Some properties of two-fuzzy Nor med spaces

Noori F.AL-Mayahi, Layth S.Ibrahaim

¹(Department of Mathematics , College of Computer Science and Mathematics , University of AL –Qadissiya) ²(Department of Mathematics , College of Computer Science and Mathematics , University of AL –Qadissiya)

Abstract: The study sheds light on the two-fuzzy normed space concentrating on some of their properties like convergence, continuity and the in order to study the relationship between these spaces Keywords: fuzzy set, Two-fuzzy normed space, α-norm, 2010 MSC: 46S40

I. Introduction

The concept of fuzzy set was introduced by Zadeh [2] in 1965 as an extension of the classical notion of set. A satisfactory theory of 2-norm on a linear space has been introduced and developed by Gahler in [4]. The concept of fuzzy norm and α – norm were introduced by Bag and Samanta and the notions of convergent and Cauchy sequences were also discussed in [6]. zhang [1] has defined fuzzy linear space in a different way. RM. Somasundaram and ThangarajBeaula defined the notion of fuzzy 2-normed linear space (F(X);N) or 2- fuzzy 2-normed linear space. Some standard results in fuzzy 2- normed linear spaces were extended .The famous closed graph theorem and Riesz Theorem were also established in 2-fuzzy 2-normed linear space. In [5], we have introduced the new concept of 2-fuzzy inner product space on F(X), the set of all fuzzy sets of X. This paper is about the concepts related to two-fuzzy normed spaces (fuzzy convergence and fuzzy continuity).

II. PRELIMINARIES

Definition2.1.[3]Let X be a real vector space of dimension greater than one and let $\|.,.\|$ be a real valued function on X × X satisfying the following conditions:

(1) ||x, y|| = 0 if and only if x and y are linearly dependent,

(2) ||x, y|| = ||y, x||

(3) $\|\alpha x, y\| = |\alpha| \|x, y\|$ where α is real,

(4) ||x, y + z|| < ||x, y|| + ||x, z||

 $\|.,.\|$ is called a two-norm on X and the pair $(X, \|.,.\|)$ is called a two normed liner space.

Definition2.2.[3]Let X be a vector space over K (the field of real or complex numbers). A fuzzy subset N of $X \times \mathbb{R}$ (\mathbb{R} , the set of real numbers) is called a fuzzy norm on X if and only if for all

$$x, y \in X \text{ and } c \in K.$$

(N1) For all $t \in \mathbb{R}$ with $t \leq 0, N(x, t) = 0$

(N2) For all $t \in \mathbb{R}$ with t > 0, N(x, t) = 1 if and only if x = 0

(N3) For all $t \in \mathbb{R}$ with t > 0, $N(cx, t) = N(x, C) = N\left(x, \frac{x}{|c|}\right)$, if c = 0

(N4) For all $s, t \in \mathbb{R}$, $x, y \in X$, $N(f + g, s + t) > min\{N(x, s), N(y, t)\}$

(N5) N(x, .) is a non decreasing function of \mathbb{R} and $\lim_{t \to \infty} N(x, t) = 1$

The pair (X, N) will be referred to be as a fuzzy normed linear space.

Theorem2.3.[3]Let (X, N) be a fuzzy normed linear space. Assume further that (N6) N(x, t) > 0 for all t > 0 implies x = 0.

Define $||x||_{\alpha} = \inf\{t : N(x,t) > \alpha\}$ where $\alpha \in (0,1)$.

Then $\{\|x\|_{\alpha} : \alpha \in (0,1)\}$ is an ascending family of norms on X $(or)\alpha$ - norms on X corresponding to the fuzzy norm on X.

Definition2.4.[3]A fuzzy vector space $\tilde{X} = X \times (0,1]$ over the number field K, where the addition and scalar multiplication operation on X are defined by

 $(x,\lambda) + (y,\mu) = (x + y,\lambda \wedge \mu)$ and $k(x,\lambda) = (kx,\lambda)$

is a fuzzy normed space if to every $(x, \lambda) \in \tilde{X}$ there is associated a non-negative real number, $||(x, \lambda)||$, called the fuzzy norm of (x, λ) , in such a way that

(1) $||(x,\lambda)|| = 0$ iff x = 0 the zero element of $X, \lambda \in (0,1]$

(2) $||(kx,\lambda)|| = |k|||(x,\lambda)||$, for all $(x,\lambda) \in \tilde{X}$ and all $k \in K$

(3)
$$\|(x,\lambda) + (y,\mu)\| < \|(x,\lambda \wedge \mu)\| + \|(y,\lambda \wedge \mu)\| \text{ for all } (x,\lambda) \text{ and}$$
$$(y,\mu) \in \tilde{X}$$

$$(y,\mu)$$

(4) $||U(x, \forall \lambda_t)|| = \forall ||(x, \lambda_t)|| \text{ for } \lambda_t \in (0, 1]$ Let *X* be a nonempty and *F*(*X*) be the set of all fuzzy sets in X. If

 $f \in F(X)$ then $f = \{(x, \mu): x \in X \text{ and } \mu \in (0, 1]\}$. Clearly f is a bounded

function for $|f(x)| \le 1$. Let K be the space of real numbers, then F(X) is a linear space over the field K where the addition and scalar multiplication are defined by

 $f + g = \{(x, \mu) + (y, \eta)\} = \{(x + v, \mu \land \eta) : (x, \mu) \in f, and (y, n) \in g\}$

 $kf = \{(kf, \mu): (x, \mu) \in f\}$ where $k \in K$. The linear space F(X) is said to be normed space if to every $f \in F(X)$, there is associated a non-negative real number ||f|| called the norm of f in such a way that

(1)
$$||f|| = 0$$
 if and only if $f = 0$ For,
 $||f|| = 0 \Leftrightarrow \{||x,\mu||: (x,\mu) \in f\} = 0$
 $\Leftrightarrow x = 0, \quad \mu \in (0,1]$
 $\Leftrightarrow f = 0.$

 $\begin{array}{ll} (2) & \|kf\| = |k| \|f\|, k \in K \quad For, \\ \|kf\| = \{\|kx,\mu\|: (x,\mu) \in f, k \in K\} \\ = \{|k|\|x,\mu\|: (x,\mu) \in f\} = |k| \|f\| \\ (3) & \|f + g\| \leq |f| + |g| \text{ for every } f, g \in F(X) \\ For, \|f + g\| = \{\|(x,\mu) + (y,\eta)\|/x, y \in X, \mu, \eta \in (0,1]\} \\ & = \{\|(x + y), \mu \wedge \eta\|: x, y \in X, \mu, \eta \in (0,1]\} \\ & \leq \{\|x,\mu\| + \|y, \mu \wedge \eta\|: (x,\mu) \in fand(y,\eta) \in g\} \\ & = \|f\| + \|g\| \end{array}$

And so (F(X), ||. ||) is a normed linear space.

Definition2.6.[3]Let X be any non-empty set and F(X) be the set of all fuzzy sets on X. Then for $U, V \in F(X)$ and $k \in K$ the field of real numbers, define

 $U + V = \{ (x + y, \lambda \Lambda \mu) : (x, \lambda) \in U, (y, \mu) \in V \} and$ $kU = \{ (kx, \lambda) : (x, \lambda) \in U \}.$

Definition2.7.[3] A two-fuzzy set on X is a fuzzy set on F(X).

Definition2.8.[3]Let F(X) be a vector space over the real field K. A fuzzy subset N of $F(X) \times \mathbb{R}, (\mathbb{R}, \text{ the set of real numbers})$ is called a 2-fuzzy norm on F(X) if and only if, (N1) For all $t \in \mathbb{R}$ with $t \leq 0, N(f, t) = 0$ (N2) For all $t \in \mathbb{R}$ with t > 0, N(f, t) = 1 if and only if f = 0(N3) For all $t \in \mathbb{R}, \text{with } t \geq 0, N(cf, t) = N(f, \frac{y}{|c|})$ if $c \neq 0, c \in K$ (field) (N4) For all $s, t \in \mathbb{R}, N(f_1 + f_2, s, t) \geq \min\{N(f_1, s), N(f_2, t)\}$ (N5) $N(f, \bullet) : (0, \infty) \rightarrow [0, 1]$ is continuous (N6) $\lim_{t \to \infty} N(f, t) = 1$ Then the pair (F(X), N) is a fuzzy two-normed vector space.

III. Mainresult

Definition 3.1.Let (F(X), N, *) be a two-fuzzy normed space, then:

- (a) A sequence $\{f_n\}$ in F(X) is said to fuzzy converges to f in F(X) if for each $\varepsilon \in (0, 1)$ and each t > 0, there exists $n_0 \in Z^+$ such that $N(f_n f, t) > 1 \varepsilon$ for all $n \ge n_0$ (Or equivalently $\lim_{n\to\infty} N(f_n f, t) = 1$).
- (b) A sequence $\{f_n\}$ in F(X) is said to be fuzzy Cauchy if for each $\varepsilon \in (0, 1)$ and each t > 0, there exists $n_0 \in Z^+$ such that $N(f_n f_m, t) > 1 \varepsilon$ for all $n, m \ge n_0$ (Or equivalently

$$\lim_{m \to \infty} N\left(f_n - f_m, t\right) = 1$$

(c) A two-fuzzy normed space in which every fuzzy Cauchy sequence is fuzzy convergent is said to be complete.

Theorem 3.2. Let (F(X), N, *) be a two-fuzzy normed space and let $\{f_n\}, \{g_n\}$ be two sequences in two-fuzzy normed space F(X), and for all $\alpha_1 \in (0, 1)$ there exist $\alpha \in (0, 1)$ such that $\alpha * \alpha \ge \alpha_1$.

(1) Every fuzzy convergent sequence is fuzzy Cauchy sequence.

(2) Every sequence in F(X) has a unique fuzzy limit.

(3) If $f_n \to f$ then $cf_n \to cf, c \in \mathbb{F}/\{0\}$.

(4) If $f_n \to f$, $g_n \to g$, then $f_n + g_n \to f + g$.

Proof: (1) Let $\{f_n\}$ be a sequence in F(X) such that $f_n \rightarrow f$ then for all t > 0, $\lim_{n \to \infty} N\left(f_n - f_n \frac{t}{2}\right) = 1$, $N(f_n - f_m, t) = N((f_n - f) - (f_m - f), t) \ge N\left(f_n - f, \frac{t}{2}\right) * N\left(f_m - f, \frac{t}{2}\right) \text{ , by taking limit:} \lim_{n,m\to\infty} N\left(f_n - f, \frac{t}{2}\right) = N(f_n - f) + N(f_n$ $fm, t \ge \lim n \to \infty N fn - f, t2 * \lim m \to \infty N fm - f, t2 = 1 * 1 = 1$ but $\lim n, m \to \infty N fn - fm, t \le 1$ then $\lim_{n,m\to\infty} N(f_n - f_m, t) = 1$ therefore $\{f_n\}$ is a Cauchy sequence in F(X). (2) Let $\{f_n\}$ be a sequence in F(X) such that $f_n \to f$ and $f_n \to g$ as $n \to \infty$ and $f \neq g$ then for all t > s > 0, $\lim_{n\to\infty} N(f_n - f, s) = 1$, $\lim_{n\to\infty} N(f_n - g, t - s) = 1 N(f - g, t) \ge N(f_n - f, s) * N(f_n - g, t - s)$ Taking limit as $n \to \infty$: $N\left(f-g,t\right) \geq 1*1 = 1 \Longrightarrow but N\left(f-g,t\right) \leq 1 \Longrightarrow N\left(f-g,t\right) = 1.$ Then by axiom (ii) $f - g = 0 \Longrightarrow f = g$. (3) Since $f_n \rightarrow f$ then if for all $\varepsilon \in (0, 1)$ and for all t > 0, there exists $n_0 \in Z^+$ such that $N(f_n - f, t) > 1 - \varepsilon$ for all $n \ge n_0$ put $t = \frac{t}{|c|}$ $N(c f_n - cf, t_1) = N(f_n - f, \frac{t_1}{|c|}) = N(f_n - f, t) > 1 - \varepsilon$ Then $c f_n \rightarrow c f$. (4) For each $\varepsilon_1 \in (0, 1)$ there exists $\varepsilon \in (0, 1)$ such that $(1 - \varepsilon) * (1 - \varepsilon) \ge (1 - \varepsilon_1)$. Since $x_n \rightarrow x$ then for each $\varepsilon \in (0, 1)$ and each t > 0, there exists $n_1 \in Z^+$ such that $N(f_n - f, \frac{t}{2}) > 1 - \varepsilon$ for all (4) For each $\varepsilon_1 \in (0, 1)$ there exists $\varepsilon \in (0, 1)$ such that

 $n \ge n_1$, since $g_n \to g$ then if for each $\varepsilon \in (0, 1)$ and each t > 0, there exists $n_2 \in Z^+$ such that $N(g_n - g, \frac{t}{2}) > 1 - \varepsilon$ for all $n \ge n_2$. Take $n_0 = \min\{n_1, n_2\}$, and for each t > 0, there exists $n_0 \in Z^+$ such that

$$\begin{split} &N\left((f_n+g_n)-(f+g),t\right)=N\left((f_n-f)+(g_n-g),t\right)\geq\\ &N\left(f_n-f,\frac{t}{2}\right)*N\left(g_n-g,\frac{t}{2}\right)>(1-\varepsilon)*(1-\varepsilon)\geq(1-\varepsilon_1) \ \text{for all} \quad n\geq n_0. \ \text{Then} \ f_n+g_n\to f+g. \end{split}$$

Theorem 3.3.Let (F(X), N, *), (F(Y), N, *) be a two-fuzzy normed spaces and let $f_n \to f$, $g_n \to g$, such that $\{f_n\}$ and $\{g_n\}$ are two sequences in F(X) and $\alpha, \beta \in \mathbb{F} \setminus \{0\}$ then $\alpha \Psi(f_n) + \beta \omega(g_n) \to \alpha \Psi(f) + \beta \omega(g)$ whenever Ψ and ω are two identity fuzzy functions.

Proof: For all $\varepsilon \in (0, 1)$ there exist $\varepsilon_1 \in (0, 1)$ such that $(1 - \varepsilon_1) * (1 - \varepsilon_1) \ge (1 - \varepsilon)$, since $f_n \to f$, then for all $\varepsilon_1 \in (0, 1)$ and t > 0 there exists $n_1 \in Z^+$ such that

 $N\left(f_n - f, \frac{t}{2|\alpha|}\right) > (1 - \varepsilon_1) \text{ for all } n \ge n_1, \text{ and since } g_n \to g \text{ then for all } \varepsilon_1 \in (0, 1) \text{ and } t > 0 \text{ there exists } n_2 \in Z^+ \text{ such that } N\left(g_n - g, \frac{t}{2|\alpha|}\right) > (1 - \varepsilon_1) \text{ for all } n \ge n_2. \text{ Take } n_0 = \min\{n_1, n_2\}, n \ge n_0$

$$\begin{split} & N\left(\left(\alpha \ \Psi(f_{n}) \ +\beta\omega\left(g_{n}\right)\right) \ -\left(\alpha \ \Psi(f) \ +\beta \ \omega(g)\right), t\right) = \qquad N\left(\alpha\alpha\left(\Psi(f_{n}) - \Psi(f)\right) + \beta\left(\omega(g_{n}) - \omega(g)\right), t\right) \geq \\ & N\left(\Psi(f_{n}) - \Psi(f), \frac{t}{2|\alpha|}\right) * N\left(\omega(g_{n}) - \omega(g), \frac{t}{2|\beta|}\right) \\ & = N\left(f_{n} - f, \frac{t}{2|\alpha|}\right) * N\left(g_{n} - g, \frac{t}{2|\beta|}\right) > (1 - \varepsilon_{1}) * (1 - \varepsilon_{1}) \geq (1 - \varepsilon) \\ & \alpha \ \Psi(f_{n}) + \beta\omega\left(g_{n}\right) \to \alpha \ \Psi(f) \ +\beta \ \omega(g). \end{split}$$

Theorem 3.4. A two-fuzzy normed space (F(X), N, *) is complete two-fuzzynormed space if every fuzzy Cauchy sequence $\{f_n\}$ in F(X) has a fuzzy convergent subsequence.

Proof: Let $\{f_n\}$ be a fuzzy Cauchy sequence in F(X) and $\{f_{nm}\}$ be a subsequence of $\{f_n\}$ such that $f_{nm} \rightarrow f$, $f \in F(X)$.

Now to prove $f_n \to f$. For all $\varepsilon \in (0, 1)$ there exist $\varepsilon_1 \in (0, 1)$ such that $(1 - \varepsilon_1) * (1 - \varepsilon_1) \ge (1 - \varepsilon)$. Since $\{f_n\}$ is a fuzzy Cauchy sequence then for all t > 0 and $\varepsilon_1 \in (0, 1)$ there exists $n_0 \in Z^+$ such that: $N(f_n - f_m, \frac{t}{2}) > 1 - \varepsilon_1$, for all $n, m \ge n_0$.

Since $\{f_{nm}\}$ is fuzzy convergent to f, there exists $im \ge n_0$ such that $N(f_{im} - f_{\frac{1}{2}}) > 1 - \varepsilon_1$

$$\begin{split} &N\left(f_n - f, t\right) = N\left(\left(f_n - f_{im}\right) + \left(f_{im} - x\right), \frac{t}{2} + \frac{t}{2}\right) \geq \\ &N\left(x_n - x_{im}, \frac{t}{2}\right) * N\left(f_{im} - f, \frac{t}{2}\right) > (1 - \varepsilon_1) * (1 - \varepsilon_1) \geq (1 - \varepsilon). \\ &\text{Therefore } f_n \to f, \{f_n\} \text{ is fuzzy convergent to } f \quad \text{Hence } (F(X), N, *) \text{ is complete two-fuzzy normed space.} \end{split}$$

Definition 3.5. Let (F(X), N, *) and (F(Y), N, *) be two-fuzzy normed spaces. The function $\Psi: F(X) \to F(Y)$ is said to be fuzzy continuous at $f_0 \in F(X)$ if for all $\varepsilon \in (0, 1)$ and all t > 0 there exist $\delta \in (0, 1)$ and s > 0 such that for all $f \in F(X)$

$$N(f - f_0, s) > 1 - \delta \text{ implies } N(\Psi(f) - \Psi(f_0), t) > 1 - \varepsilon.$$

The function f is called a fuzzy continuous function if it is fuzzy continuous at every point of F(X).

Theorem 3.6. Every identity fuzzy function is fuzzy continuous function in two-fuzzy normed space.

Proof: For all $\varepsilon \in (0, 1)$ and t > 0 there exist s = t and $\langle \varepsilon, \delta \in (0, 1), N(f_n - f, s) > 1 - \delta$

 $N(\Psi(f_n)-\Psi(f),t) = N(f_n - f,s) > 1 - \delta > 1 - \varepsilon$ therefore Ψ is a fuzzy continuous at f, since f is an arbitrary point then Ψ is a fuzzy continuous function.

Theorem 3.7.Let F(X) be a two-fuzzy normed space over \mathbb{F} . Then the functions $\Psi: F(X) \times F(X) \to F(X), \Psi(f,g) = f + g$ and

 ω : $\mathbb{F} \times F(X) \to F(X)$, $\omega(\lambda, f) = \lambda f$ are fuzzy continuous functions.

Proof: (1) Let $\varepsilon \in (0, 1)$ then there exists $\varepsilon_1 \in (0, 1)$ such that $(1 - \varepsilon_1) * (1 - \varepsilon_1) \ge (1 - \varepsilon)$. let $f, g \in F(X)$ and $\{f_n\}, \{g_n\}$ in F(X) such that $f_n \to f$ and $g_n \to g$ as $n \to \infty$, then for each $\varepsilon_1 \in (0, 1)$ and each $\frac{t}{2} > 0$ there exists $n_1 \in Z^+$ such that $N(f_n - f, \frac{t}{2}) > 1 - \varepsilon_1$ for all $n \ge n_1$, and for each $\varepsilon_1 > 0$ and $\frac{t}{2} > 0$ there exists $n_2 \in Z^+$ such that $N(f_n - f, \frac{t}{2}) > 1 - \varepsilon_1$ for all $n \ge n_2$, put $n_0 = \min\{n_1, n_2\}N(f(x_n, y_n) - f(x, y), t) = N((f_n + g_n) - (f + g), t) = N((f_n - f) + (g_n - g), t) \ge N(f_n - f, \frac{t}{2}) * N(g_n - g, \frac{t}{2}) > (1 - \varepsilon_1) * (1 - \varepsilon_1) \ge 1 - \varepsilon$ for all $n \ge n_0$, therefore $\Psi(f_n, g_n) \to \Psi(f, g)$ as $n \to \infty, \Psi$ is fuzzy continuous function at (x, y) and (x, y) is any point in $F(X) \times F(X)$, hence Ψ is fuzzy continuous function.

(2) Let $f \in F(X)$, $\lambda \in \mathbb{F}$ and $\{f_n\}$ in F(X), $\{\lambda_n\}$ in \mathbb{F} such that $f_n \to f$ and $\lambda_n \to \lambda$ as $n \to \infty$, then for each $\frac{t}{2|\lambda_n|} > 0$, $\lim_{n \to \infty} N\left(f_n - f, \frac{t}{2|\lambda_n|}\right) = 1$, $|\lambda_n - \lambda| \to 0$ as $n \to \infty$,

$$N(\omega(\lambda_n, f_n) - \omega(\lambda, f), t) = N(\lambda_n f_n - \lambda f, t) = N(\lambda_n f_n - \lambda f, t) = N(\lambda_n f_n - \lambda_n f) + (\lambda_n f - f_n) + (\lambda_n f_n - \lambda_n f) + (\lambda_n f - f_n) + (\lambda_n f_n - \lambda_n f) + (\lambda_n f - f_n) + (\lambda_n$$

 $\lim_{n\to\infty} N(\omega(\lambda_n, f_n) - \omega(\lambda, f), t) \ge \lim_{n\to\infty} N(f_n - f_n) \frac{1}{2|\lambda_n|} + \lim_{n\to\infty} N(f_n) \frac{1}{2|\lambda_n-\lambda|} = 1 \quad \text{but}$ $\lim_{n\to\infty} N(\omega(\lambda_n, f_n) - \omega(\lambda, f), t) \le 1 \text{ then } \lim_{n\to\infty} N(\omega(\lambda_n, f_n) - \omega(\lambda, f), t) = 1 \text{ then}$ $\omega(\lambda_n, f_n) \to \omega(\lambda, f) \text{ as } n \to \infty, \omega \text{ is fuzzy continuous at } (\lambda, \omega) \text{ and } (\lambda, f) \text{ is any point in } \mathbb{F} \times F(X), \text{ hence } \omega \text{ is fuzzy continuous.}$

Theorem 3.8. Let (F(X), N, *) and (F(Y), N, *) be two-fuzzy normed spaces and let $\psi : F(X) \to F(Y)$ be a linear function. Then ψ is a fuzzy continuous either at every point of F(X) or at no point of F(X).

Proof: Let f_1 and f_2 be any two points of F(X) and suppose ψ is fuzzy continuous at f_1 . Then for each $\varepsilon \in (0, 1)$, t > 0 there exist $\delta \in (0, 1)$ such that $f \in F(X)$, $N(f - f_1, s) > 1 - \delta \Longrightarrow N(\psi(f) - \psi(f_1), t) > 1 - \varepsilon$ Now: $N(f - f_2, s) > 1 - \delta$, $N((f + f_1 - f_2) - f_1$, $s) > 1 - \delta \Longrightarrow N(\psi(f + f_1 - f_2) - \psi(f_1), t) > 1 - \varepsilon \Longrightarrow N(\psi(f) + \psi(f_1) - \psi(f_2) - \psi(f_1), t) > 1 - \varepsilon \Longrightarrow N(\psi(f) - \psi(f_2), t) > 1 - \varepsilon$, ψ is a fuzzy continuous at f_1 , since f_2 is arbitrary point. Hence ψ is a fuzzy continuous.

Corollary 3.9.Let (F(X), N, *) and (F(Y), N, *) be two-fuzzy normed spaces and let $\psi : F(X) \to F(Y)$ be a linear function. If ψ is fuzzy continuous at 0 then it is fuzzy continuous at every point.

Proof: Let $\{f_n\}$ be a sequence in F(X) such that there exist f_0 , and $f_n \to f_0$, since ψ is fuzzy continuous at 0 then: For all $\varepsilon \in (0, 1), t > 0$ there exist $\delta \in (0, 1), s > 0$: $(f_n - f_0) \in F(X)$

$$N((f_n - f_0) - 0, s) > 1 - \delta \Rightarrow N(\Psi(f_n - f_0) - \Psi(0), t) > 1 - \varepsilon,$$

$$N(f_n - f_0, s) > 1 - \delta \Rightarrow N(\Psi(f_n) - \Psi(f_0) - \Psi(0), t) > 1 - \varepsilon$$

 $N(f_n - f_0, s) > 1 - \delta \Rightarrow N(\Psi(f_n) - \Psi(f_0) - 0, t) > 1 - \varepsilon$

$$N(f_n - f_0, s) > 1 - \delta \Rightarrow N(\Psi(f_n) - \Psi(f_0), t) > 1 - \varepsilon$$

 $f_n \to f_0 \Rightarrow \Psi(f_n) \to \Psi(f_0)$ therefore Ψ is fuzzy continuous at f_0 since f_0 is arbitrary point, then Ψ is fuzzy continuous function.

Theorem 3.10.Let (F(X), N, *), (F(Y), N, *) be a two-fuzzy normed spaces, then the function $\Psi : F(X) \to F(Y)$ is fuzzy continuous at $f_0 \in F(X)$ if and only if for all fuzzy sequence $\{f_n\}$ fuzzy convergent to f_0 in X then the sequence $\{\Psi(f_n)\}$ is fuzzy convergent to $\Psi(f_0)$ in Y.

Proof: Suppose the function Ψ is fuzzy continuous in f_0 and let $\{f_n\}$ is a sequence in F(X) such that $f_n \to f_0$. Let $\varepsilon \in (0, 1), t > 0$, since Ψ is fuzzy continuous in $f_0 \Longrightarrow$ there exist $\delta \in (0, 1), s > 0$, such that for all $f \in F(X): N (f - f_0, s) > 1 - \delta \Longrightarrow N (\Psi(f) - \Psi(f_0), t) > 1 - \varepsilon$ Since $f_n \to f_0$, $\delta \in (0,1)$, s > 0, there exist $k \in Z^+$ such that $N(f_n - f_0, s) > 1 - \delta \text{ for all } n \ge k \text{ hence } N(\Psi(f_n) - \Psi(f_0), t) > 1 - \varepsilon \text{ for all } n \ge k \text{ therefore } \Psi(f_n) \to \Psi(f_0).$ Conversely suppose the condition in the theorem is true. Suppose Ψ is not fuzzy continuous at f_0 .

There exist $\varepsilon \in (0, 1), t > 0$ such that for all $\delta \in (0, 1), s > 0$ there exist $f \in F(X)$ and $N(f - f_0, s) > 1 - 1$ $\delta \Longrightarrow N(\Psi(f) - \Psi(f_0) t) \le 1 - \varepsilon \Longrightarrow$ for all $n \in Z^+$ there exist $f_n \in F(X)$ such that

 $N(f_n - f_0, s) > 1 - \frac{1}{n} \implies N(\Psi(f_n) - \Psi(f_0), t) \le 1 - \varepsilon \text{ that is mean } f_n \to f_0 \text{ in } F(X), \text{ but } \Psi(f_n) \nrightarrow \Psi(f_0) \text{ in } Y$ this contradiction, Ψ is fuzzy continuous at f_0 .

Theorem3.11. Let $(F(X), N_1, *)$ $(F(Y), N_2, *)$ be two-fuzzy normed spaces. If the functions $\psi : F(X) \to F(Y)$, $\omega: (X) \to F(Y)$ are two fuzzy continuous functions and with for all a there exist a_1 such that $a_1 * a_1 \ge a_2$ a and $a, a_1 \in (0, 1)$ then:

(1)f + g, (2)kf where $k \in \mathbb{F}/\{0\}$, are also fuzzy continuous functions over the same filed \mathbb{F} .

Proof: (1)Let $\varepsilon \in (0, 1)$ then there exists $\varepsilon_1 \in (0, 1)$ such that $(1 - \varepsilon_1) * (1 - \varepsilon_1) \ge (1 - \varepsilon).$ Let $\{f_n\}$ be a sequence in F(X) such that $f_n \to f$. Since Ψ , ω are two fuzzy continuous functions at f thus for all $\varepsilon_1 \in (0,1)$ and all t > 0 there exist $\delta \in (0,1)$ and s > 0 such that for all $f \in F(X)$: $N_1(f_n - f, s) > 1 - \delta$ implies $N_2(\Psi(f_n) - \Psi(f), \frac{t}{2}) > 1 - \varepsilon_1$.

And $N_1(f_n - f, s) > 1 - \delta$ implies $N_2(\omega(f_n) - \omega(f), \frac{t}{2}) > 1 - \varepsilon_1$

 $N_{2}((\Psi + \omega)(f_{n}) - (\Psi + \omega)(f), t) = N_{2}(\Psi(f_{n}) + \omega(f_{n}) - \Psi(f) - \omega(f), t) \ge N_{2}(\Psi(f_{n}) - \Psi(f), \frac{t}{2}) *$ Now: $N_2\left(\omega(f_n) - \omega(f), \frac{t}{2}\right)$

$$> (1 - \varepsilon_1) * (1 - \varepsilon_1) \ge (1 - \varepsilon)$$

Then $\Psi + \omega$ is fuzzy continuous function.

(2) Let $\{f_n\}$ be a sequence in F(X) such that $f_n \to f$. Thus for all $\varepsilon_1 \in (0, 1)$ and for all t > 0, there exist $\delta \in [0, 1]$ (0, 1) and $s > 0 \ni N_1(f_n - f, s) > 1 - \delta$ implies $N_2(\Psi(f_n) - \Psi(f), t) > 1 - \varepsilon_1$, take $t_1 = t|k|$. Then for all $\varepsilon_1 \in (0, 1)$ and for all $t_1 > 0$, there exist $\delta \in (0, 1)$ and $s > 0 \ni N_1(f_n - f, s) > 1 - \delta$ implies $N_2((l + 1))$

$$k \, \Psi)(f_n) - (k \Psi)(f), t_1) = N_2(k(\Psi(f_n) - \Psi(f)), t_1)$$

$$= N_2(\Psi(f_n) - \Psi(f), t) > 1 - \varepsilon_1$$

Then $k \psi$ is a fuzzy continuous function.

References

- [1]. J. Zhang, The continuity and boundedness of fuzzy linear operators in fuzzy normed space, J.Fuzzy Math. 13(3) (2005) 519-536.
- [2]. L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353. [3]. RM. Somasundaram and ThangarajBeaula, Some Aspects of 2-fuzzy 2-normed linear spaces, Bull. Malays. Math. Sci. Soc. 32(2) (2009) 211-222.
- [4]. S. Gahler, Lineare 2-normierte Raume, Math. Nachr. 28 (1964) 1-43.
- [5]. THANGARAJBEAULA, R. ANGELINE SARGUNAGIFTA. Some aspects of 2-fuzzy inner product space. Annals of Fuzzy Mathematics and Informatics Volume 4, No. 2, (October 2012), pp. 335-342
- [6]. T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11(3) (2003) 687-705.