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Abstract: Tan-cot method is applied to get exact soliton solutions of non-linear partial differential equations 

notably generalized Benjamin-Bona-Mahony, Zakharov-Kuznetsov Benjamin-Bona-Mahony,  Kadomtsov-

Petviashvilli Benjamin-Bona-Mahony and Korteweg-de Vries equations, which are important evolution 

equations with wide variety of physical applications. Elastic behavior and soliton fusion/fission is shown 

graphically and discussed physically as far as possible. 
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I.      Introduction 
Authors considered the following non-linear partial differential equations: 

𝑢𝑡 + 𝑎𝑢𝑥 + 𝑏𝑢2𝑢𝑥 + 𝛿𝑢𝑥𝑥𝑡 = 0                                    Generalised Benjamin-Bona-Mahony               (1.1) 

𝑢𝑡 + 𝑢𝑥 + 𝑎𝑢(𝑢2)𝑥 − 𝑏(𝑢𝑥𝑡 + 𝑢𝑦𝑦 )𝑥 = 0                     Zakharov-Kuznetsov Benjamin-Bona-Mahony        (1.2) 

𝑢𝑥𝑡 + 𝑢𝑥𝑥 + 2𝑎𝑢2𝑢𝑥𝑥 + 𝑘𝑢𝑦𝑦 + 4𝑎𝑢𝑢𝑥
2 + 𝑢𝑥𝑥𝑥𝑡 = 0  Kadomtsov-Petviashvilli Benjamin-Bona-Mahony   1.3  

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0,              Korteweg-de Vries                             (1.4) 

where 𝑎, 𝑏, 𝛿 and 𝑘 are non-zero arbitrary constants. The equations (1.1) − (1.4) are abbreviated as GKBBM, 

ZKBBM, KPBBM and KdV respectively. These equations attracted to a diverse group of researchers in view of 

their wide applications in many fields of sciences such as fluid mechanics, plasma and solid state physics, 
optical fibers and other related issues of engineering. 

 The BBM equation was introduced first by Benjamin et al [1]. Furthermore, Zhang et al [2] 

investigated it as a regularized version of the KdV equation for shallow water waves. Wang et al [3] and Wang 

[4] studied non-linear, dispersive and dissipative effects of BBM equation. The study of Benjamin et al [1] 

follows that both the equations KdV and BBM are valid at the same level of approximation, but BBM equation 

does have some advantages over the KdV equation from the computational mathematics viewpoint. In certain 

theoretical investigations, the BBM equation is superior as a model for long waves, and the word “regularized” 

refers to the fact that, from the standpoint of existence and stability, the equation offers considerable technical 

advantages over the KdV equation. 

 Two dimensional generalizations of BBM equation i.e. (1.2) and (1.3) are given by Zakharov-

Kuznetsov and Kadomtsov-Petviashvilli respectively, which can be studied pursuing the literature [5-8] and 
references therein. Further, the main mathematical difference between KdV and BBM models can be most 

readily appreciated by comparing the dispersion relation for the respective linearised equations [9, 10]. As far as 

applications of BBM equation is concerned, it is used in the study of drift waves in plasma or the Rossby waves 

in rotating fluids. Other applications of KdV and BBM equations in semiconductor, optical devices can be found 

in the work of Zhang et al [2]. 

 Getting inspiration from many applications of BBM, ZKBBM, KPBBM and KdV equations in real life 

problems, authors attained the solitory solutions of these equations. The term soliton coined by Zabusky and 

Kruskal [11] after their findings that waves like particles retained their shapes and velocities after interactions. 

The first published observation [12] of a solitary wave i.e. a single and localized wave was made by a naval 

architect John Scott Russel in 1834. Russel explored his experiences in his report to the British Association [13]. 

In order to understand the non-linear phenomena of equations (1.1) − (1.4) in a better way it is important to 
seek their more exact solutions. A variety of useful methods notably Algebraic method [14], Exp-function 

method [15], Adomian modified method [16], Inverse scattering method [17], Tanh function method [18], 

Variational method [19], Similarity transformation methods using Lie group theory [20], Homotopy 

perturbation method [21], Jacobi elliptic function expansion method [22], Hirota method [23], Backlu nd 

transformations  method [24, 25], F-expansion method [26], Differential transformations method [27], Darboux 

transformations [28], Balance method [29], Sine-cosine method [30] and Tan-Cot method [31] were applied to 

investigate the solutions of non-linear partial differential equations.  

 Authors have been motivated from these researches and applied the Tan-Cot method to obtain soliton 

solutions of the equations (1.1) − (1.4). The tan-cot method is a direct and effective algebraic method for 
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handling many non-linear evolution equations. It is a good tool to solve non-linear partial differential equations 

with genuine non-linear dispersion where solitary patterns solutions are generated [31].  

The goal of the present work is to get exact soliton solutions of GBBM, ZKBBM, KPBBM and KdV equations 

by using tan-cot method. Elastic behavior and soliton fusion/fission of these solutions discussed physically as 

far as possible. 

 

II.     Methodology 
Consider non-linear partial differential equation in the form: 

𝐻(𝑢, 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑡 , 𝑢𝑛𝑢𝑥 , 𝑢𝑥𝑦 , 𝑢𝑥𝑡 , … , 𝑢𝑥𝑥𝑡  , … ) = 0,                    (2.1) 

where u(x, y, t) is the soliton solution of (2.1), ux  and ut  etc. are partial derivatives of u with respect to x and t 
respectively. The term unux  shows non-linearity in (2.1). Since equation (2.1) admits soliton solution. Hence, 

we can use the transformation: 

𝑢 𝑥, 𝑦, 𝑡 = 𝑓 𝑋 ,                             (2.2) 

where X = x + y − ct + d, c is the speed of the travelling wave and d is a constant. It follows: 
∂u

∂x
=

∂u

∂y
=

∂f

∂X
,  

∂2u

∂x ∂t
= −c

d2f

dX2 = −c f   etc.                    (2.3) 

Making use of (2.3) into (2.1) yields a non-linear ordinary differential equation (ODE): 

𝐺 𝑓, 𝑓 , 𝑓𝑛𝑓 , 𝑓 , …  = 0                          (2.4) 

The equation (2.4) is then integrated as long as all terms involve derivatives of 𝑓, where we ignore the constant 

of integration (Since 𝑓 ⟶ 0  as 𝑋 ⟶ ±∞). To get solution of (2.1) by applying Tan-Cot method, the function 

f(X) can be expressed either in the following forms: 

𝑓 𝑋 = 𝛼𝑡𝑎𝑛𝛽  𝜇𝑋 ,   𝜇𝑋 ≤
𝜋

2
                     (2.5a) 

or  𝑓 𝑋 = 𝛼𝑐𝑜𝑡𝛽  𝜇𝑋 ,   𝜇𝑋 ≤
𝜋

2
 ,                   (2.5b) 

where α, β and μ (wave number) are the unknown parameters. The derivatives of (2.5a) are: 

𝑓  𝑋 =𝛼𝛽𝜇[𝑡𝑎𝑛𝛽−1 𝜇𝑋 + 𝑡𝑎𝑛𝛽+1 𝜇𝑋 ],                     (2.6) 

𝑓   𝑋 =𝛼𝛽𝜇2[(𝛽 − 1)𝑡𝑎𝑛𝛽−2 𝜇𝑋 + 2𝛽𝑡𝑎𝑛𝛽  𝜇𝑋 + (𝛽 + 1)𝑡𝑎𝑛𝛽+2 𝜇𝑋 ],                                                   (2.7) 

𝑓  
  𝑋 =𝛼𝛽𝜇3[(𝛽 − 2)(𝛽 − 1)𝑡𝑎𝑛𝛽−3 𝜇𝑋 +  3𝛽2 − 3𝛽 + 2 𝑡𝑎𝑛𝛽−1 𝜇𝑋 +  3𝛽2 + 3𝛽 + 2 𝑡𝑎𝑛𝛽+1 𝜇𝑋  

+(𝛽 + 2)(𝛽 + 1)𝑡𝑎𝑛𝛽+3 𝜇𝑋 ],                     (2.8) 

𝑓  
   𝑋 =𝛼𝛽𝜇4[(𝛽 − 3)(𝛽 − 2)(𝛽 − 1)𝑡𝑎𝑛𝛽−4 𝜇𝑋 + 4 𝛽 − 1  𝛽2 − 2𝛽 + 2 𝑡𝑎𝑛𝛽−2 𝜇𝑋  

               +2𝛽 3𝛽2 + +5 𝑡𝑎𝑛𝛽  𝜇𝑋 + 4 𝛽 + 1  𝛽2 + 𝛽 + 2 𝑡𝑎𝑛𝛽+2 𝜇𝑋  
               + 𝛽 + 1  𝛽 + 2  𝛽 + 3 𝑡𝑎𝑛𝛽+4 𝜇𝑋 ],                          (2.9) 

and so on. 

Authors found all solutions considering the form α tanβ μX . Therefore, derivatives are calculated intentionally 

only for this form.  

We can obtain an equation in different powers of tangent functions substituting the values of derivatives from 

(2.6) − (2.9) into (2.4). Then we collect the coefficients of each pair of tangent functions with same exponent 

from (2.4), where each term has to vanish. Consequently, one can obtain a system of algebraic equations in 

unknown parameters c, α, β and μ. Solving this system, we can get the soliton solutions of partial differential 

equation (2.1) by substituting the values of these parameters in (2.5a).  
 

III. Results And Discussions 
1. Benjamin-Bona-Mahony (BBM) equation 

Authors studied the BBM equation in the form (1.1). Taking X =  x −  ct +  d and applying the above 

procedure on (1.1), it leads to: 

 a −  c f  +  bf 2  f  −  cδf   =  0,                                 a ≠  c                                           (3.1.1) 

Integrating  3.1.1  with respect to X and ignoring constant of integration, one can obtain: 

 a −  c f +  
b

3
f 3   −  cδf  =  0,                                               (3.1.2) 

Making use of (2.5a) and (2.7) into (3.1.2) gives: 

 a –  c αtanβ μX +
b

3
α3tan3β μX − cδαβ β − 1 μ2tanβ−2 μX − 2cδαβ

2
μ2tanβ μX  

−cδαβ β + 1  μ2  tanβ+2 μX = 0                        (3.1.3) 

Equating the exponents of second and third term of tangent functions in the equation (3.1.3), then collecting the 

coefficients of the terms involved tangent functions of  the same exponent, where each term has to vanish. We 

obtain the following system of algebraic equations: 

3𝛽 = 𝛽 − 2;  
𝑏

3
𝛼2 − 2𝑐𝛿𝜇2 = 0; 𝜇2 =

𝑎−𝑐

2𝑐𝛿
                   (3.1.4) 
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On solving the system (3.1.4), we obtain:  

 

𝛽 = −1;  α= − 
3(𝑎−𝑐)

𝑏
; μ=  

(𝑎−𝑐)

2𝑐𝛿
                           (3.1.5) 

It follows immediately: 
𝑎−𝑐

𝑏
> 0  and   

𝑎−𝑐

𝑐𝛿
> 0                       (3.1.6) 

Thus, soliton solution of BBM equation (1.1) is furnished by: 

𝑢 𝑥, 𝑡 = − 
3(𝑎−𝑐)

𝑏
cot   

 𝑎−𝑐 

2𝑐𝛿
 𝑥 − 𝑐𝑡 + 𝑑  ,      where    0 <  𝑥 − 𝑐𝑡 + 𝑑 <

𝜋 𝑐𝛿

 2(𝑎−𝑐)
                               (3.1.7) 

For a =  δ =  d =  2, b =  4 and c =  1, equation  3.1.7  becomes: 

𝑢 𝑥, 𝑡 = −
 3

2
𝑐𝑜𝑡  

𝑥−𝑡+2

2
                                 (3.1.8) 

Evolutional profile of 𝑢(𝑥, 𝑡) through the expression (3.1.8) is shown in the figure 1 for the domain −10 ≤
𝑥, 𝑡 ≤ 10. It is obvious from figure 1 that elastic behavior of multi solitons can be viewed.  

 

 

2. Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation 

 Authors found the soliton solutions of the ZKBBM governed by (1.2). Equation (1.2) can be rewritten 

in simplified form as: 

ut + ux + 2au2ux − buxxt − buxyy = 0                                   (3.2.1) 

The wave variable X =  x + y − ct + d carries the equation (3.2.1) into an ODE represented by: 

 1 −  c f  + 2af 2  f  –  b(1 − c)f   =  0,             c ≠ 1                                              (3.2.2)  
Integrating (3.2.2) and ignoring the arbitrary constant of integration, one can get: 
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 1 −  c f +  
2a

3
f 3   − b(1 − c) f  =  0                   (3.2.3) 

Substituting the derivatives from equations (2.5) and  (2.7) into (3.2.3), it provides us: 

α 1 –  c tanβ μX +
2a

3
α3tan3β μX − b 1 − c αβ β − 1 μ2tanβ−2 μX − 2b 1 − c αβ

2
μ2tanβ μX  

−b(1 − c)αβ(β + 1)μ2tanβ+2 μX = 0                                             (3.2.4) 

Equating the exponents of second and third tangent functions in the equation (3.2.4), and then we collect the 

coefficients of each pair of tangent functions of the same exponent, where each term has to vanish. Finally, we 

obtain the following system: 

3β = β − 2;  1 − 2bβ
2
μ2 = 0;  

2a

3
 α2 − b(1 − c)β(β − 1)μ2 = 0                (3.2.5) 

Thus we obtain: 

β = −1;  α= − 
3(1−c)

2a
; μ=

1

 2b
                                 (3.2.6) 

It follows: 

𝑏 > 0  and   
1−c

a
> 0                      (3.2.7) 

In view of  (3.2.6),  solution of ZKBBM equation  (1.2)  is given by: 

u x, y, t = − 
3(1−c)

2a
cot  

1

 2b
 x + y − ct + d  ,      with    0 <  𝑥 + 𝑦 − 𝑐𝑡 + 𝑑 <

𝜋 𝑏

 2
                             (3.2.8) 

Setting arbitrary constants a =   −2, b =  c =  2 and d =  0 in (3.2.8), it becomes: 

u x, y, t = −
 3

2
cot  

x+y−2t

2
                             (3.2.9) 

Solutions graphs via expression (3.2.9) are shown in the figure 2 for  −2 ≤ x ≤ 2, 0 ≤ y ≤ 4 at t =  0.01 and 

6. In this spatial range, elastic single soliton can be observed in the figures 2 a  and 2 b .  
 

3.  Kadomtsov-Petviashvilli-Benjamin-Bona-Mahony (KPBBM) equation  

Authors considered the KPBBM governed by (1.3). Applying the Tan-Cot method on (1.3) we can have 

following ODE: 

4af f 2 +  1 − c + k f + 2af 2f   −  cf   
 

=  0                            (3.3.1) 

Integrating (3.3.1) twice w.r.t. X (ignoring the arbitrary constants of integration), we obtain 

 
2𝑎

3
𝑓3 +   1 − 𝑐 + 𝑘 𝑓 −  𝑐𝑓  =  0,                           (3.3.2) 

Substituting the values of  𝑓 , 𝑓  from of equations (2.5a) and (2.7) into (3.3.2), one can get           

 1 –  c + k αtanβ μX +
2a

3
α3tan3β μX − cαβ(β − 1)μ2tanβ−2 μX − 2cαβ

2
μ2tanβ μX −cαβ(β +

1)μ2tanβ+2 μX = 0                         (3.3.3) 
Equating the exponents of second and third tangent functions in the equation (3.3.3), and then we collect the 

coefficients of each pair of tangent functions of the same exponent, where each term has to vanish. Finally, we 

obtain the following system: 

3𝛽 = 𝛽 − 2;  1 − 𝑐 + 𝑘 − 2𝑐𝛽2𝜇2 = 0;  
2a

3
 𝛼2 − 𝑐𝛽(𝛽 − 1)𝜇2 = 0                (3.3.4) 

On solving the system (3.3.4): we get the following values of unknowns 𝛼, 𝛽 and  𝜇 ;  

 𝛽 = −1;  α= − 
3(1−𝑐+𝑘)

2𝑎
; μ=  

1−𝑐+𝑘

2𝑐
                                (3.3.5) 

It follows immediately: 
1−𝑐+𝑘

𝑎
> 0  and   

1−𝑐+𝑘

𝑐
> 0                      (3.3.6) 

In view of  (3.3.5), solution of  KPBBM equation  (1.3)  can be written in explicit manner as: 

𝑢 𝑥, 𝑦, 𝑡 = − 
3(1−𝑐+𝑘)

2𝑎
cot   

1−𝑐+𝑘

2𝑐
 𝑥 + 𝑦 − 𝑐𝑡 + 𝑑  ,                                                        (3.3.7) 

where    0 <  𝑥 + 𝑦 − 𝑐𝑡 + 𝑑 <
𝜋 𝑐

 2(1−𝑐+𝑘)
                     (3.3.8) 

For a =  1, c =  2, d =  0, k =  4, the equation (3.3.7) becomes: 

𝑢 𝑥, 𝑦, 𝑡 = −
3

 2
cot  

 3

2
 𝑥 + 𝑦 − 2𝑡                         (3.3.9) 

Evolutional profile for (3.3.9) is shown in the figure 3 for  −5 ≤ 𝑥, 𝑦 ≤ 5 at t =  0.2, 5. Fusion and fission of 

elastic solitons can be observed in the figures 3 a  and 3 b .  
 

4.  Korteweg-de Vries(KdV) equation 

 The KdV equation under our consideration is governed by (1.4). Using the same procedure as we have 

used in previous subsections to obtain an ODE: 
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−𝑐𝑓 + 6𝑓𝑓 +  𝑓   =  0                       (3.4.1) 

Substituting the devatives of 𝑓 from (2.6) and (2.8) into (3.4.1), we have: 

−cαβμ tanβ−1 μX + tanβ+1 μX  + 6α2βμtanβ μX  tanβ−1 μX + tanβ+1 μX   

+𝛼βμ3[ β − 1  β − 2 tanβ−3 μX +  3β
2 − 3β + 2 tanβ−1 μX  

+ 3β
2 + 3β + 2 tanβ+1 μX +  β + 1  β + 2 tanβ+3 μX ]  =0              (3.4.2) 

The equation (3.4.2) is satisfied if the following system of algebraic equations holds: 

β = 2;  c= 8μ2,  α= −2μ2                                      (3.4.3) 
By solving the system (3.4.3), one can find the following soliton solution of  KdV equation  (1.4): 

u x, t =
c

4
[1 − sec2{

 c

2 2
 x − ct + d }]                      (3.4.4) 

For c =  8, d =  0 equation (3.4.5) becomes: 

u x, t = 2 [1 − sec2(x − 4t)]                       (3.4.5) 
Evolutional profile for (3.4.5) is shown in the figure 4. Elastic multi solitons can be observed at regular 

intervals. 

 

 
 

IV. Conclusions 
 In this work, the exact soliton solutions of generalised Benjamin-Bona-Mahony, Zakharov-Kuznetsov-

BBM, Kadomtsov-Petviashvilli BBM, Korteweg-de Vries equation equations have been obtained successfully 

by using tan-cot method. The soliton behaviour of solutions with respect to time and space is shown and 

discussed physically wherever was possible. Authors are intend to get soliton solutions by applying this method 

to a system of non-linear partial differential equations like  (2+1)-dimensional Boiti-Leon-Pempinelli (BLP) 

system. 
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