, x_n y) \; . \; (vi) \quad g_0 y \in W_G \, (x_1 \$
- $(x_1 + y, \cdots, x_n + y) \cdot (vii) \quad g_0 y \in W_G(x_1 y, \cdots, x_n y) \cdot (viii) \quad g_0 + y \in W_G(x_1, \cdots, x_n) \cdot$
- (ix) $g_0 y \in W_G(x_1, \dots, x_n)$.

Proof. The proof follows immediately by using Theorem 2.2.

Theorem 3.3. Let G be a subspace of a linear 2-normed space X, x_1 , \cdots , $x_n \in X$ and $k \in X \setminus [G, x_1, \cdots, x_n]$. Then

$$\begin{split} g_0 \in W_G\left(x_1\,,\cdots,x_{\boldsymbol{n}}\right) &\Leftrightarrow g_0 \in W_G\left(\alpha^{\boldsymbol{m}}x_1\,+ (1-\alpha^{\boldsymbol{m}})g_0\,,\cdots,\alpha^{\boldsymbol{m}}x_{\boldsymbol{n}} + (1-\alpha^{\boldsymbol{m}})g_0\right), \\ &\quad \text{for all } \alpha \in R \text{ and } m=0,1,2,\cdots. \end{split}$$

Proof. Claim:

$$g_0 \in W_G\left(x_1\,,\cdots,x_n\right) \Leftrightarrow g_0 \in W_G\left(\alpha x_1 + (1-\alpha)g_0\,,\cdots,\alpha x_n + (1-\alpha)g_0\,\right), \text{ for all } \alpha \in R.$$

Let $g_0 \in W_G(x_1, \dots, x_n)$. Then

$$\begin{split} & \left\| \left\| g - g_0, k \right\| \leq \max \left\{ \left\| \right\| x_1 - g, k \right\|, \cdots, \left\| \right\| x_n - g, k \right\| \right\} - t \max \left\{ \left\| \right\| x_1 - g_0, k \right\|, \cdots, k \left\| x_n - g_0, k \right\| \right\}, \\ & \text{for all } g \in G \ \text{ and for some } t > 0 \ . \end{split}$$

$$\Rightarrow \| \alpha g - \alpha g_0, k \| \leq \max \{ \| \alpha x_1 - \alpha g, k \|, \cdots, \| \alpha x_n - \alpha g, k \| \}$$

$$-t \max\{ \| \alpha x_1 - \alpha g_0, k \|, \cdots, \| \alpha x_n - \alpha g_0, k \| \}, \text{ for every } g \in G.$$

$$\Rightarrow \| \alpha \left(\frac{(\alpha - 1)g_0 + g}{\alpha} \right) - \alpha g_0, k \|$$

$$\leq \max \left\{ \left\| \alpha x_{1} - \alpha \left(\frac{(\alpha - 1)g_{0} + g}{\alpha} \right), k \right\|, \dots, \left\| \alpha x_{n} - \alpha \left(\frac{(\alpha - 1)g_{0} + g}{\alpha} \right), k \right\| \right\}$$

$$- \tan \left\{ \left\| \alpha x_{1} - \alpha g_{0}, k \right\|, \dots, \left\| \alpha x_{n} - \alpha g_{0}, k \right\| \right\},$$

$$(\alpha - 1)g_0 + g$$

 $\begin{array}{l} \text{for all } g \in G \text{ and } \alpha = 0, \text{ since} \\ \in G. \end{array}$

$$\Rightarrow \| g - g_0, k \| \le \max \{ \| \alpha x_1 + (1 - \alpha)g_0 - g, k \|, \cdots, \| \alpha x_n + (1 - \alpha)g_0 - g, k \| \} - t \max \{ \| \alpha x_1 + (1 - \alpha)g_0 - g_0, k \|, \cdots, \| \alpha x_n + (1 - \alpha)g_0 - g_0, k \| \}$$

$$\Rightarrow$$
 g0 \in WG $(\alpha x_1 + (1 - \alpha)g_0, \dots, \alpha x_n + (1 - \alpha)g_0)$, when $\alpha \neq 0$.

If $\alpha = 0$, then it is clear that $g_0 \in W_G(\alpha x_1 + (1 - \alpha)g_0, \dots, \alpha x_n + (1 - \alpha)g_0)$.

The converse is obvious by taking $\alpha = 1$. Hence the claim is true. By repeated application of the claim the result follows.

Corollary 3.4. Let G be a subspace of a linear 2-normed space X, $x_1, \dots, x_n \in X$ and $k \in X \setminus [G, x_1, \dots, x_n]$. Then the following statements are equivalent for every $y \in [k]$, $\alpha \in R$ and $m = 0, 1, 2, \dots$

(i)
$$g_0 \in W_G(x_1, \dots, x_n)$$
.

$$\begin{array}{ll} \text{(ii)} & g_0 \in \mathrm{WG}\,(\alpha^m x_1 \ + (1 - \alpha^m) g_0 \ + y, \cdots, \alpha^m x_n + (1 - \alpha^m) g_0 \ + y) \ . \text{(iii)} & g_0 \in \mathrm{WG}\,(\alpha^m x_1 \ + (1 - \alpha^m) g_0 \ - y, \cdots, \alpha^m x_n \ + (1 - \alpha^m) g_0 \ - y) \ . \end{array}$$

(ix)
$$g_0 - y \in W_G(\alpha^m x_1 + (1 - \alpha^m)g_0, \dots, \alpha^m x_n + (1 - \alpha^m)g_0)$$
.

Proof. The proof follows from simple application of Theorem 2.2 and the Theorem 3.3.

Theorem 3.5. Let G be a subset of a linear 2-normed space X, $x_1, \dots, x_n \in X$ and $k \in X \setminus [G, x_1, \dots, x_n]$. Then

$$g_0 \in W_G(x_1, \dots, x_n) \Leftrightarrow g_0 \in W_{G+\lceil k \rceil}(x_1, \dots, x_n).$$

Proof. The proof follows from simple application of Theorem 3.2.

A corollary similar to that of Corollary 3.4 is established next as follows:

 $\textbf{Corollary 3.6.} \quad \text{Let } G \ \text{ be a subspace of a linear 2-normed space } X, \quad x_1\,,\cdots\,,x_n \ \in \ X \ \text{and} \quad k \ \text{and} \quad K \ \in \ X \ \text{and} \quad X \ \text{and}$

 $X \setminus [G,x_1,\cdots,x_n]$. Then the following statements are equivalent for every $y \in [k], \alpha \in R$ and $m=0,1,2,\cdots$

(i) $g_0 \in W_{G+[k]}(x_1, \dots, x_n)$.

$$\begin{array}{ll} \text{(ii)} & g_0 \in \mathbb{W}_{G+[k]}(\alpha^m x_1 \ + (1-\alpha^m)g_0 \ + y, \cdots, \alpha^m x_n \ + (1-\alpha^m)g_0 \ + y) \ . \text{(iii)} & g_0 \in \mathbb{W}_{G+[k]} \\ \\ (\alpha^m x_1 \ + (1-\alpha^m)g_0 \ - y, \cdots, \alpha^m x_n \ + (1-\alpha^m)g_0 \ - y) \ . \end{array}$$

$$\text{(ix)} \quad \text{g0} \, - \, \text{y} \in \mathbb{W}_{G + \lceil k \rceil}(\alpha^m \, \text{x}_1 \, + (1 - \alpha^m) \text{g0} \,, \cdots, \alpha^m \, \text{x}_n \, + (1 - \alpha^m) \text{g0} \,) \,\, .$$

Proof. The proof easily follows from Theorem 3.5 and Corollary 3.4.

Proposition 3.7. Let G be a subset of a linear 2-normed space X, $x_1, \dots, x_n \in X$ and $k \in X \setminus [G, x_1, \dots, x_n]$ and $0 \in G$. If $g_0 \in W_G(x_1, \dots, x_n)$, then there exists a constant t > 0 such that

$$\|g_0, k\| \le \max\{\|x_1, k\|, \dots, \|x_n, k\|\} - t\max\{\|x_1 - g_0, k\|, \dots, \|x_n - g_0, k\|\}.$$

Proof. The proof is obvious.

Proposition 3.8. Let G be a subset of a linear 2-normed space X, $x_1, \dots, x_n \in X$ and $k \in X \setminus [G, x_1, \dots, x_n]$. If $g_0 \in W_G(x_1, \dots, x_n)$, then there exists a constant t > 0 such that for every $g \in G$.

$$\begin{split} ||x_{\mathbf{i}} - g_{\mathbf{0}}, k|| & \leq 2 \max\{||x_{\mathbf{1}} - g, k||, \cdots, ||x_{\mathbf{n}} - g, k||\} - t \max\{\left\|x_{\mathbf{1}} - g_{\mathbf{0}}, k\right\|, \cdots, \\ & \|x_{\mathbf{n}} - g_{\mathbf{0}}, k\|\}, \text{ for } i = 1, 2, \cdots, n. \end{split}$$

Proof. The proof is obvious.

Theorem 3.9. Let G be a subspace of a linear 2-normed space X and $x_1, \dots, x_n \in X$. Then the following statements hold.

 $\begin{array}{ll} \text{(i)} & W_G\left(x_1+g,\cdots,x_n+g\right)=W_G\left(x_1,\cdots,x_n\right)+g, \text{ for every } g\in G \text{ . (ii)} & W_G\left(\alpha x_1,\cdots,\alpha x_n\right)=\\ \alpha W_G\left(x_1,\cdots,x_n\right), \text{ for every } \alpha\in R \text{ .} \end{array}$

Proof. (i). Let

 $\widetilde{\mathsf{g}}$ be an arbitrary but fixed element of $\,G$.

Let $g_0 \in W_G(x_1, \dots, x_n)$. It is clear that $g_0 + \widetilde{g} \in W_G(x_1, \dots, x_n) + \widetilde{g}$.

To show that $W_G(x_1, \cdots, x_n) + \widetilde{g} \subseteq W_G(x_1 + \widetilde{g}, \cdots, x_n + \widetilde{g})$, it is sufficient to show that $g_0 + \widetilde{g} \in W_G(x_1 + \widetilde{g}, \cdots, x_n + \widetilde{g})$.

Now,

$$\begin{split} & \left\| \ g - g_0, k \ \right\| \leq \max \left\{ \left\| \ x_1 - g, k \ \right\|, \cdots, \left\| \ x_n - g, k \ \right\| \right\} \\ & - t \max \{ \left\| \ x_1 - g_0, k \ \right\|, \cdots, \left\| \ x_n - g_0, k \ \right\| \} \end{split}$$

for every $g \in G$ and for some t > 0.

$$\Rightarrow \| g - (g_0 + \tilde{g}), k \| \le \max \{ \| x_1 + \tilde{g} - g, k \|, \cdots, \| x_n + \tilde{g} - g, k \| \}$$

$$-\mathsf{t}\,\mathsf{max}\{\left\| \ x_1 \ + \widetilde{\mathsf{g}} - (\mathsf{g}_0 \ + \widetilde{\mathsf{g}}),\mathsf{k} \ \right\|, \cdots, \left\| \ x_n + \widetilde{\mathsf{g}} - (\mathsf{g}_0 \ + \widetilde{\mathsf{g}}),\mathsf{k} \ \right\|\},$$

 $\text{for every }g\in G\text{ and for some }t>0,\text{ since }g-\widetilde{g}\in G.$

Thus $g_0 + \widetilde{g} \in W_G(x_1 + \widetilde{g}, \cdots, x_n + \widetilde{g})$.

Conversely, let $g_0 + \widetilde{g} \in W_G(x_1 + \widetilde{g}, \cdots, x_n + \widetilde{g})$. To show that

$$W_G(x_1 + \tilde{g}, \dots, x_n + \tilde{g}) \subseteq W_G(x_1, \dots, x_n) + \tilde{g},$$

it is sufficient to show that $g_0 \in W_G(x_1, \dots, x_n)$. Let $k \in X \setminus [G, x_1, \dots, x_n]$. Then

$$\| g - g_0, k \| = \| g + \tilde{g} - (g_0 + \tilde{g}), k \|$$

$$\leq \max\{\|\mathbf{x}_1 + \widetilde{\mathbf{g}} - (\mathbf{g} + \widetilde{\mathbf{g}}), \mathbf{k}\|, \cdots, \|\mathbf{x}_n + \widetilde{\mathbf{g}} - (\mathbf{g} + \widetilde{\mathbf{g}}), \mathbf{k}\|\}$$
$$-t\max\{\|\mathbf{x}_1 + \widetilde{\mathbf{g}} - (\mathbf{g}_0 + \widetilde{\mathbf{g}}), \mathbf{k}\|, \cdots, \|\mathbf{x}_n + \widetilde{\mathbf{g}} - (\mathbf{g}_0 + \widetilde{\mathbf{g}}), \mathbf{k}\|\},$$

for all $g \in G$ and for some t > 0, since $g + \tilde{g} \in G$.

 \Rightarrow g₀ \in W_G (x₁, ..., x_n). Thus the result follows. (ii). The proof is similar to that of (i).

Remark 3.10. Theorem 3.9 can be restated as

$$W_G(\alpha x_1 + g, \dots, \alpha x_n + g) = \alpha W_G(x_1, \dots, x_n) + g$$
, for all $g \in G$.

References

- [1] Y.J.Cho, "Theory of 2-inner product spaces", Nova Science Publications, New York, 1994.
- [2] **J.B.Diaz** and H.W.McLaughlin, On simultaneous Chebyshev approximation of a set of bounded complex-valued functions, J.Approx Theory, **2** (1969), 419-432.
- [3] **J.B.Diaz** and H.W.McLaughlin, On simultaneous Chebyshev approximation and Chebyshev approximation with an additive weight function, **J.** Approx. Theory, **6** (1972), 68-72.
- [4] **C.B.Dunham**, Simultaneous Chebyshev approximation of functions on interval, Proc.Amer.Math.Soc., **18** (1967), 472-477.
- [5] Geetha S.Rao, Best coapproximation in normed linear spaces in Approximation Theory, V.C.K.Chui, L.L.Schumaker and J.D.Ward (eds.), Academic Press, New York, 1986,535-538.
- [6] Geetha S.Rao and K.R.Chandrasekaran, Best coapproximation in normed linear spaces with property (Λ), Math. Today, 2 (1984), 33-40.
- [7] Geetha S.Rao and K.R.Chandrasekaran, Characterizations of elements of best coapproximation in normed linear spaces, Pure Appl. Math. Sci., 26(1987), 139-147.
- [8] Geetha S.Rao and R. Saravanan, Best simultaneous coapproximation, Indian J. Math., 40 No.3, (1998), 353-362.
- [9] D.S.Goel, A.S.B.Holland, C.Nasim and B.N.Sahney, On best simultaneous approximation in normed linear spaces. Canad. Math. Bull., 17 (No. 4) (1974), 523-527.
- [10] D.S.Goel, A.S.B.Holland, C.Nasim, and B.N.Sahney, Characterization of an element of best L_p -simultaneous approximation, S.R.Ramanujan memorial volume, Madras, 1974, 10-14.
- [11] **P.J.Laurent** and D.V.Pai, Simultaneous approximation of vector valued functions, Research Report, MRR03-97, Department of Mathematics, IIT, Bombay, 1997.
- [12] W.H.Ling, H.W.McLaughlin and M.L.Smith, Approximation of random functions, AMS Notices, 22 (1975), A-161.
- [13] **D.V.Pai**, Characterization of strong uniqueness of best simultaneous approximation, in "Proceedings of the Fifth Annual Conference of Indian Society of Industrial and Applied Mathematics (ISIAM)", Bhopal, 1998.
- [14] **D.V.Pai** a n d **K.Indira**, Strong unicity in simultaneous approximation, in v"Proceedings of the Conference on Analysis, Wavelets and Applications", Feb. 12-14, 2000, being edited by H.P.Dikshit.
- [15] P.L.Papini and I. Singer, Best coapproximation in normed linear spaces, Mh. Math.88 (1979), 27-44.
- [16] **G.H.Phillips** and **B.N.Sahney**, Best simultaneous approximation in the L₁ and L₂ norms, in "Proceeding of conference on theory of Approximation at University of Calgary (1975)," Academic Press, New York.