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Abstract: This research is a part of the work devoted on the application of analytical Discrete Ordinate (ADO) 

method to the polarized monochromatic  radiative transfer equation undergoing anisotropic scattering with  

source function matrix in a finite coupled Atmosphere –Ocean media having flat interface boundary conditions 
involving  specular reflection and transmission matrix.  Discontinuities in the derivatives of the Stokes vector 

with respect to the cosine of the polar angle at smooth interface between the two media with different refractive 

indices (air and water) is tackled by using a suitable quadrature scheme devised earlier. Atmosphere and ocean 

are assumed to be homogeneous. No stratification is adopted in the two media. Exact expression for the 

emergent radiation intensity vector from the top of the atmosphere is derived. Exact expressions for the 

emergent polarized radiation intensity vector from the air-water interface as well as from any point of the two 

medium in any direction can also be derived in terms of eigenvectors and eigenvalues.  

Keywords: Polarized Radiative transfer, Eigenvectors, Eigenvalues, Green function, specular.  

 

I. Introduction 
 Most of the fundamental problems that include scattering of polarized light in radiative transfer theory 
were formulated by Chandrasekhar [1], Kuscer and Riberic [2] for plane parallel media. Reformulation in terms 

of real parameters instead of complex parameters [3] made the problems easier for computation and numerical 

works. Basic theory of radiative transfer in natural water bodies (such as lakes, ponds or calm and rough oceans) 

was formulated by several authors [4, 5, 6, 7, 8, 9, 10 and 38]. There are several substantive contributions in this 

field including polarized radiation field and vector radiative transfer equation with rough surface 

modeling[17,18,19,20,21,22,23,24,25,26]. The majority of the methods adopted for solution of the problems 

stated therein include matrix-operator method, method of successive order of scattering, discrete ordinate 

method and Monte Carlo Method. Chandrasekhar‟s celebrated discrete ordinate method (DOM) was 

successfully applied to the coupled atmosphere-Ocean system by Knut and Stamens [11].In 2000 Siewert [33, 

34] discovered a variation of DOM and applied it to a basic polarized radiation transfer problem [12]. The 

method is now popularly known as analytical discrete ordinate method (A.D.O). We have applied this method in 

simple coupled homogeneous Atmosphere-Ocean system. No stratification in either system is adopted to keep 
the mathematics simple although there exits well defined schemes for treating problems where changes in 

refractive index occurs between layers of the two media [37]. The radiation field considered is polarized. 

 Boundary conditions are specified at the top of the atmosphere and at the bottom of the ocean. 

However at the two interfaces i.e. at the junction of air and water two interface conditions have been introduced 

depending on the direction of light (one from air to water and another from water to air) with specular reflection 

and transmission. Appropriate specular reflection and transmission matrices are introduced in the interface 

conditions at flat interfaces of atmosphere and ocean. Exact analytical expression for exit intensity in the upward 

direction from the top of the atmosphere is derived in terms of known integral terms. Some integrals have been 

calculated in detail.  

 

II. The basic equation of transfer and reduction 
2.1: Basic equations:  

 Following [2] we introduce the specific intensity vector (Polarized radiation intensity vector) 

)φ,μ,z(I Oc/At as a column vector comprising stokes components in the following form 

                          
)φ,μ,z(I: Oc/At

T
Oc/AtOc/AtOc/AtOc/At )]φ,μ,z(V),φ,μ,z(U),φ,μ,z(Q),φ,μ,z(L[

   (1) 
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 We have used for optical depth )z,0(z w  in atmosphere and )z,z(z bw  in Ocean 

respectively.  In  equation (1) Oc/Atω  are the albedos for atmosphere and Ocean respectively for single 

scattering whereas )1,1(μ  ,is the cosine of polar angle measured from the normal drawn on the ocean 

surface with direction increasing in the downward direction from the top of the atmosphere at 0z  . The 

azimuthal angle is represented by )π2,0(φ
.  

The two radiative transfer equations for homogeneous 

atmosphere and ocean can be written compactly 
 

        )φ,μ,z(I
dz

)φ,μ,z(dI
μ: Oc/At

Oc/At   

                           


π2

0

1

1
Oc/AtOc/AtOc/At

Oc/At )φ,μ,z(Sφμd)φ,μ,z(I)φ,μ,φ,μ(P
π4

ω
    (2)  

 The source vector )φ,μ,z(S Oc/At  contains actual internal source for atmosphere and ocean. The 

atmosphere is illuminated by the solar beam with stokes parameter described in section (1.3) below in detail. 

Here we did not consider thermal, infrared microwave or fluorescent emission in the source function. However 

this can be introduce without much effort. 

 

2.2: Fourier Decomposition: 

  One of the usual procedures of solving the transfer equations is to consider Fourier series expansion of 

the intensity vector in the following form 
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 However we shall use following analytic Fourier series representation of phase functions [28]. 
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1
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       (4)

 

 The above mentioned two forms of Fourier representations for two different types of vector functions 

induce some simplification in the following developments required for the reduction of the equation of transfer 

to an azimuth independent form.  

The cosine and sine components of the phase functions for atmosphere are derived from Deuze et all [28] 
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And 
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(6) 

 In the above formulation the functions 
S
JP  with arguments prime and unprimed symbols are 

normalized associated Legendre functions which include the Legendre functions )μ(PJ  
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 The functions
S

JR ,
S

JT  with prime and unprimed arguments can be expressed as linear combinations of 

generalized Legendre functions [29], [30] and Mee (1990) [31]. 
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 Unprimed δ,γ,β,α are coefficients to be computed for atmosphere. The corresponding phase 

functions for ocean can be written down by replacing the unprimed coefficients by primed one. Since we are 

considering homogeneous atmosphere and ocean we shall not consider layered atmosphere. Substitution of (3), 

(4) and use of (5) & (6) in (2) separates the equation of transfer into a set of azimuth independent equations for 

each S  
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 Where we have defined 
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It can be shown that [29] 
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 The required orderS  for the above development depends mainly on the constituent particles of the 

medium. The functions )μ(R
S
J , )μ(T

S
J are to be determined from the  expressions given in [29].  

 2.3: The exclusive expressions for source matrix vector, reflection and transmission matrix function: 

We shall now specify the solar-beam source matrix vector )φ,μ,z(S Oc/At  in equation (2). For atmosphere this 

source matrix may be obtained using Snell-Descartes law to model the reflection and transmission matrix at the 

air-seawater interface. The atmospheric source matrix contains two distinct terms. The first term (downwelling) 

describes the contribution from the downward beam source vector T
02010 ]0,0,F,F[F  attenuated exponentially 

while the second term (reflected) expresses the contribution from beam source reflected upward specularly at 

the air-water interface following Fresnel reflection law and gets attenuated. 
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 The source matrix for ocean, suitably modified adopted from Zhonghai and Stamnes [32], essentially 

desribes the fact that downward direct solar beam source vector, incident in the direction )φ,μ( 00 , reach at 

depth z  after getting transmitted, scattered and attenuated.   
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 The exact expressions for stokes component of the source matrix can be computed from expressions 

(15) and (16) using equations (4), (11) and (12) and expression for specular reflection and transmission matrix 

given below. 

 The form of reflection and transmission matrix can be written using Snell-Descartes laws with cosine 

of the solar zenith angle n0μ  in the ocean related to the incident polar direction at
0μ  given by    

 

                                                  
2

2at
0oc

n0
n

)μ1(
1μ


   (17). 



Exact Analytical Expression for Outgoing  Intensity from the Top of the Atmosphere in a Flat  

www.iosrjournals.org                                                        58 | Page 

 We have defined )μ,n(R
oc/at

Oc/At   and )μ,n(T
oc/at

Oc/At   as the azimuth independent specular 

reflection and transmission matrix of the invariant intensity respectively with appropriate suffix „At‟ and „Oc‟ 

for atmosphere and Ocean respectively. The plus-minus sign applies for the downward and the upward 

directions respectively. If the sea surface is absolutely calm a single image of the sun can be seen on a specular 
surface. In this case the general specular reflection matrix can be expressed in the Chandrasekhar‟s 

representation of stokes vector [1], [15], [14]. 
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  In the same manner the general specular transmission matrix can be expressed as  
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The polar angles oc
μ and at

μ are related by the Snells law given in equation (17).  

 The ratio of the refractive index of the ocean to that of atmosphere is expressed as n . In case of   air-

water interface there arises a fundamental problem when one considers numerical evaluation. To understand this 

we shall refer to [16].Let us assume that we have a discrete set of N cosines of the polar angle for the ocean such 

that 0θcosμ i
oc
i  . Next we can a set of points for which 0θcosμ i

at
i   which will label the upper 

hemisphere. Out of this set of N points for the ocean, only M of them can be mapped into the atmosphere for 

which c
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i θcosμ   where cθ   is the critical angle defined by 

n

1
)θsin( c   where n  is the refractive index of 

water. The remaining N–M points are restricted to the ocean and cannot be mapped into the atmosphere. These 

points specify the region of total internal reflection. The matter has been explained in the following figure [2] 

adopted from [16] without any change.  Let us consider a radiance vector )ξ,z(I
at  striking the interface at some 

angle α  and entering the ocean at the refracted angle θ .The relationship connecting these two set of points is 

simply Snell's law.  With reference to the figure [2] this well known relation in quadrature form is   
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  Now we shall select the quadrature mapping set suitable for our problem. To select these sets we must 

take into consideration the following three constraints. The normalization of phase function of the atmosphere 

must be ensured. The energy must be conserved. The quadrature selected must be capable of normalizing the 

highly anisotropic scattering phase function for ocean. Now for the continuity of radiation vector striking at the 

air-water interface from above, the radiation intensity vector just below the water surface will be given by    

                                            )ξ,z(I)ξ,μ,n(T]
μd

ξd

μ

ξ
[)μ,z(I

atatoc
Ococ

at

oc

at
oc    (26) 

 



Exact Analytical Expression for Outgoing  Intensity from the Top of the Atmosphere in a Flat  

www.iosrjournals.org                                                        59 | Page 

                                      



































oc

at

oc

at

oc

at

oc

at

oc

at

oc

at

oc

at

oc

at

oc

at

oc

at

μd

ξd

μ

ξ
000

0
μd

ξd

μ

ξ
00

00
μd

ξd

μ

ξ
0

000
μd

ξd

μ

ξ

]
μd

ξd

μ

ξ
[

 (26a) 

 

 Using equation (25), equation (27) can be written in a form which is the generalized form of scalar 

result first obtained by Gershun [27]. 
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Comparing (27) and (28) we get          ]
μ

ξ
[

n

1
]

A

A
[
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i

2oc
i

at
i   (30)  

 Equation (30) gives us the ocean quadrature weights for the corresponding atmosphere quadrature 

weights. A detailed  analysis for such quadrature evaluation were carried out in[16] to show the superiority of 

this  quadrature scheme over if one uses Gaussian points within the critical angle for the ocean and maps them 

into the atmosphere which was the technique used by Tanaka and Nakajima [36]. However for layered media 

there exist better quadrature schemes in the literature [37]. There are certain criteria to use these quadrature 

schemes regarding the maximum number of quadratures to be used within the total internal reflection region and 

outside refracting this region [32].   

 It should be taken into account that the reflectivity ( r ) and transmissivity ( t ) given by the following 

expressions are related to                                  

                                                                          1tr     (31) 

Where we have defined 
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We shall use following Fourier series representation of the source matrix [28]  
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 Incorporation of the form (32) in equation (15) and (16) with appropriate form of phase matrix 

functions given for atmosphere and ocean results in the expressions for individual stokes component of the 

source matrix. We have not shown the results as these derivations are space consuming, straightforward 
although tedious and cumbersome. 

 

III. Interface and boundary Conditions at flat ocean surface 
 3.1: In this article we are interested in the solution of equation (2) subject to the following four coupled 

boundary conditions. This is rather simplified situation. The ocean surface is absolutely calm. The coupling 

between the two media is described by well known laws of reflection and refraction that apply at the interface as 

expressed by Snells law and Fresnel‟s law. The practical complications that arise are due to multiple scattering 

and total internal reflections. The downward radiation distributed over π2  steredian in the atmosphere will be 

restricted to an angular cone less than π2  steredian after being refracted across the interface into the ocean. 

Beams outside the refractive region in the ocean are in the total reflection region. The demarcation between the 

refractive and total reflective region in the ocean is given by the critical angle. [Region I (Total internal 

reflection) and region II (Refractive region) in Fig (1)].Upward-traveling beams in total internal reflection 

region in ocean will be reflected back into the ocean upon reaching in interface. Thus, beams in total internal 

reflection region cannot reach the atmosphere directly; they must be scattered into other region in order to be 

returned to the atmosphere.   

 At the top of the atmosphere there is some prescribed incident radiation. The continuity conditions at 

each interface between layers in the atmosphere and ocean are omitted in this work as we have not considered 

layered atmosphere or ocean. Finally the specular reflection and refraction, occurring at the atmosphere-ocean 

interface where we require Fresnel‟s equation to be satisfied ,are assumed to be equal both ways i.e. air to water 

and water to air as is evident from equations (18) and (21). The reduced sets of boundary conditions for each 
„S‟are given by, dropping „S‟ [11]. 

                         (A)                               )μ(fI)μ,0(I
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(34)  

                          (C)             

)μ,z(I)μ,μ,n(T  
n

)μ,z(I
 )μ,μ,n(R

n

)μ,z(I at
ωAt

ocat
AT2

oc
ωOcococ

Oc2

oc
ωOc 
















     

                                                                                                                                         (35)                                                                                                                                                                        

                           (D)                     )μ(gI)μ,z(I
oc

Oc
oc

bOc             (36). 

       Where )μ(f and )μ(g are some given function of polar angle with AtI  and OcI  as constants. In 

section () we have shown one example each of the above mentioned functions that can be used in case of 

atmosphere and ocean respectively.  
 

IV. The homogeneous solution in terms of eigenvectors, eigenvalues and orthogonality 

relations 
 4.1: In this section we shall solve the homogeneous version of equation (10) by a new version of 

Chandrasekhar‟s discrete ordinate method developed by Siewert [12]. We use following ansatz (suppressing 

„S‟) for intensity vector in the discretised version of homogeneous part of the equation (10). 

                                )
γ

z
exp()μ,γ()μ,z(I

oc/at
i

OC/AToc/at
iOc/At  Η    (37) 

 Where the two Gaussian polar quadratures for two different media are related by equation (17) 

translated here as 

                                                   
2

2at
ioc

i
n

)μ1(
1μ




     

 (17) 

We now  find following four expressions for two signed directions oc/at
iμ and corresponding Gaussian 

 quadrature weights 
oc/at

kω given by  the formula (29) for atmosphere and ocean respectively and to 
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ensure simplified look henceforth we have decided to  “at/oc” as superscript from polar angle quadratures and 

corresponding Gaussian weights. We get after employing a little algebra  
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       Here we have defined  

                                                          }1,1,1,1{diagD   (42) 
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However, the set of equations can be written in an equivalent but more elegant form by introducing following 

vectors 

           T T
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Here each T
i

OC/AT
)μ,γ(Η is (4x1) vector. Now let us define for both atmosphere and ocean  

)ω,.......,ω,ω,ω(diag N321 ΓΓΓΓ΢  (47);    )μ,.......,μ,μ,μ(diag N321 ΓΓΓΓΧ  (48);    

                                             
)1,1,1,1(diagonalΓ (49);  

Using this formalism one can easily verify that the set (38-41) for each „S‟ may be written compactly as follows. 
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           Here Ι is a (4Nx4N) identity matrix and (4Nx4) matrix )S,J(Π is given below. 
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In the above expressions the entries of matrix (54) are given by (4x4) matrices (11) and (12)  

Continuing Siewert‟s [12] approach we shall now derive equivalent set of relations by defining the following 

vectors for atmosphere and ocean respectively  
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Taking sum and difference of (50) & (51) and (52) & (53) respectively for atmosphere and ocean and using (56) 

and (57) one can derive 
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 In general matrix 
OC/AT

Α and
OC/AT

B are real asymmetric. We now use equations (58) & 
(59) and (60) & (61) to get  
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 Our task is now to evaluate the eigenvalues OCAT
,  which will determine the separation constants 

OCAT
γ,γ   for atmosphere and ocean respectively. However it is of general opinion that in such cases the 

eigenvalues and eigenvectors are highly unstable. Separation constants occur in plus-minus pairs. It is to be 

noted that the eigenvalues may be complex. We note that in general 
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  The eigenfunctions can be expressed either from equations (70-71) or (72-73). Using equations (58-

61), (62-65) with (70-73) we can easily deduce 
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We now have all that we require to write the solution of the homogeneous RTE (10) for both atmosphere and 

ocean. We define a (4Nx1) matrix as   
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 The homogeneous solutions for atmosphere ( )z,0(z w ) and Ocean ( )z,z(z bw ) can now 

be written as  
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                                }D,....,D,D,D{diagΔ  is (4Nx4N) matrix. (81a) 

 Since both the eigenvector and eigenvalues may be complex as reported in [12] we prefer to write 

equations (77-80) in terms of real and imaginary quantities. Let us represent Nr for number of real separation 

constants and Nc for the number of complex pairs of separation constants. Decomposing (77-80) in to real and 
complex parts we get the following set of equations appropriate foe atmosphere and ocean.  
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
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
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



















ΗΗ

  

                                ).2(2F)1(2F
OC/ATOC/AT  (81i) 

 

4.2: The Infinite Medium Green‟s Function: 

  The elementary solutions developed in the last section will now be used to find the particular solution 

following a method developed in [35, 40] to accommodate for the inhomogeneous source term )μ,z(S Oc/At

.We shall first construct the infinite-medium Green‟s function )μ,x:μ,z( ki
OC/AT Μ  & 

)μ,x:μ,z( ki
OC/AT Μ  for any source location at an arbitrary point x within Atmosphere or Ocean. Let us 

assume that the source is located at )z,0(x w  for atmosphere and at )z,z(x bw  for ocean along 

with the source direction defined by }μ{μ ik  .For the first problem we have following two equations for

N,...,2,1k,i   
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          k,i

M

SJ
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j
OC/AT

Oc/At
ki

OC/AT
i δ)xz(δI)μ,x:μ,z(

2

ω
)μ,x:μ,z( I

dz

d
μ 












ΚΜ (82a)    

       











M

SJ
ki

j
OC/AT

Oc/At
ki

OC/AT
i )μ,x:μ,z(

2

ω
)μ,x:μ,z( I

dz

d
μ ΚΜ        (82b) 

However the second problem is described by the following two expressions. 

          











M

SJ
ki

j
OC/AT

Oc/At
ki

OC/AT
i )μ,x:μ,z(

2

ω
)μ,x:μ,z( I

dz

d
μ ΚΜ (82c) 

     k,i

M

SJ
ki

j
OC/AT

Oc/At
ki

OC/AT
i δ)xz(δI)μ,x:μ,z(

2

ω
)μ,x:μ,z( I

dz

d
μ  












ΚΜ  (82d)                                                                                                                                                                                                                                                                                      

WhereI  is as usual the (4X4) identity matrix and we have defined                                    

            


N

1β
k

OC/AT
β,Sβ

OC/AT
Ji

S
Jki

J
OC/AT )μ,x,z(wB)μ()μ,x:μ,z( ΜΡΚ  (83a) 

         )μ,x:μ,z()μ()μ,x:μ,z()μ()μ,x:z( kβ
OC/AT

β
S
Jkβ

OC/AT
β

S
Jk

OC/AT
β,S  ΜΡΜΡΜ   (83b)

 
 We have defined )xz(δ   as the Dirac delta “function” and k,iδ  as the Kronecker delta. Each of the 

two Green‟s functions now comes out as a (4X4) matrix. Following Case and Zweifel [39] we now proceed to 

develop the solution for )μ,x:ξ,z( kβ
AT Μ .We can find solution bounded as z  and valid in the region 

xz   for the homogeneous equation and another solution valid for xz   and bounded as z . For 

matching up these two solutions with the notion of “jump” condition, valid when N,...,2,1k,i  , we can write, 

for atmosphere and ocean respectively 

1. (+, +) equations: 

           

k,iki
AT

ki
AT

0ε
i δI)]μ,x:μ,εz()μ,x:μ,εz([limμ 


ΜΜ   (84a)                                       

                     k,iki
OC

ki
OC

0ε
i δI)]μ,x:μ,εz()μ,x:μ,εz([limμ 


ΜΜ   (84b)                                      

2. (–, +) equations:  

         

0)]μ,x:μ,εz()μ,x:μ,εz([limμ ki
AT

ki
AT

0ε
i 


ΜΜ

 

(85a)                                      

                    0)]μ,x:μ,εz()μ,x:μ,εz([limμ ki
OC

ki
OC

0ε
i 


ΜΜ  (85b)                                      

                        For )μ,x:μ,z( ki
AT Μ  & )μ,x:μ,z( ki

OC Μ  

      3. (+,–) equations: 

                    

0)]μ,x:μ,εz()μ,x:μ,εz([limμ ki
AT

ki
AT

0ε
i 


ΜΜ  (86a) 

                    0)]μ,x:μ,εz()μ,x:μ,εz([limμ ki
OC
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

ΜΜ  (86b) 

     4. (–,–) equations: 

 

                           

k,iki
AT
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0ε
i δI)]μ,x:μ,εz()μ,x:μ,εz([limμ 
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ΜΜ   (87a) 

                                                                                                                         

                            k,iki
OC
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0ε
i δI)]μ,x:μ,εz()μ,x:μ,εz([limμ 


ΜΜ  (87b) 

                                    For )μ,x:μ,z( ki
AT Μ  & ).μ,x:μ,z( ki

OC Μ  

 We now have following two sets of solutions for green functions for case A (corresponding to xz  ) 

for atmosphere and Ocean and for Case B (corresponding to xz  ) for atmosphere and ocean respectively.   

   Case A:   x,z      ,
γ

)xz(
exp)μ(C)γ()μ,x:z(
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J
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J
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
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       with 
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             T T
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       and 
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      with 
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 Case B:   x,z      ,
γ
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 ΗΜ (92a) 

                     x,z ,
γ
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                   x,z      ,
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                x,z      ,
γ

)zx(
exp)μ(D)γ()μ,x:z(
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OC
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kj
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J
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k
OC 


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


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

 
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
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 Using discrete ordinate solutions for homogenous equations (88a-93b) for Green functions in the 

limiting equations (84a-87b), for xz   and xz   respectively, we get after straightforward algebraic 

manipulations following solutions keeping appropriate consideration for positive and negative iμ  and kμ , (

x within atmosphere or ocean). 

                       k

N4

1J
k

AT
j

AT
j

AT
k

AT
j

AT
j

AT
R)]μ(D)γ()μ(C)γ([  
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 When similar procedures are applied on (85a) with (78) we get 
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 This constitutes the first set of solutions. For the second set of solutions we need equations (86a) and 

(87a) to give 

                         0)]μ(D)γ()μ(C)γ([
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For Ocean the corresponding solution pairs are given below. 
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                          k

N4

1J
k

OC
j

OC
j

OC
k

OC
j

OC
j

OC
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T

k,Nk,2k,1k ]δI,...,δI,δI[R  (98) 
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 We shall now solve the set of equations given by (94a) and (94b) to get the unknown coefficients for 

atmosphere. Similar considerations can also be applied on equations (95a) and (95b) and for Ocean also. 

However complete solution requires certain orthogonality relations satisfied by the eigenvectors. 

4.3: Orthogonality Relations: Atmospheric/Oceanic adjoint problem is defined by replacing
OC/AT

JB in (50-

53) with 
TOC/AT

J ]B[  and writing the equations in the following form 

                     
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2

ω
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1
ΑΣΠΑΗΧΙ (99b) 

                       )γ()S,J(D)1()γ()S,J()γ,OC/AT(
OC/ATTJlOC/ATTS

J 


  ΢ΑΗΠ΢ΑΗΠΑΣ (100) 

 The eigenvalues defined by the equations (38-41), where asymmetric matrices A and B are involved, 

will not change if the above mentioned changes are introduced in (38-41). This means that the adjoint vectors 

)γ(
OC/AT

J
OC/AT

ΑΗ  are defined over the same spectrum as the vectors )γ(
OC/AT

J
OC/AT

Η .To evaluate the 

orthogonality relations following we employ following steps as described below.  

Step1: We evaluate equation (99a) and (99b) at
AT
Jγγ  and premultiply the resulting equations with 

W)]γ([
T

k
AT
ΑΗ  and W)]γ([

T
k

AT
ΑΗ respectively for jk  .We next add the last two equations to get the 

first equation. 

Step2: Interchanging j and k in the first equations we get the second equation. 

Step3: We premultiply now the first equation by TAT
j

AT
)]γ([ Η  and second equation by TAT

j
AT

)]γ([ Η , adding 

the two resulting equations and then interchanging j and k to get third equation. 

Step4: Next we set 
AT
JB as 

TAT
J ]B[ in the third equation and take transpose of this equation and subtract 

this equation from the third equation to get the following equation 

              ,0)γ()γ()γ()γ(
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ATT
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ATAT
j

ATT
k

AT   ΢ΧΗΑΗ΢ΧΗΑΗ    .γγ kj  (101) 

 Step5: Apply the same above set of four procedures to the same set of equation but interchanging the order of 

the multiplier eigenvectors leads to the following equation                 

                       .0)γ()]γ([)γ()]γ([
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ATAT
j
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k

AT   ΢ΧΗΑΗ΢ΧΗΑΗ (102) 

Equation (101) and (102) are called orthogonality relations in case of atmosphere. 

Premultiplying (94a) with ΢ΑΗ
T

k
AT

)]γ([   and (94b) with ΢ΔΑΗ
T

k
AT

)]γ([  and adding these 

two resulting equations we get 
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                                                                  αk
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R)γ( ΢ΑΗ      (103) 

For we have kj   after noting the two orthogonality relations (101) and (102), 

                                        k
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j
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j
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j R)]γ([

)γ(NAT

1
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Where  
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Continuing we shall pre-multiply equation (94a) by W)]γ([
T

k
AT
ΑΗ  and equation (94b) by 

 and add the two resulting equations and use equations (101) and (102) to obtain 
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1
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Similarly we find from the second set of equations (95a) and (95b) 

                             k
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and  
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)μ(D ΢ΔΑΗ .  (108) 

 The required constants C and D in equations (94) and (95) are defined by equations (104 &106) and 
(107&108). Similar steps can also be followed in the case of Ocean to get the orthogonality conditions as 

given  

                       .γγ kj  (109) 

                      (110) 

 Involving equations (90) and (91) for the first and second set of solutions for Ocean in the above 
derivations and using equations (103) and (104) we get  
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 Having found the expansion coefficients for green functions we are now in a position to determine the 

particular solution for the inhomogeneous source term in the RTE. This is the objective of the next section. It is 

to be noted from the above set of equations that determination of adjoint vectors is essential. Here we have 
adopted the standard text book procedure. For a real asymmetric eigenvalue problem, double shift QR or QZ 

algorithm should be used. Other methods may produce fictious complex eigenvalues. One may use Qz algorithm 

in our future numerical adventure as this is more stable. 

 One may use matlab 7 software packages where standard LAPACK algorithm is used to calculate the 

left eigenvector as well as the right eigenvectors and corresponding eigenvalues.  These left eigenvectors may be 

used to find the adjoint vector. These calculations will be reported in some detail somewhere.  

 

V. The Particular and Complete Solution: 
5.1: Particular solution:  
 To determine particular solution we recall our transfer equations in the following form. 
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 The general solution to the homogeneous version of equations (10) is given by (77-80). With the help 

of green functions developed in the preceding section for xz   and xz  , we can immediately write one 

particular solution in the following manner, 
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We can rewrite equation (121) using (88a and 88b) 
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Where we have defined  
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Using (104-108) in (126) and (127) we obtain 
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Where we have defined              
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  From equations (15) and (16) it can be shown that our model source function can be written as  
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 Substituting the expressions (133) in (130) and (131) we can get following simple expressions from (128) and 

(129) 
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Following similar approach for ocean starting from (123) we get  
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 We shall now consider the case of complex separation constants. For real quantities if we let 

quantities with asterisks as complex conjugates 
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5.2. The Complete Solution:  
The complete particular solution can now be written as 
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 We now find out appropriate expressions of the particular solutions suitable for application in the 

boundary conditions. These will be used to find the unknown coefficients.  

For top boundary condition the following particular form will be used by setting z=0 in (148)     

     







Nc

1j

AT
j

ATAT
j

AT
Nr

1j
j

ATAT
jj

ATAT
j

p
AT )γ,0(BZ)γ,0(AZ)]γ()0()γ()0([)0;(I ΗΗΔ  (151)                                                                                                                  

The particular form of solutions for application in the second and third boundary conditions are given by 
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The particular solution that will be used in the bottom boundary condition   
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We can now write down the complete solution in the following form.    
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(164)     

 In the next section we shall use these complete solutions for discrete directional quadratures in the 

boundary and inter face conditions to get a set of four linear algebraic equations, solutions of which give the 

unknown coefficients. However we need to find solutions for any desired angle. 

 

VI. Evaluation of the Integral 
 7.1: In equation (218) there are three integrals to be evaluated to get exact expressions for the emergent 

intensity. Bellow as an example we have calculated the integral present in equation (214) only. This integral 
contains seven separate integrals over known functions. In order to save space we have omitted the deduction of 

all the integrals (21 integrals) in (218). However one can easily complete the relevant calculations using the 

following simple straight forward procedures.  

 Using expressions (161) in the second term of (214) we can establish the following expressions 

consisting of seven expressions involving integrations over known integrands suppressing the superscript „At” 
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 7.2: Keeping only the relevant terms within the integral sign of the first term in (219) and using 

expression (81b) we get, 
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       Similar approach for the second integral in (219) yields using (81f) 
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 7.3: The third integral requires equation (147) together with the pair of equations (135,136), 

(137,138) and (145,146) to get                    
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 The above expression for third integral can be evaluated numerically. The third and forth term of this 

expression are relevant when complex conjugate pairs of eigenvalues are present in the eigenvalues spectrum. 

7.4: The forth integral can be evaluated using equation (81e)  
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7.5: The fifth integral can be evaluated with the help of (81f) 
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 7.6: The sixth integral again requires equation (148) to take the following form          
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7.7: The last integral is the source integral which takes the following form  

            


















 


μ

dx

μ

)at(zx
exp)μ,x(SAT

z

)at(z

ω

      

                      

.)at(z)
μ

1
(exp(z)

μ

1

μ

1
(exp(

μμ

μ
)(S

0
ω

00

0
AT 













 (228) 

 The integrals evaluated above can now be calculated numerically once we have calculated the 

eigenvalues correctly. We have not specified the form of the source function here. This issue will be taken up in 

some detail in our numerical consideration. 

 

VII. Conclusion 
 We have applied analytical discrete ordinate method for the radiation transfer in homogeneous 

composite atmosphere-ocean system and found exact analytical expressions for emergent upward polarized 

radiation intensity in any direction from the top of the atmosphere. However exit polarized radiation intensity 

vector in any direction from the air water interfaces and from any point within atmosphere and ocean for any 

direction can be computed from the foregoing analysis without much effort. In this article we have not given 

specific mathematical expression for source matrix elements for space constraints. However this will be 

considered in a subsequent article where we shall report our numerical considerations.  
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