(τ_i, τ_i) – RGB Closed Sets in Bitopological Spaces

Bushra Jaralla Tawfeeq, Dunya Mohamed Hammed

Mathematic Department, College of Education , Al – Mustansirya University

Abstract: In this paper we introduce and study the concept of a new class of closed sets called (τ_i, τ_j) -regular generalized b- closed sets (briefly (τ_i, τ_j) - rgb-closed) in bitopological spaces. Further we define and study new neighborhood namely (τ_i, τ_j) - rgb- neighbourhood (briefly (τ_i, τ_j) - rgb-nhd) and discuss some of their properties in bitopological spaces. Also, we give some characterizations and applications of it.

I. Introduction

In 1963, Kelley J. C. [16] was first introduced the concept of bitopological spaces , where X is a nonempty set and τ_i , τ_j are two topologies on X.1970 ,M.K.Signal[28] introduced some more separation axioms theses consider with bitopological spaces.1977,V.Popo.[26]introduced some properties of bitopological semi separation spaces.

In (1985), Fukutake [7] introduced and the studied the notions of generalized closed (g-closed) sets in bitopological spaces and after that several authors turned their attention towards generalizations of various concepts of topology by considering bitopological spaces. Sundaram, P. and Shiek John[29], El- Tantawy and Abu-Donia [6]introduced the concept of *w*-closed sets and generalized semi-closed (gs-closed) sets in bitopological spaces respectively.

Sheik John and Sundaram (2004),[27] introduced g*- closed sets in bitopological spaces in 2004. Jafara, S., M.Lellis Thivagar and S.Athisaya Ponmani ,(2007)[11] studied some new separation axioms using the (1,2) α -open sets in bitopological spaces. In 2007,[2] S.S.Benchalli and R.S.Wail introduced new class of closed sets called regular-weakly –closed in bitopological spaces. In (2013),[23], K.Mariappa and S.Seker introduced and the studied the notions of regular generalized b- closed sets in topological spaces.

In §2 we recollect the basic definitions which are used in this paper.

In §3 we find basic properties and characteristics of (τ_i, τ_j) – rgb closed sets ,also we provide several properties of above concept and to investigate its relationships with certain types of closed sets with some new results and examples.

In §4 We provide several properties of characterizations of (τ_i, τ_j) -rgb-closed sets (τ_i, τ_j) - rgb-open sets and (τ_i, τ_j) - rgb –nhd of a point as well as some propositions and examples that are included throughout the section.

II. Introduction And Preliminaries

If A is a subset of a topological space X with a topology τ , with then the closure of A is denoted by τ -cl(A) or cl(A), the interior of A is denoted by τ -int(A) or int(A), semi-closure (resp. pre-closure) of A is denoted by τ -scl(A) or scl(A) (resp. τ -pcl(A) or pcl(A)), semi-interior of A is denoted by τ - sint(A)or sint(A) and the complement of A is denoted by A^c.

Before entering into our work we recall the following definitions:

Definition 2.1. A subset A of a topological space (X, τ) is called: 1) an α -open set[18]if A \subseteq int(cl(int(A))).

2) a semi-open set [12] if $A \subseteq cl(int(A))$.

3) a pre-open set [13] if $A \subseteq int(cl(A))$.

4) a semi –pre-open set (β -open set)[5] if A \subseteq cl(int(cl(A))).

5) a regular open set [9] if A = I nt(cl(A)).

6)a b-open set [1]if A⊆ int(cl(A)) \cup cl(int(A))..

The semi closure [4](resp α -closure [20]) of a subset A of X denoted by scl(A)(α cl(A)) is defined to be the intersection of all semi-closed (α -closed) sets containingA. The semi interior [4] of A denoted by sint(A) is defined to be the union of all semi-open sets contained in A. If A⊆B⊆X then Cl_B (A) and Int_B (A) denote the closure of A relative to B and interior of A relative to B.

Definition 2.2 Let (X,τ) a topological space and A be a subset of X, then A is called

1) a generalized closed set [18](abbreviated g-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

2) a generalized α -closed set [21](abbreviated α -closed) if α cl(A) \subseteq U whenever A \subseteq Uand U is α -open in X.

3) α - generalized closed set [21](abbreviated α g-closed) if α cl(A) \subseteq U whenever A \subseteq U and U is open in X.

4) a generalized b-closed set [22](abbreviated gb-closed) if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

5) semi- generalized closed set [5](abbreviated sg-closed) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.

6) a generalized semi-closed set [5](abbreviated gs-closed) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X. 7) w-closed set [24] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.

8) a weakly generalized closed set [25](abbreviated wg-closed) if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

9) a semi- generalized b- closed set [10](abbreviated sgb-closed) if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is semiopen in X.

11)a strongly generalized closed set [27] (abbreviated g^* -closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.

12) a generalized gab-closed set [30](abbreviated gab closed) if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in X.

13) a regular generalized b-closed set [23](abbreviated rgb- closed) if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular -open in X.

The complements of the above mentioned sets are called their respective open sets.

Definition 2.3. A subset A of a bitopological space (X, τ_i, τ_j) is called a

1. (τ_i, τ_j) -pre- open [12] if $A \subseteq \tau_i - \operatorname{int}[\tau_j - \operatorname{cl}(A)]$ 2. (τ_i, τ_j) -semi open [20] if $A \subseteq \tau_j - \operatorname{cl}[\tau_i - \operatorname{int}(A)]$ 3. (τ_i, τ_j) - α - open [13] if $A \subseteq \tau_i - \operatorname{int}[\tau_j - \operatorname{cl}[\tau_i - \operatorname{int}(A)]]$ 4. (τ_i, τ_j) -regular open [3] if $A = \tau_i - \operatorname{int}[\tau_j - \operatorname{cl}(A)]$

Definition 2.4. A subset A of a bitopological space (X, τ_i, τ_j) is called a

1. τ_i , τ_j) – g-closed [7] if τ_j – cl(A) \subseteq Uwhenever A \subseteq U and U \in τ_i . 2. (τ_i, τ_j) – gs-closed [6] if τ_j – scl(A) \subseteq Uwhenever A \subseteq U and U \in τ_i . 3. (τ_i, τ_j) – weakly generalized closed[6]((τ_i, τ_j) – wg-closed) sets if τ_j –cl(τ_i -int(A)) \subseteq U whenever A \subseteq U and U is τ_i – open in X. 4. (τ_i, τ_j) w-closed [8] if τ_j –cl(A) \subseteq U whenever A \subseteq U and U is semi-open in τ_i . 5. (τ_i, τ_j) – g *-closed[27] if τ_j – cl(A) \subseteq U whenever A \subseteq U and U is τ_i – g-open set. 6. (τ_i, τ_j) – α g-closed [17] if τ_j – α cl(A) \subseteq U whenever A \subseteq U and U is τ_i – open in X. 7. (τ_i, τ_j) – g α -closed [17] if τ_j – α cl(A) \subseteq U whenever A \subseteq U and U is τ_i – g-open set. 8. τ_i, τ_j) – g α -closed [17] if τ_j –cl(A) \subseteq U whenever A \subseteq U and U is τ_i – g-open in X. 8. τ_i, τ_j) – g α -closed [17] if τ_j –cl(A) \subseteq U whenever A \subseteq U and U is τ_i – g-open set. 9. (τ_i, τ_j) – g*-closed[30] if τ_j – pcl(A) \subseteq Uwhenever A \subseteq U and U is τ_i – regular open set . 10. (τ_i, τ_j) – rg^{**}-closed[14] if τ_j –cl(τ_i -int(A)] \subseteq Uwhenever A \subseteq U and U is τ_i – regular open set . 11. (τ_i, τ_j) – rw-closed[15] if τ_j –cl(A) \subseteq Uwhenever A \subseteq U and U is τ_i – regular semi -open set . 12. (τ_i, τ_j) – regular weakly generalized closed[8].((τ_i, τ_j) –rwg-closed)if τ_j –cl(τ_i -int(A)] \subseteq Uwhenever A \subseteq U

and U is τ_i – regular open set.

III. (τ_i, τ_j) - RGB Closed Sets In Bitopological Spaces

In this section we introduce (τ_i, τ_j) - rgb-closed sets in bitopological spaces and study some of their properties.

Definition 3.1. Let i, $j \in \{1, 2\}$ be fixed integers. A subset A of a bitopological space (X, τ_i, τ_j) is said to be (τ_i, τ_j) – rgb closed(briefly (τ_i, τ_j) -rgb-closed) set if τ_j –bcl(A) \subseteq U whenever A \subseteq U and U is regular -open in (X, $\tau_i)$.

The family of all (τ_i, τ_j) – rgb closed sets in a bitopological space (X, τ_i, τ_j) is denoted by D^{*}RGB (τ_i, τ_j) **Remark 3.2:** By setting $\tau_1 = \tau_2$ in Definition 3.1, (τ_i, τ_i) – rgb-closed set is a rgb- closed set **Proposition 3.3:** If A is τ_j -closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j) –rgb - closed set. **Proof.** Let A be any τ_j -closed set and U be any τ_i – regular -open set containing A.Since τ_j –bcl(A) $\subseteq \tau_j$ – cl(A) \subseteq U,then τ_j –bcl(A) \subseteq U. Hence A is (τ_i, τ_j) –rgb-closed.

The converse of the above proposition need not be true as seen from the following example. **Example 3.4:** Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a,b\}, \{b\}\}$ and $\tau_j = \{X, \phi, \{a\}\}$, the set $\{b\}$ is (τ_i, τ_j) - rgb-closed but not τ_j -closed set.

Proposition 3.5: If A is (τ_i, τ_j) -b-closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j) –rgb - closed set. **Proof.** Let A be any (τ_i, τ_j) -b-closed set in (X, τ_i, τ_j) such that A \subseteq U, where U is τ_i –regular open set. Since A is (τ_i, τ_j) -b-closed which implies that τ_j –bcl(A) $\subseteq \tau_j$ –cl(A) \subseteq U, then τ_j –bcl(A) \subseteq U. Hence A is (τ_i, τ_j) –rgb-closed.

The converse of the above proposition need not be true in general, as seen from the following example. **Example 3.6:** Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a\}, \{a,c\}\}$ and $\tau_j = \{X, \phi, \{a,c\}\}$. Then the set $\{a,c\}$ is (τ_i, τ_j) -rgb-closed but not (τ_i, τ_j) -b-closed.

Proposition 3.7: If A is $\tau_j - \alpha$ -closed (resp. τ_j – semi-closed) subset of (X, τ_i, τ_j) then A is (τ_i, τ_j) - rgb-closed. **Proof**. Let A be any $\tau_j - \alpha$ -closed set in(X, τ_i, τ_j) such that A \subseteq U, where U is τ_i – regular open set. Since A is $\tau_j - \alpha$ -closed set, then τ_j –bcl(A) $\subseteq \tau_j - \alpha$ cl(A) $\subseteq \tau_j$ –cl(A) \subseteq U, so τ_j –bcl(A) \subseteq U. Therefore A is (τ_i, τ_j) -rgb-closed.

The converse of the above proposition need not be true as seen from the following example.

Example 3.8: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a, \} \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ and $\tau_j = \{X, \phi, \{b\}, \{b, c\}\}$, $\{b, c\}\}$, the set $\{c\}$ is (τ_i, τ_j) -rgb-closed but not, τ_j - α -closed.

Remark 3.9: The concept of $(\tau_i, \tau_j) - \alpha$ -closed sets and (τ_i, τ_j) – rgb-closed sets are independent of each other as seen from the following examples.

Example 3.10: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{c\}\}$ and $\tau_j = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$, the set $\{b, c\}$ is (τ_i, τ_j) - rgb-closed but not (τ_i, τ_j) - α -closed.

Example 3.11: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a, \}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$ and $\tau_j = \{X, \phi, \{a\}, \{a, c\}\}$, the set $\{a, b\}$ is $(\tau_i, \tau_i) - \alpha$ -closed sets but not (τ_i, τ_i) - rgb-closed set.

Remark 3.12: The concept of (τ_i, τ_j) - semi-closed sets and (τ_i, τ_j) - rgb-closed sets are independent of each other as seen from the following examples.

Example 3.13: Let X = {a, b, c} and τ_i = {X, φ , {b}, {b,c}} and τ_j = {X, φ , {a}}. Then the set {c} is (τ_i , τ_j)-rgb-closed but not(τ_i , τ_j)-semi-closed set.

Example 3.14: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a, \}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$ and $\tau_j = \{X, \phi, \{b\}, \{b, c\}\}$, the set $\{b\}$ is (τ_i, τ_j) - semi -closed sets but not (τ_i, τ_j) - rgb-closed set.

Remark 3.15: (τ_i, τ_j) - pre-closed sets and (τ_i, τ_j) - rgb-closed sets are independent of each other as seen from the following two examples.

Example 3.16: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a\} \{b\}, \{a, b\}\}$ and $\tau_j = \{X, \phi, \{a\}, \{b, c\}\}$, the set $\{a, b\}$ is (τ_i, τ_i) -rgb-closed but not (τ_i, τ_i) -pre- closed.

Example 3.17: Let X, τ_i and τ_j be as in Example 3.14. The set {b,c} is(τ_i, τ_j) – pre-closed but not (τ_i, τ_j) – rgb-closed.

Remark 3.18: (τ_i, τ_j) - semi –pre-closed sets (β -closed sets) and (τ_i, τ_j) – rgb-closed sets are independent of each other as seen from the following two examples.

Example 3.19: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ and $\tau_j = \{X, \phi, \{a\}, \{a, b\}\}$ the set $\{a\}$ is $(\tau_i, \tau_j) - \beta$ -closed but not (τ_i, τ_j) -rgb - closed.

Example 3.20: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{b, c\}\}$ and $\tau_j = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$, the set $\{a, c\}$ is (τ_i, τ_j) -rgb-closed but not (τ_i, τ_j) - β -closed.

Remark 3.21: The concept of (τ_i, τ_j) - rg^{**}-closed sets and (τ_i, τ_j) - rgb-closed sets are independent of each other as seen from the following example.

 $\begin{array}{l} \textbf{Example 3.22:} \ Let \ X = \{a, b, c\} \ and \ \tau_i = \{X, \phi, \{a,\} \{b\}, \{a,c\}\} \ and \ \tau_j = \{X, \phi, \{a,b\}, \{b\}\} \ . \ Then \ the \ set \ \{a\} \ is(\tau_i, \tau_j) - \ rg^{**} - \ closed \ but \ not(\tau_i, \tau_j) - \ rg^{**} - \ rg^$

Proposition 3.23: If A is (τ_i, τ_j) -g-closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j) -rgb-closed. **Proof**. Suppose that A is (τ_i, τ_j) -g-closed set U be any τ_i – regular -open set such that A \subseteq U. Since A is (τ_i, τ_j) -g-closed, then τ_i –cl(A) \subseteq U, we have τ_i –bcl(A) $\subseteq \tau_i$ –cl(A) \subseteq U.Hence A is $((\tau_i, \tau_j)$ -rgb-closed.

The converse of the above proposition need not be true as seen from the following example.

Example 3.24: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a\}, \{b, c\}\}$ and $\tau_j = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$, the set $\{a\}$ is (τ_i, τ_j) -rgb-closed but not (τ_i, τ_j) -g-closed.

Proposition 3.25: If A is (τ_i, τ_j) - g*-closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j) -rgb-closed. **Proof**. Let A be any (τ_i, τ_j) - g*-closed set and U be any τ_i - regular -open set containing A. Since A is τ_j g *-closed set and τ_j -cl(A) \subseteq U, τ_j -bcl(A) \subseteq τ_j -cl(A) \subseteq U, so τ_j -bcl(A) \subseteq U. Therefore A is (τ_i, τ_j) - rgb-closed.

The converse of the above proposition need not be true in general, as seen from the following example.

Example 3.26: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and $\tau_j = \{X, \phi, \{b, c\}\}$, the set $\{c\}$ is (τ_i, τ_j) - rgb-closed but not (τ_i, τ_j) - g * -closed.

Proposition 3.27 : If A is $(\tau_i, \tau_j) - g * p$ -closed subset of (X, τ_i, τ_j) then A is $(\tau_i, \tau_j) - gbr$ -closed. **Proof** . Assume A is $(\tau_i, \tau_j) - g * p$ -closed ,A $\subseteq U$ and U is τ_i – regular -open set. Since A is $(\tau_i, \tau_j) - gp^*$ closed set , we have $\tau_j - pcl(A) \subseteq U$ and $\tau_j - pcl(A) \subseteq \tau_j - bcl(A) \subseteq U$, $\tau_j - bcl(A) \subseteq U$. Therefore A is (τ_i, τ_j) -gbr-closed.

The following example show that the converse of the above proposition is not true : **Example 3.28:** Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_j = \{X, \phi, \{a\}\}$, the set $\{a, c\}$ is (τ_i, τ_j) - rgbclosed but not (τ_i, τ_i) - gp*closed.

Proposition 3.29: If A is (τ_i, τ_j) -gb-closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j) - rgb-closed. **Proof**. Let A be any (τ_i, τ_j) -gb-closed set in (X, τ_i, τ_j) such that A \subseteq U, where U is τ_i – regular -open set. Since A is (τ_i, τ_i) -gb-closed set, which implies that τ_i –bcl(A) \subseteq U. Therefore A is (τ_i, τ_i) - rgb-closed.

The converse of the above proposition need not be true as seen from the following example.

Example 3.30 Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a, \}, \{b\}, \{a, c\}\}$ and $\tau_j = \{X, \phi, \{a, b\}, \{b\}\}$, the set $\{a, b\}$ is (τ_i, τ_i) – rgb-closed but not (τ_i, τ_i) – gb-closed.

Proposition 3.31: If A is (τ_i, τ_j) -rw-closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j) - rgb-closed. **Proof**. Let A be any (τ_i, τ_j) -rw-closed set in (X, τ_i, τ_j) and U be any τ_i - regular open set containing A. Since A is (τ_i, τ_j) -rw-closed set, then τ_i -cl(A) \subseteq U and τ_i -bcl(A) \subseteq τ_i -cl(A) \subseteq U. Hence A is (τ_i, τ_j) - rgb-closed. The converse of the above proposition need not be true in general, as seen from the following example. **Example 3.32:** Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_j = \{X, \phi, \{a\}\}$, the set $\{b\}$ is (τ_i, τ_j) - rgb-closed but not (τ_i, τ_i) - rw-closed.

Proposition 3.33: If A is $(\tau_i, \tau_j) - \alpha g$ -closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j) -rgb-closed. **Proof**. Let A be any $(\tau_i, \tau_j) - \alpha g$ -closed set and U be any τ_i - regular open set containing A. Since A is $(\tau_i, \tau_j) - \alpha g$ -closed set, then $\tau_j - bcl(A) \subseteq \tau_j - \alpha cl(A) \subseteq U$. Therefore $\tau_j - bcl(A) \subseteq U$. Hence A is (τ_i, τ_j) - rgb-closed.

The converse of the above proposition need not be true as seen from the following example.

Example 3.34: Let X = {a, b, c} and $\tau_i = \{X, \varphi, \{b,c\}\}$ and $\tau_j = \{X, \varphi, \{b\}\}$, the set {b,c} is (τ_i, τ_j) - rgb-closed but not (τ_i, τ_j) - αg -closed.

Similarly, we prove the following Proposition:

Proposition 3.35: If A is $(\tau_i, \tau_j) - g\alpha$ -closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j) -rgb-closed but not conversely.

Example 3.36: Let X = {a, b, c} and $\tau_i = \{X, \varphi, \{a,b\}, \{c\}\}$ and $\tau_j = \{X, \varphi, \{a,b\}\}$, the set {a} is (τ_i, τ_j) - rgb-closed but not (τ_i, τ_j) - αg -closed.

Proposition 3.37: If A is (τ_i, τ_j) - g α b -closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j) - rgb -closed. **Proof**. Let A be any (τ_i, τ_j) - g α b -closed set in (X, τ_i, τ_j) such that A \subseteq U, where U is τ_i -regular open set. Since A is (τ_i, τ_j) - g α b -closed set, τ_i -bcl(A) \subseteq U. Hence A is (τ_i, τ_j) - rgb -closed.

The converse of the above proposition need not be true in general, as seen from the following example.

Example 3.38: Let X = {a, b, c} and $\tau_i = \{X, \varphi, \{a\}, \{a,c\}\}$ and $\tau_j = \{X, \varphi, \{a,b\}\}$, the set {a,b} is (τ_i, τ_j) - rgb-closed but not (τ_i, τ_j) - g α b - closed.

Proposition 3.39: If A is $(\tau_i, \tau_j) - gs$ -closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j) -rgb-closed. **Proof**. Let A be any $(\tau_i, \tau_j) - gs$ -closed set and U be any τ_i - regular -open set containing A. Since A is $(\tau_i, \tau_j) - gs$ -closed set, then $\tau_i - scl(A) \subseteq U$, so $\tau_j - bcl(A) \subseteq \tau_j - scl(A) \subseteq U$. Therefore A is (τ_i, τ_j) -rgb-closed.

The following example show that the converse of the above proposition is not true :

Example 3.40: Let X = {a, b, c} and $\tau_i = \{X, \varphi, \{a\}, \{b\}, \{a, c\}\}$ and $\tau_j = \{X, \varphi, \{a\}, \{b\}, \{a, b\}\}$, the set {a,b} is (τ_i, τ_i) - rgb-closed but not (τ_i, τ_i) - gs - closed.

Similarly, we prove the following Proposition:

Proposition 3.41: If A is (τ_i, τ_i) – sg-closed subset of (X, τ_i, τ_i) then A is (τ_i, τ_i) –rgb-closed.

The converse of the above proposition need not be true in general, as seen from the following example.

Example 3.42: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a,\} \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$ and $\tau_j = \{X, \phi, \{c\}, \{a,c\}\}$, the set $\{a\}$ is (τ_i, τ_j) - rgb -closed sets but not (τ_i, τ_j) - sg-closed set.

Proposition 3.43: If A is (τ_i, τ_j) - rg- closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j) -rgb-closed. **Proof**. Let A be any (τ_i, τ_j) - rg-closed set and U be any τ_i - regular -open set containing A. Since A is (τ_i, τ_j) - rg-closed set, then τ_i -cl(A) \subseteq U, so τ_i -bcl(A) $\subseteq \tau_i$ -cl(A) \subseteq U. Therefore A is (τ_i, τ_i) - rgb-closed.

The converse of the above proposition need not be true as seen from the following example.

Example 3.44: Let X = {a, b, c} and $\tau_i = \{X, \phi, \{b\}, \{a,c\}\}$ and $\tau_j = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$, the set {b} is (τ_i, τ_j) -rgb-closed but not (τ_i, τ_i) -rg-closed.

Proposition 3.45: If A is (τ_i, τ_j) - sgb -closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j) - rgb -closed. **Proof**. Let A be any (τ_i, τ_j) - sgb -closed set in (X, τ_i, τ_j) such that A \subseteq U, where U is τ_i -regular open set. Since A is (τ_i, τ_i) - sgb -closed set, τ_i -bcl(A) \subseteq U. Hence A is (τ_i, τ_i) - rgb -closed.

The following example show that the converse of the above proposition is not true :

Example 3.46: Let X = {a, b, c} and $\tau_i = \{X, \varphi, \{b\}, \{a, b\}\}$ and $\tau_j = \{X, \varphi, \{c\}\}$, the set {a,c} is (τ_i, τ_j) -rgb-closed but not (τ_i, τ_j) -sgb-closed.

Proposition 3.47: If A is (τ_i, τ_j) - w-closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j) -rgb-closed. **Proof**. Let A be any (τ_i, τ_j) - w-closed set and U be any τ_i - regular -open set containing A. Since A is (τ_i, τ_j) - w-closed set, then τ_i -cl(A) \subseteq U, so τ_i -bcl(A) $\subseteq \tau_i$ -cl(A) \subseteq U. Therefore A is (τ_i, τ_j) - rgb-closed.

The converse of the above proposition need not be true as seen from the following example. **Example 3.48:** Let X = {a, b, c} and $\tau_i = \{X, \varphi, \{a\}, \{b\}, \{a,c\}\}$ and $\tau_j = \{X, \varphi, \{a\}, \{b,c\}\}$, the set {a,b} is (τ_i, τ_j) - rgb-closed but not (τ_i, τ_j) - w - closed.

Similarly, we prove the following Proposition **Proposition 3.49:** If A is (τ_i, τ_j) - wg-closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j) -rgb-closed.

The converse of the above proposition need not be true as seen from the following example.

Example 3.50: Let X = {a, b, c} and $\tau_i = \{X, \phi, \{b\}\}$ and $\tau_j = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$, the set {a} is (τ_i, τ_j) – rgb-closed but not (τ_i, τ_j) - wg- closed.

Proposition 3.51: If A is (τ_i, τ_j) – rwg-closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j) –rgb-closed.

The converse of the above proposition need not be true as seen from the following example.

Example 3.52: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$ and $\tau_j = \{X, \phi, \{a\}, \{a, b\}\}$ the set $\{b\}$ is (τ_i, τ_i) - rgb-closed but not (τ_i, τ_i) - rwg- closed.

IV. Characterizations And Properties Of (τ_i, τ_j) - RGB-Closed Sets, (τ_i, τ_j) - RGB -Open Sets And (τ_i, τ_i) - RGB - Neighborhoods

In this section we introduce some characterizations of (τ_i, τ_j) – rgb -closed sets and (τ_i, τ_j) – rgb -open sets, also we define and study new neighborhood namely (τ_i, τ_j) – rgb- neighborhood (briefly (τ_i, τ_j) – rgb-nhd) and discuss some of their properties.

Definition 4.1. A subset A of bitopological space (X, τ_i, τ_j) is called (τ_i, τ_j) - rgb -open set if and only if its complement is (τ_i, τ_j) - rgb -closed in X.

The family of all (τ_i, τ_j) - rgb- open subsets of X is denoted by D^{*} RGBO (τ_i, τ_j)

Remark 4.2 Let A and B be two (τ_i, τ_j) - rgb - closed sets in (X, τ_i, τ_j) 1)The union A \cup B is not generally (τ_i, τ_j) - rgb - closed set . 2) The intersection A \cap B is not generally (τ_i, τ_i) - rgb - closed set as seen from the following examples.

Example 4.3. Let $X = \{a, b, c\}$ and $\tau_i = \{X, \varphi, \{a, b\}, \{c\}\}$ and $\tau_j = \{X, \varphi, \{a, b\}\}$, the subsets $\{a\}, \{b\}$ is (τ_i, τ_j) – rgb - closed sets but their union $\{a\} \cup \{b\} = \{a, b\}$ is not (τ_i, τ_j) – rgb - closed set.

Example 4.4. Let X = {a, b, c} and τ_i = {X, φ , {b}, {c}, {b,c}} and τ_j = {X, φ , {b}} , the subsets {a,c} , {b,c} are (τ_i, τ_i) – rgb -closed sets but their intersection {a,c} φ = {b} is not (τ_i, τ_i) – rgb -closed set.

Remark 4.5 Let A and B be two (τ_i, τ_j) – rgb - open sets in (X, τ_i, τ_j)

1) The union A \cup B is not generally (τ_i, τ_j) – rgb – open set.

2) The intersection A \cap B is not generally(τ_i, τ_j)- rgb - open set as seen from the following examples.

Example 4.6. Let X={a, b, c} and $\tau_i = \{X, \varphi, \{b\}, \{c\}, \{b,c\}\}$ and $\tau_j = \{X, \varphi, \{b\}\}$, the subsets {a}, {c}is(τ_i, τ_j) – rgb - open sets but their union {a}U{c}={a,c} is not (τ_i, τ_j) – rgb - open set.

Example 4.7. Let X = {a, b, c} and τ_i = {X, φ , {a,b}, {c}} and τ_j = {X, φ , {a,b}}, the subsets {a,c}, {b,c}is(τ_i, τ_j) – rgb - open sets but their intersection {a,c}U{b,c}={c} is not (τ_i, τ_j) – rgb - open set.

Proposition 4.8: If a set G is (τ_i, τ_j) -rgb-closed set in (X, τ_i, τ_j) , then τ_j -cl(A)contains no non-empty τ_i -regular -closed set.

Proof. Let G be(τ_i, τ_j)-rgb-closed and F be a τ_i - regular -closed set such that $F \subseteq (\tau_j - bcl(G))^c$. Since G is (τ_i, τ_j) -rgb-closed, then $G \in D^*$ RGB (τ_i, τ_j) which implies that $\tau_j - bcl(G) \subseteq F^c$. Then $F \subseteq \tau_j - bcl(G) \cap (\tau_j - bcl(G))^c$. Therefore F is empty.

The converse of the above theorem need not be true as seen from the following example.

Example 4.9. Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}, \tau_j = \{X, \phi, \{b\}\}$. If $G = \{b\}$, then $\tau_j - cl(G) - G = \{a, c\}$ does not any non-empty τ_i - regular -closed set. But G is not a (τ_i, τ_j) -rgb-closed set. **Proposition 4.10:** If A is (τ_i, τ_j) -rgb-closed set and A \subseteq B $\subseteq \tau_j$ -bcl(A), then B is (τ_i, τ_j) -rgb-closed set. **Proof.** Let B \subseteq U, where U is - regular open set. Since A \subseteq B, so τ_j -bcl(A) \subseteq U. But B $\subseteq \tau_j$ -bcl(A),

We have τ_i -bc $l(B) \subseteq \tau_j - (\tau_j - c l(A))$ then τ_j -bc $l(B) \subseteq U$. Therefore B is rgb-closed in X.

Proposition 4.11: Let $A \subseteq Y \subseteq X$ and if $A is(\tau_i, \tau_j)$ – rgb -closed in X then A is (τ_i, τ_j) – rgb -closed relative to Y.

Proof. Let $A \subseteq Y \cap G$ where G is τ_i – regular open in X. Since A is (τ_i, τ_j) -rgb-closed .Then τ_j –bcl(A) \subseteq cl \subseteq G. Then $Y \cap \tau_j$ –bcl(A) $\subseteq Y \cap G$. Thus A is rgb -closed relative to Y.

Proposition 4.12: If A is (τ_i, τ_j) -rgb-closed set, then τ_j -bcl $(\{x\}) \cap A \neq \varphi$ for each $x \in \tau_j$ -bcl(A)**Proof.** If τ_i -bcl $(\{x\}) \cap A = \varphi$ for each $x \in \tau_j$ -bcl(A), then $A \subseteq (\tau_i$ -bcl $(\{x\}))^c$. Since A is (τ_i, τ_j) -rgb-closed set, so τ_j -bcl $(A) \subseteq (\tau_i$ -bcl $(\{x\}))^c$ which implies that $x \notin \tau_j$ -bcl(A). This contradicts to the assumption.

Definition 4.13. Let (X, τ_i, τ_j) be bitopological space, and let $g \in X$. A subset N of X is said to be, (τ_i, τ_j) – rgb-neighbourhood (briefly (τ_i, τ_j) – rgb-nhd) of a point g if and only if there exists a (τ_i, τ_j) – rgb –open set G such that $g \in G \subseteq N$.

The set of all(τ_i, τ_j) – rgb –nhd of a point g is denoted by(τ_i, τ_j) – rgb –N(g)

Proposition 4.14: Every τ_{i-} nhd of $g \in X$ is a (τ_i, τ_j) - rgb –nhd of $g \in X$. **Proof.** Since N is τ_{i-} nhd of $g \in X$, then there exists τ_{i-} open set G such that $g \in G \subseteq N$. Since every τ_{i-} open set is (τ_i, τ_i) - rgb –open set, G is (τ_i, τ_i) - rgb –open set. By Definition 4.13. N is (τ_i, τ_i) - rgb –nhd of x

Remark 4.15 :The converse of the above Proposition need not be true as seen from the following example. **Example 4.16.** Let $X = \{a, b, c\}$ and $\tau_i = \{X, \varphi, \{a, \} \{b\}, \{a, c\}\}, \tau_i = \{X, \varphi, \{a\}, \{b, c\}\}$.

D^{*} RGBO $(\tau_i, \tau_j) = \{X, \varphi, \{a,\} \{b\}, \{c\}, \{a,b\}, \{a,c\} \{b,c\}\}, \text{the set} \{b,c\} \text{ is} (\tau_i, \tau_j) - \text{rgb} - \text{nbhd of } c \text{ ,since there}$ exists a (τ_i, τ_j) - rgb - open set G={c} such that c∈{c}⊆{b,c}. However {b,c} \text{ is not } \tau_i - \text{ nhd of } c \text{ ,since no} τ_i - open set G such that c∈G ⊆{b,c}.

Remark 4.17. The (τ_i, τ_j) – rgb –nhd of a point $g \in X$ need not be a (τ_i, τ_j) – rgb –open set in X as seen from the following example. **Example 4.18.** Let X = {a, b, c} and $\tau_i = \{X, \varphi, \{b\}, \{c\}, \{b,c\}\}, \tau_i = \{X, \varphi, \{b\}\}.$ D^{*} RGBO $(\tau_i, \tau_j) = \{X, \varphi, \{a,\} \{b\}, \{c\}, \{a,b\}, \{b,c\}\}$, the set $\{a,c\}$ is (τ_i, τ_j) – rgb –nhd of c, since there exists a (τ_i, τ_j) – rgb –open set G= $\{c\}$ such that $c \in \{c\} \subseteq \{a,c\}$. However $\{a,c\}$ is not (τ_i, τ_j) – rgb- open set.

Proposition 4.19: If N a subset of a bitopological space (X, τ_i, τ_j) is (τ_i, τ_j) - rgb –open set ,then N is (τ_i, τ_j) - rgb –nhd of each of its points.

Proof. Let N be a (τ_i, τ_i) – rgb –open set. By Definition 4.13. N is an (τ_i, τ_i) – rgb –nhd of each of its points.

Remark 4.20. The (τ_i, τ_j) – rgb –nhd of a point $g \in X$ need not be a (τ_i, τ_j) – nhd–of x in X as seen from the following example.

Example 4.21. Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a, \}, \{b\}, \{a, c\}\}, \tau_i = \{X, \phi, \{a, b\}, \{b\}\}.$

D^{*} RGBO $(\tau_i, \tau_j) = \{X, \varphi, \{a,\} \{b\}, \{c\}, \{a,b\}, \{b,c\}\}, \text{the set} \{a,c\} \text{is}(\tau_i, \tau_j) - \text{rgb} - \text{nhd of } a \text{, since there exists } a (\tau_i, \tau_j) - \text{rgb} - \text{open set } G = \{a\} \text{such that } a \in \{a\} \subseteq \{a,c\}. \text{Also the set} \{a,c\} \text{is}(\tau_i, \tau_j) - \text{rgb} - \text{nhd of } c \text{, since there exists } a (\tau_i, \tau_j) - \text{rgb} - \text{open set } G = \{c\} \text{such that } c \in \{c\} \subseteq \{a,c\} \text{ However } \{a,c\} \text{ is not } (\tau_i, \tau_j) - \text{rgb} \text{ open set in } X.$

Proposition 4.22. Let (X, τ_i, τ_j) be bitopological space:

1) $\forall g \in X, (\tau_i, \tau_j) - \operatorname{rgb} - N(g) \neq \varphi$

2) $\forall N \in (\tau_i, \tau_i)$ – rgb –N(g) ,then g \in N...

3) If $N \in (\tau_i, \tau_j)$ – rgb –N(g), N \subseteq M, then $M \in (\tau_i, \tau_j)$ – rgb –N(g).

4) If $N \in (\tau_i, \tau_j)$ – rgb –N(g), then there exists $M \in (\tau_i, \tau_j)$ – rgb –N(g) such that $M \subseteq N$ and exists $M \in (\tau_i, \tau_j)$ – rgb –N(h) \forall , $h \in M$.

Proof.1) Since X is an (τ_i, τ_j) - rgb –open set, it is (τ_i, τ_j) - rgb –nhd of every $g \in X$. Hence there exists at least one (τ_i, τ_j) - rgb –nhd G for every $g \in X$. Therefore (τ_i, τ_j) - rgb –N(g) $\neq \phi$, $\forall g \in X$

2)If N∈ (τ_i, τ_i) – rgb –N(g), then N is (τ_i, τ_i) – rgb –nhd G of g. Thus By Definition 4.13 g ∈ N.

3) If $N \in (\tau_i, \tau_j)$ – rgb –N(g), then there is an (τ_i, τ_j) – rgb –open set A such that $g \in A \subseteq N$, since $N \subseteq M$, $g \in A \subseteq M$ and M is an (τ_i, τ_j) – rgb –nhd of g. Hence $M \in \tau_i, \tau_j$ – rgb –N(g) .4) If $N \in (\tau_i, \tau_j)$ – rgb –N(g), then there exists is an (τ_i, τ_j) – rgb –open set M such that $g \in M \subseteq N$. Since M is an (τ_i, τ_j) – rgb –open set , then it is (τ_i, τ_j) – rgb –nhd of each of its points. Therefore $M \in (\tau_i, \tau_j)$ – rgb –N(h) \forall , $h \in M$.

References

- [1] Ahmad Al-Omari and Mohd. Salmi Md. Noorani, On Generalized b-closed sets. Bull. Malays. Math. Sci. Soc(2) 32(1) (2009), 19-30
- [2] Benchalli.S.S and Wali.R.S., On Rw-closed sets in topological spaces ,Bull. Malays. math. Sci. Soc(2) 30(2),(2007), 99-110
- [3] K.chandrasekhara rao and K.kannan, regular generalized star closed sets in bitopological spaces , Thai journal of Math., vol.4, (2), (2006), 341-349
- [4] R. Devi, H. Maki and K. Balachandran, Semi-generalized closed maps and generalized semi- closed maps, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 14 (1993), 41–54.
- [5]. J. Donchev, On generalizing Semi-pre open sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Mat16 (1995), 53-48.
- [6]. O.A. El-Tantawy and H.M. Abu-Donia, Generalized Separation Axioms in Bitopological Spaces, The Arabian Jl for Science and Engg.Vol.30,No.1A,117-129 (2005).
- [7] T.Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 35, 19-28 (1985).
- [8] Futake, T., Sundaram, P., and SheikJohn.M., 2002, *w* -closed sets, *w*-open sets and *w* -continuity in bitopological spaces Bull.Fukuoka Univ.Ed.Vol.51.Part III 1-9.
- [9]. Y. Gnanambal, On generalized pre-regular closed sets in topological spaces, Indian J. PureAppl. Math. 28 (1997), 351-360.
- [10] D. Iyappan & N.Nagaveni, On semi generalized b-closed set, Nat. Sem. On Mat & Comp.Sci, Jan (2010), Proc.6.
- [11] Jafara,S.,M.Lellis Thivagar and S.A.thisaya Ponmani," (1,2) α-open sets based on bitopological separatin axioms ",Soochw Journal of Math., Volume 33, No.3, p 375-381,2007.
- [12] Jelic.M., A decomposition of pairwise continuity, J.Inst . Math.Comp.Sci.,3,25-29(1990).

- [13] Jelic.M., Feebly p-continuous mappings.V International Meeting on Topology in Italy (Itaian) (Lecce,1990/Otranto,1990).Rend.Circ.Mat.Palermo(2) Suppl.No.24(1990),387-395.
- [14] JK. Kannan, D.Narasimhan, K K.chandrasekhara rao, regular generalized star star closed sets in bitopological spaces, Wored Academy Engineering and Technology, vol.54, (2011), 33-35
- [15] M. Karpagadevi, A. Pushpalatha, (I, j) Rw Closed Sets in Bitopological Spaces, International Journal of Computer Applications, Volume 47– No.6, June 2012
- [16] J.C.Kelly, Bitopological spaces, Proc.London Math. Soc., 13, 71-89 (1963).
- [17] F.H.khber and H.S.Al-Saadi, On pairwise semi generalized closed sets ,JKAU ,Sci .Vol.21,No.(2009)2,269-295.
- [18] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer.Math. Monthly, 17 70(1963), 36-41.
- [19] N. Levine, Generalized closed sets in topology, Rend. Circlo. Mat. Palermo 17 19 (1970), no. 2,89-96.
- [20] Maheswari, S.N., and Prasad, R., Semi open sets and semi continuous functions in bitopologic al spaces. Math.Notae, 26, (1977/78),29-37.
- [21] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalised α-closed sets and α-generalized closed maps, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 15 (1994), 51–63
- [22]. H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T1/2, Mem. Fac. Sci. KochiUniv. Ser. A. Math. 17 (1996), 33– 42.
- [23] K.Mariappa and S.Seker, On regular generalized b- closed sets, Int. Journal of math. Analysis, Vol.7.no.13, (2013), 613-624.
- [24] Mashhour A. S., Abd El-Monsef M. E., and El-Deeb S. N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [25] N.Nagaveni, Studies on generalized on homeomorphisms in topological Spaces, Ph.D Thesis, Bharathiar University, Coimbatore 1999
- [26] V.Popo, On some properties of bitopological semi separation space .71-77,1977.
- [27] Sheik John, M. and Sundaram, P., g*-closed sets in bitopological spaces, Indian J. Pure. Appl. Math., 35(1),71-80(2004).
- [28] Signal, M.K. and ,A. r. Some more separation axioms in bitopological spaces ,Ann.soc .Sci . Bruxelles 84 II(1970).203-207.
- [29] Sundaram, P. and Sheik. John.M., ON w-closed sets in topology, Acta ciencia Indica 4(2000), 389-392.
- [30] L.Vinayagamoorthi, N.Nagaveni, On Generalized-αb closed sets, Proceeding ICMD Allahabad, Puspha Publication Vol.1. 2010-11.