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In this paper we shall obtain similar type of inequalities in reverse order for the polynomials having  r  fold 

zeros at origin and rest of the zeros in | |z k , 1k  . 
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I. Introduction And Statement Of The Results 

Let ( )p z  be a polynomial of degree n  and ( )p z  its derivative. Then the following well known 

inequality is due to Bernstein [2].  

| | 1 | | 1
max | ( ) | max | ( ) |

z z
p z n p z

 
   (1.1) 

pL  analogue of (1.1) was obtained by Zygmund [9]. He proved that 

If ( )p z  is a polynomial of degree n  and ( )p z  its derivative then for 1r  , 
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 In this paper we obtain integral mean estimates for polynomials having  r  fold zeros at origin and rest 

of the zeros in | |z k , 1k  . For the same class of polynomials we shall also obtain 
pL  inequalities for 

polar derivative o f a polynomial.  
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origin and rest of the zero in | | , 1z k k  . Then for 1r  , 
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Letting r   in (1.3) and making use of the fact from analysis [7], [8] that 
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we obtain the following inequality  
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Next we obtain the following improvement of Theorem 1 which also generalizes a result due to Jain [5].  

THEOREM 2. Let ( )
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   , 1 n  , be a polynomial of degree n , having all its 

zeros in | |z k , 1k  , with a zero of order s  at origin. Then for   with | | n sk   and 1r  , 
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where 
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For 1   Theorem 2 reduces to a result due to Jain [5].  

Letting r   in (1.5) we obtain the following inequality  

1
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where m  is same as in Theorem 2 and 0 s n    . 

By choosing argument of   suitably and letting | | n sk   in (1.6) we get  
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where 
| |
min | ( ) |
z k

m p z


 . 

For 1   inequality (1.7) improves upon a result proved by Aziz and Shah [1].  

Let ( )D P z  denote the polar differentiation of the polynomial ( )P z  of degree n  with respect to the point 

 . Then 

( ) ( ) ( ) ( ).D p z np z z p z      

The polynomial ( )D P z  is of degree at most 1n   and it generalizes the ordinary derivative in the sense that 

( )
lim ( ).

D p z
p z

 
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Now we obtain 
pL  inequality for the polar derivative of a polynomial. Our result generalizes a result due to 

Dewan et al. [4]. More precisely we prove: 
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If in (1.8) r   we get the following result. 
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| |z k , 1k  , with s  fold zeros at the origin, then for every real or complex number k   
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II. Lemmas 
We will need following lemmas to prove our theorems. 

LEMMA 1. If 0( )
n

j
j

j
p z a a z


   , 1 n  , is a polynomial of degree n , having no zeros in the disk 

| |z k , 1k  , then 

| ( ) | | ( ) | for | | 1.k p z q z z      (2.1) 

The above lemma is due to Chan and Malik [3].  
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PROOF OF LEMMA 2. Since all the zeros of ( )p z  lie in | | 1z k  , all the zeros of 
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 . Hence applying Lemma 1 to the polynomial ( )q z , we get inequality (2.2). This proves 

Lemma 2.                                                  

LEMMA 3. If 0( )
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III. Proofs Of The Theorems 

PROOF OF THEOREM 1. Let ( ) ( )sp z z h z  where ( )h z  is a polynomial of degree n s , having all its 

zeros in | |z k , 1k   and (0) 0h  . Then 
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is also a polynomial o f degree n s . 
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Using (3.2), (3.3) and (3.4) in (3.5) we get  
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This completes the proof of Theorem 1.                                                                      

PROOF OF THEOREM 2. Let ( ) ( )sp z z h z , where ( )h z  is a polynomial of degree ( )n s  having all 

its zeros in | |z k , 1k   and (0) 0h  . Then 
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By Rouche’s theorem the polynomial 
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Now using (3.2) and (3.3) in the above inequality we get 
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Now by Minkowski's inequality for 1r   and | | n sk  , we have 
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which is the desired result. This completes the proof of the Theorem 2.                    

 

PROOF OF THEOREM 3. Since ( )p z  has all its zeros in | | 1z k   with s -fold zeros at the origin, we 

can write 

( ) ( ),sp z z h z  

where ( )h z  is a polynomial of degree n s  having all its zeros in | | 1z k  . 

Now for every real o r complex number   with | | k  , we have 
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which proves the desired result.                                                                                  
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