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Abstract: This research is a part of the work devoted on the application of analytical Discrete Ordinate (ADO)
method to the polarized monochromatic radiative transfer equation undergoing anisotropic scattering with
source function matrix in a finite coupled Atmosphere —Ocean media having flat interface boundary conditions
involving specular reflection and transmission matrix. Discontinuities in the derivatives of the Stokes vector
with respect to the cosine of the polar angle at smooth interface between the two media with different refractive
indices (air and water) is tackled by using a suitable quadrature scheme devised earlier. Atmosphere and ocean
are assumed to be homogeneous. No stratification is adopted in the two media. Exact expression for the
emergent radiation intensity vector from the top of the atmosphere is derived. Exact expressions for the
emergent polarized radiation intensity vector from the air-water interface as well as from any point of the two
medium in any direction can also be derived in terms of eigenvectors and eigenvalues.
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I Introduction

Most of the fundamental problems that include scattering of polarized light in radiative transfer theory
were formulated by Chandrasekhar [1], Kuscer and Riberic [2] for plane parallel media. Reformulation in terms
of real parameters instead of complex parameters [3] made the problems easier for computation and numerical
works. Basic theory of radiative transfer in natural water bodies (such as lakes, ponds or calm and rough oceans)
was formulated by several authors [4, 5, 6, 7, 8, 9, 10 and 38]. There are several substantive contributions in this
field including polarized radiation field and wvector radiative transfer equation with rough surface
modeling[17,18,19,20,21,22,23,24,25,26]. The majority of the methods adopted for solution of the problems
stated therein include matrix-operator method, method of successive order of scattering, discrete ordinate
method and Monte Carlo Method. Chandrasekhar’s celebrated discrete ordinate method (DOM) was
successfully applied to the coupled atmosphere-Ocean system by Knut and Stamens [11].1n 2000 Siewert [33,
34] discovered a variation of DOM and applied it to a basic polarized radiation transfer problem [12]. The
method is now popularly known as analytical discrete ordinate method (A.D.O). We have applied this method in
simple coupled homogeneous Atmosphere-Ocean system. No stratification in either system is adopted to keep
the mathematics simple although there exits well defined schemes for treating problems where changes in
refractive index occurs between layers of the two media [37]. The radiation field considered is polarized.

Boundary conditions are specified at the top of the atmosphere and at the bottom of the ocean.
However at the two interfaces i.e. at the junction of air and water two interface conditions have been introduced
depending on the direction of light (one from air to water and another from water to air) with specular reflection
and transmission. Appropriate specular reflection and transmission matrices are introduced in the interface
conditions at flat interfaces of atmosphere and ocean. Exact analytical expression for exit intensity in the upward
direction from the top of the atmosphere is derived in terms of known integral terms. Some integrals have been
calculated in detail.

1. The basic equation of transfer and reduction
2.1: Basic equations:
Following [2] we introduce the specific intensity vector (Polarized radiation intensity vector)

I At 7 0c(Z, 1, @) as a column vector comprising stokes components in the following form

“lat/oc(Z 1 9) =[Lat/oc (21.9). Qat/0c (2. 1.9). Uat/ 0c (Z.11.9). Var oc (2.1 @) T )
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We have used for optical depth Z € (0,Z,,) in atmosphere and Z € (Z,,,,Zp) in Ocean
respectively. In equation (1) W At / Oc are the albedos for atmosphere and Ocean respectively for single
scattering whereas 1L € (—1,1) ,is the cosine of polar angle measured from the normal drawn on the ocean

surface with direction increasing in the downward direction from the top of the atmosphere atZ = 0. The
azimuthal angle is represented by p € (0,2117) The two radiative transfer equations for homogeneous

atmosphere and ocean can be written compactly
dlat/oc (Z 1 9)

+1 Z,N,0)=
4z At/oc(Z, 1, 9)

[ 2” 1 ’ ’ ’ ’ ' !
%{) I Pac (0,0 gy 0o (2 1 0)0K'0 + Sagy 02 m9) - )

The source vector SAt / OC(Z, W, q)) contains actual internal source for atmosphere and ocean. The
atmosphere is illuminated by the solar beam with stokes parameter described in section (1.3) below in detail.
Here we did not consider thermal, infrared microwave or fluorescent emission in the source function. However
this can be introduce without much effort.

2.2: Fourier Decomposition:
One of the usual procedures of solving the transfer equations is to consider Fourier series expansion of

the intensity vector in the following form

L at/oc(Z.1.9) LAt/ oc (2, 1) €05 S(¢ — @)
Qat/oc(Z,1,9) S Z,1)cos S(o —
IAt/OC(Z,ll;(P)= 5 t/Oc — 2(2—605) Q,SAt/Oc( ll) - ((P (Ps) (3)
at/oc(Z,re) | s=o Uat/oc(Z,m)sinS(e — o)
Vat/oc(Z.1.9) Vauoc(z.m)sinS(e - o)

However we shall use following analytic Fourier series representation of phase functions [28].
Pat/oc(mo.n',9") =

L
. 5(2=80,6)I008(S(0 ~ ¢DPRucsoce (W) + SIn(S(0 = ¢ DPis ()]
)

The above mentioned two forms of Fourier representations for two different types of vector functions
induce some simplification in the following developments required for the reduction of the equation of transfer
to an azimuth independent form.

The cosine and sine components of the phase functions for atmosphere are derived from Deuze et all [28]

S r
PRic(, 1)

M M
S .S S S
L ByPy (wPy () L 73Py (MR (W) 0 0
J:S J=S
M M
S S S S S S
L ygRymPy () T (agRy(WRy(W)+&;Ty W7y (W) 0 0
=s I=S
B M Moo
0 0 T (oyTy 0Ty (W) +E3R MR (W) - T &3R3(wPy (i)
\]=S J:S
M s M s 5
0 0 L &3Py (WR; (W) L 83Py (wPy ()
L J=S J=§ J
®)
And
Pas (1)
Ats ll’ll
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M
0 0 Z 135 0T () 0
J=S
M S M
0 0 Y (egRyWTy (W) +&3Ty WRI(W) - X ;5T (WP ()
B J=s 3=$
oM Mo s
-z ‘IJTJ (l’-)PJ W) - Z (GJTJ (H)RJ(H)+§JRJ(H)T3 () 0 0
J=S J=S
M s
L J=S J

(6)
In the above formulation the functions PJS with arguments prime and unprimed symbols are

normalized associated Legendre functions which include the Legendre functions PJ (u)

1/2 IS
S=J)! 2\s/2 d
PS(u)=| ¢ 1- P 7
HO) [(HJ)J A-pF P O
The functions Rﬁ , Tf with prime and unprimed arguments can be expressed as linear combinations of
generalized Legendre functions [29], [30] and Mee (1990) [31].

_(m-n) _(n+m) g

Pha®)= Ao (A=) 2 @) 2 ol @

AT D)™™ [(r—m)!(r+n)! ©)
© 2" (r=my V (r+m)!(r—n)!

Unprimed (l,B,’y,f) are coefficients to be computed for atmosphere. The corresponding phase

functions for ocean can be written down by replacing the unprimed coefficients by primed one. Since we are
considering homogeneous atmosphere and ocean we shall not consider layered atmosphere. Substitution of (3),
(4) and use of (5) & (6) in (2) separates the equation of transfer into a set of azimuth independent equations for

each S

diAcs0c(Z.) oat/oc 1 : du'
AUOCEE = 00 (@) + 22U | PR 00 (1. W) Ar/00 (2 0)dN' + SAc/00(2.0)
-1

dz
(10)
Where we have defined
Pit(u,u’)=
PS(m) O 0 o |[Bs v; 0 0
¥ o RS T 0 |fvs ey OO
s=s| 0 =TS RS o0 ||O0 0 & -g
0 0 0 Pm|[|l0 0 & 3
PS ’
S) 0 0 0
0 RSM) -T5(w) O
0 -Ti() R3() O
0 0 0 PY(w)
M
- P7 (w)B5 'PF () (11)

S '
POC (l’lv 1 ) =
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PSW) 0 0 o |fpy v 0 o0
8o RS -TSW 0 vy ey 0 0
s=s| 0 -T$m) RS 0 [|o0 0 & -g

0 0 0 P.]S(ll) 0 0 SJ, 83'

PS() 0 0 0
0 RS(W) -T5) O
0 -Ti) R3() O
0 0 0 PY(w)

M
= X PFBSPIG) (1)

It can be shown that [29]
Patc/oce = PF (0)BSY O°P5 (') + DPS (w)B5"Y O°PS (n')D (13)
Pats/ ocs = P5 (0B3PS (0')D - DPS (m)B5Y O°PS (') (14)

The required order S for the above development depends mainly on the constituent particles of the

medium. The functions R?(p) , TJS(p) are to be determined from the expressions given in [29].

2.3: The exclusive expressions for source matrix vector, reflection and transmission matrix function:
We shall now specify the solar-beam source matrix vector S a¢;oc (Z,p,@) in equation (2). For atmosphere this
source matrix may be obtained using Snell-Descartes law to model the reflection and transmission matrix at the
air-seawater interface. The atmospheric source matrix contains two distinct terms. The first term (downwelling)
describes the contribution from the downward beam source vector Fy =[Fg;., FOZ,O,O]T attenuated exponentially

while the second term (reflected) expresses the contribution from beam source reflected upward specularly at
the air-water interface following Fresnel reflection law and gets attenuated.

o -z
Sat(zn9)= 2 Al FoPAT(ll,(p,—po,(po)exp[u—] +
0

T

0 -2z, -2)
4—':FoRAt(n,—MSt,uat)PAT(ll,(P,—llo,<Po)exr{"—m} (15)
0

The source matrix for ocean, suitably modified adopted from Zhonghai and Stamnes [32], essentially
desribes the fact that downward direct solar beam source vector, incident in the direction (”O ) (po) , reach at
depth Z after getting transmitted, scattered and attenuated.

at
Woc Ko

AT ugn

z -7
x Poc (1, 9.~ 10n ,tpo)exr{— %]xexp[— (—OCm)J (16)
1o Hon

The exact expressions for stokes component of the source matrix can be computed from expressions
(15) and (16) using equations (4), (11) and (12) and expression for specular reflection and transmission matrix
given below.

The form of reflection and transmission matrix can be written using Snell-Descartes laws with cosine

of the solar zenith angle pg,, in the ocean related to the incident polar direction p%t given by

Soc(z,m9)= FoToc (N3 —ndh)

(1-pdt?)
pih = 1- ) o)
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at/oc at/oc

We have defined R ¢/ (N,2p ) and Tpag oc (Nt ) as the azimuth independent specular

reflection and transmission matrix of the invariant intensity respectively with appropriate suffix ‘At’ and ‘Oc’
for atmosphere and Ocean respectively. The plus-minus sign applies for the downward and the upward
directions respectively. If the sea surface is absolutely calm a single image of the sun can be seen on a specular
surface. In this case the general specular reflection matrix can be expressed in the Chandrasekhar’s
representation of stokes vector [1], [15], [14].

2
s 0 0 0
0 rg 0 0
Rat(n—n®,pn%)= L =Roc(n+n%,pn®) (18)
0 0 - rplr_ 0
0 0 0 —Ipr_
at oc at oc
np™ —p . po—np
== o 19 =% o (20)
np® +p pe +np
In the same manner the general specular transmission matrix can be expressed as
t2 0 0 0
oc 2
0 t 0 0
Toc(n® ) =n|| £ - =T at(n—1%,p%) (21)
n 0 O - tptL 0

0 0 0 —tpt,

ocC at
tp {ZH—} @2, t, {rmiu—at} (23)

nuat +po +n

The polar angles p°and p® are related by the Snells law given in equation (17).

The ratio of the refractive index of the ocean to that of atmosphere is expressed asn . In case of air-
water interface there arises a fundamental problem when one considers numerical evaluation. To understand this
we shall refer to [16].Let us assume that we have a discrete set of N cosines of the polar angle for the ocean such
that p =cos@; >0. Next we can a set of points for which p2 =—cos®; <0 which will label the upper

hemisphere. Out of this set of N points for the ocean, only M of them can be mapped into the atmosphere for
which pf® > cos@, where®, is the critical angle defined by sin(Bc)=% wheren is the refractive index of

water. The remaining N-M points are restricted to the ocean and cannot be mapped into the atmosphere. These
points specify the region of total internal reflection. The matter has been explained in the following figure [2]

adopted from [16] without any change. Let us consider a radiance vector I(z,éat) striking the interface at some

angle @ and entering the ocean at the refracted angle @ .The relationship connecting these two set of points is
simply Snell's law. With reference to the figure [2] this well known relation in quadrature form is
sin(aj) =nsin(®;)

1
Or more precisely on decretizing &3 =cos(a;) = (1-(1—(nf)?)n?)2  (25)

Now we shall select the quadrature mapping set suitable for our problem. To select these sets we must
take into consideration the following three constraints. The normalization of phase function of the atmosphere
must be ensured. The energy must be conserved. The quadrature selected must be capable of normalizing the
highly anisotropic scattering phase function for ocean. Now for the continuity of radiation vector striking at the
air-water interface from above, the radiation intensity vector just below the water surface will be given by

oc gat d‘:at 0oC ¢a al
1@n*)=[ g el Toe (8 Oiz.e™) (26)
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at at
d
g0() diOC 0 0 0
at at
d
at at 0 % goc 0 0
[é_ dg 1= p" dp (26a)
oc oc at at
K 0 0 é_ocdgoc 0
p dp
at at
0 0 0 & d
ocC d oc

Using equation (25), equation (27) can be written in a form which is the generalized form of scalar
result first obtained by Gershun [27].

1Zn%) =Toe (N E)I(Z,e™)Nn?  (27)
Now in discrete form equation (26) can be written with help of diagonal matrix having elements as the
ratios of the weights of atmosphere and ocean respectively
At

(n.pf°.gH1z.E8) (28)
Where we have defined
- .
Aj)c 0 0
Aj
At
Al "o 0 0
[ocl= I at (29)
AS Al
' o o0 = o0
Aj
at
0 0 0 A—'
A |
Aat

Comparing (27) and (28) we get [ ']— [ ](30)

Equation (30) gives us the ocean quadrature weights for the corresponding atmosphere quadrature
weights. A detailed analysis for such quadrature evaluation were carried out in[16] to show the superiority of
this quadrature scheme over if one uses Gaussian points within the critical angle for the ocean and maps them
into the atmosphere which was the technique used by Tanaka and Nakajima [36]. However for layered media
there exist better quadrature schemes in the literature [37]. There are certain criteria to use these quadrature
schemes regarding the maximum number of quadratures to be used within the total internal reflection region and
outside refracting this region [32].

It should be taken into account that the reflectivity (I ) and transmissivity () given by the following
expressions are related to

r+t=1 (31)
Where we have defined

=%(r§+rf) (31a) t——|n|[ }(t +t2) (31b)
p.

We shall use following Fourier series representation of the source matrix [28]

SatL/ocL(Z.n.0) SSAtL,OcL(z 1) cos s(¢ — g)
SatQ/ocQ(Z )| 2 S Z,)) COSS
S/ o0 (o) = | SAIQIO0Q = 5 (2-85) AtQ/OcQ( 1) C0SS(9=90) | (55
Satu/ocu(Z.9) | s=o SAtU/OcU(Z 1) sins(o — ¢g)
Satviocev(Z,1.0) SAtv/ocy (Z,1) Sins(@ —¢g)
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Incorporation of the form (32) in equation (15) and (16) with appropriate form of phase matrix
functions given for atmosphere and ocean results in the expressions for individual stokes component of the
source matrix. We have not shown the results as these derivations are space consuming, straightforward
although tedious and cumbersome.

1. Interface and boundary Conditions at flat ocean surface
3.1: In this article we are interested in the solution of equation (2) subject to the following four coupled
boundary conditions. This is rather simplified situation. The ocean surface is absolutely calm. The coupling
between the two media is described by well known laws of reflection and refraction that apply at the interface as
expressed by Snells law and Fresnel’s law. The practical complications that arise are due to multiple scattering

and total internal reflections. The downward radiation distributed over 27t steredian in the atmosphere will be

restricted to an angular cone less than 27t steredian after being refracted across the interface into the ocean.
Beams outside the refractive region in the ocean are in the total reflection region. The demarcation between the
refractive and total reflective region in the ocean is given by the critical angle. [Region | (Total internal
reflection) and region Il (Refractive region) in Fig (1)].Upward-traveling beams in total internal reflection
region in ocean will be reflected back into the ocean upon reaching in interface. Thus, beams in total internal
reflection region cannot reach the atmosphere directly; they must be scattered into other region in order to be
returned to the atmosphere.

At the top of the atmosphere there is some prescribed incident radiation. The continuity conditions at
each interface between layers in the atmosphere and ocean are omitted in this work as we have not considered
layered atmosphere or ocean. Finally the specular reflection and refraction, occurring at the atmosphere-ocean
interface where we require Fresnel’s equation to be satisfied ,are assumed to be equal both ways i.e. air to water
and water to air as is evident from equations (18) and (21). The reduced sets of boundary conditions for each
‘S’are given by, dropping ‘S’ [11].

(A) Lat0—1™) = I pwof (n™) (33)
®) (2 ™) = Rac(=t™ 1)) a2y ™)+ Too ot )1 )
(34)
©)
IOc(Zr(;)Zn—ll ) _ ROC(na"'HOCyHOC){ IOc(Zn(,;,ll ) }"'TAT(n,_HathOC)lAt(Zm:_llat)
(35)
() 10c(Zb n%) = 10ad(n*)  @6).

Where f(n) and g(p) are some given function of polar angle with I o, and IOOoo as constants. In

section () we have shown one example each of the above mentioned functions that can be used in case of
atmosphere and ocean respectively.

V. The homogeneous solution in terms of eigenvectors, eigenvalues and orthogonality
relations
4.1: In this section we shall solve the homogeneous version of equation (10) by a new version of
Chandrasekhar’s discrete ordinate method developed by Siewert [12]. We use following ansatz (suppressing
*S?) for intensity vector in the discretised version of homogeneous part of the equation (10).

Z
| atsoc (2,203 %) = HAT/OC (v,iu?”"c)exp(—;) (37)

Where the two Gaussian polar quadratures for two different media are related by equation (17)
translated here as

a-u)
= 1-—H2 )
n
We now find following four expressions for two signed directions ip?“ °¢and corresponding Gaussian

quadrature weights (Dﬂt/oc given by the formula (29) for atmosphere and ocean respectively and to
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ensure simplified look henceforth we have decided to “at/oc” as superscript from polar angle quadratures and
corresponding Gaussian weights. We get after employing a little algebra

_ oar M N
A= EOHAT () = 22T SP5(u)B3T X o Wi (39)
. ') M _ N
1+ EDDHAT (7, -p) = 24T 3(-1)77P5 (ui)DBST Ton Wi (39)
'Y 2 J=S k=1
. ooc M N
(21— EOHOC (y,1) = P $PF (1 )DBSC T, WS (40)
Y 2 j-s K=1

<1+%)DHOC(Y,—M>="’%J%S(—l)J‘SP?(m)DB Emk < @y

Here we have defined
D=diag{1,1,-1,-1} (42)

Wi\ = [PJS (uOHAT (7, 17) + P (—y HAT (v, )] (43)

W= [PS (1 HOC (1, 11) + P (- OHOS (1, (44)
However, the set of equations can be written in an equivalent but more elegant form by introducing following
vectors

AT/OC AT/OC AT/OC
H,T%C(y)=H H

T’HAT/OC(Y,HS)T,””HAT/OC(Y,HN)T]T
(45)
HAT/OC (y) = [HAT/OC (y’_pl)T,HAT/OC (y,_pz)T’HAT/OC (Y,_HS)T“”HAT/OC (,Y’_HN)T]T
(46)
Here each (7,1 )T is (4x1) vector. Now let us define for both atmosphere and ocean
Z =diag(oF, o, oql,....... onD) (47); X=diag(pF,poFpsl,....... unIh) (48);
I =diagonal(1,1,1,1) (49);

Using this formalism one can easily verify that the set (38-41) for each ‘S’ may be written compactly as follows.
AT

(y.mp)', (v.12)

HAT/ oC

|—$x HAT(y)— zn(J S)BATTI(AT,y)  (50)
|+%x Hf‘T(y)=m—2T |\Z=/I:I1(J,S)(—1)J'S DBATTS (AT,y) (51)
|—$x HOC(y)_ 0 zn(J S)BYCTS(0C,y) (52
|+%x HC () = gJESﬂ(J,S)(—l)J'S DBJCTS(OC,y) (53)

Here B'is a (4Nx4N) identity matrix and (4Nx4) matrix F1(J,S) is given below.

nQ,s) = [PJS (11).P5 (12).P5 (13),.... P (uN)]T (54)
TS (AT/OC,y) =" (J3,S)EHATOC (v) + (1)’ SDA" (3,9)EHAT/©C () (55)
In the above expressions the entries of matrix (54) are given by (4x4) matrices (11) and (12)

Continuing Siewert’s [12] approach we shall now derive equivalent set of relations by defining the following
vectors for atmosphere and ocean respectively

NAAT =H T (1) +HAT(y) s NBAT =HAT (1) -HAT(y)  (56)

NAC =HC () +H2%(y) ; NB© =HP°(y)-H2C(y) (57)
Taking sum and difference of (50) & (51) and (52) & (53) respectively for atmosphere and ocean and using (56)

and (57) one can derive
AATXAT 21

1yAT, (s8) BATYAT-1
Y

=XAT. (59)
Y
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ACC x©o¢ _ 1yoc . (60) BOC YOC _ 1xoc (61)
Y Y
Where

AT 0T M AT J-S T -1
ART = 1-2 30 9BETIF+ ()7 DNE.S)TE| X (@)

(DAT M _ _
BAT = -2 >NJ,S)BST[I-(-1)°-SDINE,S)TE XL, (63)
J=S

AOC I (DOC M oC J-S T -1
=[1-,- ZA0.9BII+ () DME.YTE X (69

OoC m
(O]
BCC ={|-T >n(J,5)BYC

We also have

[1-(-1)’SpNE,s)"E Xt (65

XAT =X [NAAT](66) YAT =X [NBAT.(67)
X°¢ =X [NAOC](68) YO© =X [NBOC](69)

In general matrix AAT / OCand BAT /0C
(59) and (60) & (61) to get

(BATAAT)XAT — SATxAT ( 70) (BOCAOC )XOC
(AATBATYAT = 3 TYAT {(71) (ACBOC)Y°C oc oC (73)
Our task is now to evaluate the eigenvalues 3 AT 50C

which will determine the separation constants
’yoc for atmosphere and ocean respectively. However it is of general opinion that in such cases the

eigenvalues and eigenvectors are highly unstable. Separation constants occur in plus-minus pairs. It is to be
noted that the eigenvalues may be complex. We note that in general

are real asymmetric. We now use equations (58) &

= 39°X°¢ (72)

AT
Y

3= iz (74)
b
The eigenfunctions can be expressed either from equations (70-71) or (72-73). Using equations (58-
61), (62-65) with (70-73) we can easily deduce

1,-
HAT/OC AT/oc)_Ex 1(IiY]AT/OCAAT/OC)xAT/OC(xJ?\T/OC) 75)

It can be shown that H4T/©¢ (—yfT/OC) = HAT/OC (yfT/OC) for j=1,2,3

We now have all that we require to write the solution of the homogeneous RTE (10) for both atmosphere and
ocean. We define a (4Nx1) matrix as
T T
Hat/oc(@)= [' atroc (@A) Iat/oc(@An2)  laT/oc (Z£R3)

N
T atioc (Zvi”N)T] (76)

The homogeneous solutions for atmosphere (Z € (0, ZW)) and Ocean (Z € (ZW , Zb)) can now
be written as

Z Zyw —2Z
Hor(+) = 1AATHAT(yﬁT)exp[—T]+Bf‘THéT(yJAT)exp[— W J (77
i= Vi Vj

Har(0) =AY AATHAT(yA )exp[ ,iT]+BATHi“(v )ex;{— Z“’A‘TZ]GS)
=1 Vi Vj

J

4N z z21-12
Hoc<+>=_zlA?CH9C<y?C)exp[ oc ]+BOCHOC<7?C>ex:{— 15 ] (79)
= Tj j

1]
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Hoc(-) =AY, APCHOC (1 )ex ~ 2 [+BPCHEC (r%%)exp - 222 | (80)
=1 Tj Vj
A =diag{D,D,D,....D} is (4Nx4N) matrix. (81a)

Since both the eigenvector and eigenvalues may be complex as reported in [12] we prefer to write
equations (77-80) in terms of real and imaginary quantities. Let us represent Nr for number of real separation
constants and Nc for the number of complex pairs of separation constants. Decomposing (77-80) in to real and
complex parts we get the foIIowing set of equations appropriate foe atmosphere and ocean.

Z Z
AATHAT(yf‘T)ex ;{— TJ + BﬁTHéT(yf\T)ex;{ o ] (81h)
¥j ¥j

J J

=

Nr z Zy—2
REAT(z) = A_zlAfTHéT(yf\T)ex p[— T] + BJATHfT(y,AT)eXp[— 0 ] (81c)
i= Yj 7j

Nr z Z
REQC(2) = 3 APCHYC (y?c)ex;{ == ] +BPOHOC (+f )exp[— W] (81d)
7j Y

=1 j j

Nr z z21-12
REC(2) = A ¥ APHOC (y9C)ex p[— ﬁ] +BPCHEC (y?c)exp[— = ] (8Le)
o

=1 1]

]— a=

C

j—l a=1
AT/OC(l) AT/OC z
(z,y ) = Reqex —W X
z
Re‘_lAT/OC(Y]_AT/OC) }—Im exol — o Im‘-lfT/OC(yJAT/OC)}
j
= FAT/OC1(+1) - FAT/OC(+2). (81h)
z
FfT/OC(Z)(Z,Y]_AT/OC)=Im e
¥j
Re*_lAT/OC( AT/OC)}_ Relexnl — AT/OC Im%_IAT/OC( AT/OC)}
Vi

J
= FAT/OCo(11) — FAT/OC o(+2). (81i)

4.2: The Infinite Medium Green’s Function:
The elementary solutions developed in the last section will now be used to find the particular solution

following a method developed in [35, 40] to accommodate for the inhomogeneous source term Sai;oc (Z,1)
MATOC (.  xy) &

mA T/ OC(z,ipi :X,—py ) for any source location at an arbitrary point X within Atmosphere or Ocean. Let us

We shall first construct the infinite-medium Green’s function

assume that the source is located at X € (O,ZW) for atmosphere and at X € (ZW,Zb) for ocean along

with the source direction defined by I € {ui }.For the first problem we have following two equations for

ILk=12,...,N
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d ® M i
(pi e I)MAT’OC(z,pi IX k) =%J§SKLT/OC(Z,M DX i) + 18(z — X)8; i (82a)

d ® M i
(i AT 2 )= P2 B I oo ) (620

However the second problem is described by the following two expressions.

d o M i
(ui s I]MAT’OC(Z,ui DXy ) = %J@SKLWOC(Z'W FX—hy ) (82¢)

d ® M
(— Mgt |]MAT/OC(Z,—Hi :X:—Hk)=%J§SKLT/OC(Z'_Hi DX ) + 18(z — X)8; i (82d)

Where | is as usual the (4X4) identity matrix and we have defined

N
KAT/oc (Z:4n; 3Xiuk)=PJS(iHi)BJAT/OCﬁzlwﬁMSA,E/OC(Z,X,in) (83a)

MS' %@ xtm) = PS (np)MAT O (2, xtpy) + PP (g MAT O (2, xy ) (83b)
We have defined 8(z—x) as the Dirac delta “function” and &;  as the Kronecker delta. Each of the
two Green’s functions now comes out as a (4X4) matrix. Following Case and Zweifel [39] we now proceed to
develop the solution for MAT(Z,F,ﬁ 1 X,y ) .\We can find solution bounded as z — o0 and valid in the region

z>x for the homogeneous equation and another solution valid for z<x and bounded as z — —o. For
matching up these two solutions with the notion of “jump” condition, valid when i,k =1,2,...N, we can write,
for atmosphere and ocean respectively

1. (+, +)equations:

pi imMAT (Z 4+ 0 m) - MAT (2 -2 1 )] = 18, (84a)
e—>0 '
B sIigg)[MOC(zmui D) MO (2 =& i X, )] = 18 (84b)

2. (-, +)equations:
— i im[MAT (z +2-p; - Xy ) —MAT (2 — - X, )] = 0 (85a)
>0

=i MM 2+ £ 2 Xy =M% (2= 8mi Xy )] = O (85D)

For MAT(Z,ipi X k) & MOC(z,ipi X))
3. (+,-) equations:
ni imMAT (2 + 2, 2 x—py ) -MAT (-2, 2 X,y )] =0 (86a)
e—>0

B ;Ln;)[MOC(z +e1; 1 X—p) — MO (Z—£.; 1 x,—p )] =0 (86b)

4. (-,-) equations:

=i N 2 42—y xmp) - MO 2 =2y Xl = 183 (872)

— 1 gigg)[MO°<z+s,—ui :x, =) ~MOC (2= 2—p; :x—py )] = 18; ¢ (87b)

For MAT(Z,ipi XK ) & MOC(z,ipi DX~ )-
We now have following two sets of solutions for green functions for case A (corresponding to Z > X)
for atmosphere and Ocean and for Case B (corresponding to Z < X)) for atmosphere and ocean respectively.

AN -
Case A: MAT(z:xtp)= 3 HfT(yJAT)CATj(iuk)eX;{— (2 X)], z > x,88(a)

MAT(  xtn ) =AY HAT (v4T)CAT; (iuk)exp[— (z— X)], 2 > x,88(h)
J=1

with

www.iosrjournals.org 64 | Page



Exact Analytical Expression for Outgoing Intensity from the Top of the Atmosphere in a Flat

MET (2 xctme) = [MAT 2ty T IMAT 2y < xt 1| (89)

and

4N 7—x
MOC (2 xtny) = J21H9C (v§° )cocj(iuk)exp[— ( oc )]’ z>X,(302)
= ‘YJ
oc N oc . ocy~ocC (z-x)
M-=>(z:xxpy) = AJZlH_ (v37)CTj(Em)exp ———c"| 2> X,(90b)
= v

with
MOC (2 : x.4py) = [[MOC @aAng :xam)]” .. MOC (2 4y x,iuk)]T]T (91)

AT

4N -
Case B: MAT(z:xtpy)=— Y HAT(yAT)DAT; (J_ruk)exp[— (x Z)], 7 < x,(92a)
J=1 13

AN —
MAT (2 xitg) = - 2 HET(5T)DAT, (iuk)exp[— (x-2) ] 2. <X,(92b)

Y3

4N -
M?C(z XAp)=-X H9C(yJOC)DOCj(ipk)exp - (XOCZ) . Z2<X,(933)
J=1 VI

4N X—2
MOC(z: xtp, ) = —Alel-l‘fC (v9°)DOC (2 )exp —% . z<x,(93b)
= Y

Using discrete ordinate solutions for homogenous equations (88a-93b) for Green functions in the
limiting equations (84a-87h), for Z > X and Z < X respectively, we get after straightforward algebraic

manipulations following solutions keeping appropriate consideration for positive and negative [lj and [l , (
X within atmosphere or ocean).

4N
AT, AT\~AT AT AT\RAT
XJZl[H+ (vi IG5 (m)+HIT (vj D) ()]l = Rk (94a)
When similar procedures are applied on (85a) with (78) we get

4N
= XA 3 M )C () + HET (07D (1 =0 (940)

This constitutes the first set of solutions. For the second set of solutions we need equations (86a) and
(87a) to give

4N
X X LT (rfT)CT (om) + HET (DT (-mi] =0 (852)

4N
= XA 3 M (rf)C (i) + LT (7 D] (-] = Rc. (980)

For Ocean the corresponding solution pairs are given below.

4N
X X MRS (r7)C7" (m) + MO (rP)DPE () = Ric (962)
4N
~XA 3 2 (rP)CP" () + HEZ (r)DPS (i) = 0 (960)
4N
X 3 HO® (17" )CT () + HEC (rP9)DT ()] = 0 (072)

4N
~XA X M2 (rP9)CF () + H2Z (rP)DFE (i)l = Ric (970)

Ry =18y 1,187, 13N 1T (98)
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We shall now solve the set of equations given by (94a) and (94b) to get the unknown coefficients for
atmosphere. Similar considerations can also be applied on equations (95a) and (95b) and for Ocean also.
However complete solution requires certain orthogonality relations satisfied by the eigenvectors.

4.3: Orthogonality Relations: Atmospheric/Oceanic adjoint problem is defined by replacing BJAT/OC in (50-

[BJAT/OC]T

53) with and writing the equations in the following form

1 AT/OC o"T/OC M AT/OC1T a=S
1-1X|AHATOC (1) = & 3, s)[BAT/OCIT ATS (AT/OC, v) (992)
J=s

v 2
1 AT/OC o”TIC M~ AT/OCT ppS
1+ X |AHATIOS (1) = £ (1)~ M, 9)D[BS™ O] AT (AT/OC.7) (990)
Y J=S

AT (AT/OC,v)=R"(J,5)EAH.T/OC (1) +(-1)'~ DAT (3, 5)EAHAT/OC (v) (100)
The eigenvalues defined by the equations (38-41), where asymmetric matrices A and B are involved,

will not change if the above mentioned changes are introduced in (38-41). This means that the adjoint vectors

AHQT/OC (YJA T/OC) are defined over the same spectrum as the vectors HQT/ oc (v JAT/OC

orthogonality relations following we employ following steps as described below.

). To evaluate the

Stepl: We evaluate equation (99a) and (99b) at'y=yJAT and premultiply the resulting equations with

[AI-Iﬁ‘T(yk)]TW and[AHfT(yk)]TWrespectively for K # j.We next add the last two equations to get the

first equation.
Step2: Interchanging j and k in the first equations we get the second equation.

Step3: We premultiply now the first equation by [HfT(yjAT)]T and second equation by [HfT(yjAT)]T , adding
the two resulting equations and then interchanging j and k to get third equation.

Step4: Next we set B"]A‘T as [B JAT ]T in the third equation and take transpose of this equation and subtract
this equation from the third equation to get the following equation
AHLT (1) TEXHYT (/1) - AHAT (v ) TEXHAT (v T) =0, 7 # Y. (100)

Step5: Apply the same above set of four procedures to the same set of equation but interchanging the order of
the multiplier eigenvectors leads to the following equation

[AHAT (v, )] EXHAT (v 1)~ [ARAT (7, )T EXHLT (v 1) = 0.(102)
Equation (101) and (102) are called orthogonality relations in case of atmosphere.

Premultiplying (94a) with [AHfT ('yk )]Tz and (94b) with [AHf\T (’Yk )]TZA and adding these
two resulting equations we get

4N
3 AHT (y, EXHET (ATICAT + HAT (AT)DAT],
=1

AHAT (7, )}:A[— XAHAT (yAT)CAT 4+ HAT (v,AT)D,AT]I
= AH (v )ER,  (103)
For we have j =K after noting the two orthogonality relations (101) and (102),

1
CiM (k) =

NAT (AR 0l ER (104

Where

NAT(r{T) = [AHET (v))] " EXHLT (v 1)~ [AHAT (v )T EXHAT (v17). (105)
Continuing we shall pre-multiply equation (94a) by [AHf‘T(yk)]TW and equation (94b) by
[AHf‘T (Yk )]T ZA, and add the two resulting equations and use equations (101) and (102) to obtain

DAT ()= ——*  [AHAT(yATYTER, (106
i () NAT(yj”)[ (rj N k (106)

www.iosrjournals.org 66 | Page



Exact Analytical Expression for Outgoing Intensity from the Top of the Atmosphere in a Flat

Similarly we find from the second set of equations (95a) and (95b)

CA_ T A"AT AT Tan 107
j (—nk) |\|A|(Y]A )[ - (YJ )] k (107)
and
Di' (—pg) = ——l AH Yi ZAR, . (108
j (—n) NAT( fT)[ + ( j )] k- (108)

The required constants C and D in equations (94) and (95) are defined by equations (104 &106) and
(107&108). Similar steps can also be followed in the case of Ocean to get the orthogonality conditions as
given

AHOC (7)) "EXHPC (vD) - AHOC (7)) TEXHOC (vP€) = 0, ;% 1. (109)
[AHOC (v, )] EXHZC (7€)~ [AHOC (7, )] EXHY (vP<) = 0. 10)

Involving equations (90) and (91) for the first and second set of solutions for Ocean in the above
derivations and using equations (103) and (104) we get

9% (i) = W[AHEC (I ERy (112)
DOC () = —W{AHE)C (1T ERy. (112)
9% (py) = W{AH‘BC (v;)I"EARy . (113)
DPC (i) =~ == [AHE (7)) AR, . (114)

NOC(y})

NOC(y;) = [AHPC (v;)]T EXHYC (v;) - [AHOC (v;)] " EXHC (v)). (115)

Having found the expansion coefficients for green functions we are now in a position to determine the
particular solution for the inhomogeneous source term in the RTE. This is the objective of the next section. It is
to be noted from the above set of equations that determination of adjoint vectors is essential. Here we have
adopted the standard text book procedure. For a real asymmetric eigenvalue problem, double shift QR or QZ
algorithm should be used. Other methods may produce fictious complex eigenvalues. One may use Qz algorithm
in our future numerical adventure as this is more stable.

One may use matlab 7 software packages where standard LAPACK algorithm is used to calculate the
left eigenvector as well as the right eigenvectors and corresponding eigenvalues. These left eigenvectors may be
used to find the adjoint vector. These calculations will be reported in some detail somewhere.

V. The Particular and Complete Solution:
5.1: Particular solution:
To determine particular solution we recall our transfer equations in the following form.
d AT Moo AT N AT
i —la7(z2n) + 1aT(z4n) = —— ZP7(n)By " X agly(2)+Sat(z.£n)),
dz 2 J=s p=1
(116)

155(2) =Py (up)1(z.np) +PY (-up)l(z.—np)  (117)
d ©°C¢ M N
tpig;loc (z4nj) +loc(z4n) = TESPJS (£m; )B?Clzl‘”ﬂ'?cﬁ:(z) +Soc(z.£n;),

(118)
195 @) = P5 (p)1(2,np) +P5 (—p)1(2,~ng). (119)
The general solution to the homogeneous version of equations (10) is given by (77-80). With the help

of green functions developed in the preceding section for Z > X andZ < X, we can immediately write one
particular solution in the following manner,

www.iosrjournals.org 67 | Page



Exact Analytical Expression for Outgoing Intensity from the Top of the Atmosphere in a Flat

p N Zo AT AT
PaT(ztni) = Z [ M7 (2,20 X 0g )SAT(X 1) + M7 (2,21 0 X—1g )S AT (X1 )] X
a=10
(120)
Or
N Zo
AT(£:2) = x| MET (2 X, 1y )S AT (X g ) + MET (2 X1y )S AT (X —mg ] dX  (121)
a=1 0
And
N Zo
1Bc(ztn;) = z ] MO (2,41 : X,1q)Soc (X, 1g) + MO (2 21; - X—1y )Soc (X —1g )] dX
=10
(122)
Or

N Zo
e (ti2)= 2 f [MP° (2 : X, 14 )Soc (X, 1ty ) + MEC (Z - X—114)Soc (X~ )] dX
- (123)

We can rewrite equation (121) using (88a and 88hb)
Inr(+2) = [ERAT(Z)HAT(y PD+RT AT (y J-)] (124)
J

r(=2)= A_zl[m,-‘\T(z)HfT(v DHRIT@HY (v (125)
J:

Where we have defined

Z N —
R (2) = I zlc,“ma )SATOGRG) + CPT (-1 )S AT (61 )X p[— Zy—_Xde(lzs)
a= J

Zo N -
M@ == 2 DfT(ra)Sar0oma)+ OF (ha)Sar(-ma)lex r{— %]dx. (127)
z 0= J

Using (104-108) in (126) and (127) we obtain

z _ Zg
RAT(2)= jajAT(x)exr{— y—Xde (128) and 84T (2) = | bJ-AT(x)exp[—
0 j z
Where we have defined

a0 = AT( 5 [[AHATw T ES AT(+) 00+ [AHET ()] T EAS a7 () ](130)

;Z] dx. (129)

V]

b (%)= W[[AHATw,-)]TzsAT(+)(x)+[AHfT<v,-)]TzAsAT(_)(x)](131)
_ T T T
Sat)(X) = [[SAT(Xvilll)] [Sar(xApo)]’ ... [SaT(Xtnn)] ] (132)
From equations (15) and (16) it can be shown that our model source function can be written as

SAT)(X) = SAT(+)eXF{_ EJ (133) Soc (+)(X)=Soc (+)9XV{— —] (134)

Hon
Substituting the expressions (133) in (130) and (131) we can get following simple expressions from (128) and
(129)

R} (2)=nov] Taj | CAT(z: 7' o) (135)
R (@) =nov b} exp2/no)SAT(zo =2 7] o). (136)

(1)) {-3){;)
l-exp -~ | -1 exp —— |[—exp ——
. Y (137); CAT(z:x,y)= X y

X+Yy X—y
Following similar approach for ocean starting from (123) we get

SAT(z:X,y)=

.(138)
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ap® = W()[[AH (v,->]Tzsoc(+)+[AH9C<v,->1T2ASoc<—>]<139>
¥j

bp® = W[[AHSJC (117 ES oc (+)-+ [AHSC (I EAS o (1) 140
J

RO (2) = ponyC af° COC(z : vj.mon) (141)

NP (2) = nony© b exp(-2non) SOC(z1 — 2 : vj.1on)- (142)

A o)

SOC(z:x,y)=

1 (143)COC(z : x,y) = ; (144)
X+y X—

We shall now consider the case of complex separation constants. For real quantities if we let
quantities with asterisks as complex conjugates

ATIOC 7 yATIOCH) _ gATIOC AT/OC (. AT/OC
AZy (2 )=Rj (2)Hy (v] )+

AT/OC * AT/OC * . AT/OC*
R (2)H (vj )i

(145)

BZ@T/OC(Z }\’AT/OC) NAT/OC (Z)HAT/OC ( AT/OC)+

AT/OC * _\igAT/OC *, AT/OC
Nj (2)H: (7§ )-

(146)

5.2. The Complete Solution:
The complete particular solution can now be written as

Nr %
Inr(+2)= _zltm,-‘\T(z>HfT(vf“)+N,-AT(z)Hf\T(v N+ > AZAT(z 4 1T +BZAT @)
= J_
(147)

i Nc *
B (-2) =AY RAT@QHAT AT + RATHAT AT+ Ay AZAT (Z’VJA HOI
=1 )=
J=1
BZT(z ) (148)

Nr *
lpoc(+;z>=_zltm?c(zm?c(v?c)+N?C(z>H9C<y?C)] + ZAZEC(zv o+ BZ2@APY)
= J_
(149)

12c(=52) =A_Nzr1[m?c<z>u9c<v?c)+x?c @HC (O + A_Nzcl [AZ9C(z,y§C") + BZEC(2,vP%)]
= =

(150)

We now find out appropriate expressions of the particular solutions suitable for application in the
boundary conditions. These will be used to find the unknown coefficients.
For top boundary condition the following particular form will be used by setting z=0 in (148)

Pr(-0) =AY [&RAT(O)Hf\T(vJ) FRATOHAT( )]+ 3 AZAT(0,vAT) +BZAT(042T) (15)
=1 =1
The particular form of solutions for application in the second and third boundary conditions are given by

[I&T<+:z(,,)]— SIRAT (2, HA (v,—>+x,-AT<z(,,)HéT<v,->]+_NzclAZi\T(zm,vf“>+Bsz<zm,v,-AT) (152)
=1 J=
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Nr Nc
[IF’AT<—;z(,,)]=A_zltmf“<zm)HéT<y,->+xﬁT<zm>Hi“<y,-)] + A_zlAzf\Wzm,vﬁT) + BZ{T (2o 4]T)
I= =

(153) (1B (+i2)] = _Nzrl[m?c(zm)ﬂi’cm)+N?C(zw)H9C (] + _NZZAZSC(zm,v?C) + BZ%(2,,15%)
(154) " "

[1Bc(=i20)1= ALY moc(z(,oH?C(v,)moc(zw)H ()] + A [AZC (2, 1OC) + BZC (200,35%)]
(155) & =

The particular solution that will be used in the bottom boundary condition

Nr Nc
(12 (+:2p)] = _zlan?c(zl)HSC (rj) + R8P (2)HEC (vj) + _zlAZ‘BC (21.77€) +BZ2(21,25%)  (156)
= =

We also have ER]-A‘T(O) = uoyf‘TajATCAT(O 1Yj.mo) =0 VJ; (157)
NPT(0) = nov T b\ SAT(2, 1 7jmo);  (158)
R (2o) =nov] ) |CAT(Zg 1¥jimo)i  (159)
N1 (20) = rov} ' bJT SAT(0:vj,m0)=0 V. (160)
We can now write down the complete solution in the following form.
I a7, @) =REXT(@)+CORT (@) + 101 (+:2); (161 1,7 (z)=REAT(2)+COAT(2)+ 1R+ (=2);  (162)

loc, (2) = RESC(2) + COC (2) + 1B (+2); (163)  lge_(z) = REZC(2)+COC (2) + 12 (=:2);
(164)

In the next section we shall use these complete solutions for discrete directional quadratures in the
boundary and inter face conditions to get a set of four linear algebraic equations, solutions of which give the
unknown coefficients. However we need to find solutions for any desired angle.

V1. Evaluation of the Integral

7.1: In equation (218) there are three integrals to be evaluated to get exact expressions for the emergent
intensity. Bellow as an example we have calculated the integral present in equation (214) only. This integral
contains seven separate integrals over known functions. In order to save space we have omitted the deduction of
all the integrals (21 integrals) in (218). However one can easily complete the relevant calculations using the
following simple straight forward procedures.

Using expressions (161) in the second term of (214) we can establish the following expressions
consisting of seven expressions involving integrations over known integrands suppressing the superscript ‘At”
and ‘Oc’ in mu

Z(.l) -
| RSAT(x,p)ex ;{— L@t))%
z(at) n n

- MPJS(PBJAT|: (I )I'I(J S)T"’ {REAT(x)}e p[ Al Z(at)jdux
= z(at

AT
f no, S)Tm {COAT(X)}E ;{ X— z(at))dx
z(at) 2 n

AT
I nw, S)Tz{IAT("‘ X), ex;{— x—z(at)]%
z(at) n 1

Zo AT _
+ [ (-1)7® Dn(J,S)Tz{REéT(x),m exp(_ X Z(at)J%Jr
z(at) 2 n n

AT
f (-1)’~SpR, S)Tz{coAT(x)} ;{_L(at)}% N
z(at) n n
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AT
~z(at)\d
e somastab ol of 220

z(l)
] SAT(x,u)ex;{ L@t))dx} (219
z(at) n n
Where we have defined earlier FI(J,S) = [PJS (1), P5 (2), PS5 (n3),.... PS (u,\,)]T
Z =diag(o,lNo,MNo.l,... o/l
7.2: Keeping only the relevant terms within the integral sign of the first term in (219) and using

expression (81b) we get,
zI {REfT(X)}EF{ X— z(at)J

z(at) n

=1

= ¥ ARTHAT( AT s p(z(a‘))[ & +%)]ex{(1+%xzm—z(at»]
j n Yi n Vi

ATgaAT ( ) 1 1
+ElB HAT (v (= )exp( Jexp(-— /A —ap)eX l{(yj ;)(Zw‘z(at))](zzo)

Similér approach for the second integral in (219) yields using (81f)
Zo x—z(at) | dx Nc
j {COi\T(x)}ex;{— %]— - > APTO Re{HAT (v T)}Re(X1) -

z(at) n =1

N
> AN ImHET (T m(XD) +
j=1

Ne Nc
Zl AAT(2) Re{ H (YJ_AT)}lm(X]_) _ '21 AjAT(z) Im{ HfT(YJ_AT)} Re(X1) +
j 1=

Nc
_zl BT Re{ HAT (v T)}Re(X1) - _zl BT Im{ HAT (v T)Him(x1) +
)= )=

ol BT Re{ HAT (' T)Him(X1) - ol BT Im{HAT (1)} Re(X1). (221)
=1 j=1

1] 1 1 1 1 z(at)
Xl=(3) -(C+—— (Gt —— - 222
(u)[ <u+yJAt)Hex;{ Gy teta Z“’)]ex'{y, ]}( )

7.3: The third integral requires equation (147) together with the pair of equations (135,136),
(137,138) and (145,146) to get

ZI {IAT(+ x)}e;{ X= Z(at)]dx

z(at) n

(i)exp(@)[—1 —]epr el ](z(at) (,,)]
n n noyfT

1
G a7
)[ = +i>} p[[ (—+—)}(z(at)—zm>}
TR B ]

=2jN§rluovf“ ATHAT (, AT)
- )exp(z(at’

www.iosrjournals.org 71 | Page



Exact Analytical Expression for Outgoing Intensity from the Top of the Atmosphere in a Flat

+
j=

AT ATgaAT . AT
. P bj  HI (v]

)

{(1)[— (4 )}exp(z(at)) ;ﬂ— G+ )}(z(at)—zm)ﬂ
[T [ TR 1 T [T T

Sy AL z(at) 1,1 Aot _

_ = )[ ( /AT ]exp( )exr{ (uo+yj”)z ]eX{ (u YAT)(Z(at) Zw)]_

J
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The above expression for third integral can be evaluated numerically. The third and forth term of this
expression are relevant when complex conjugate pairs of eigenvalues are present in the eigenvalues spectrum
7.4: The forth integral can be evaluated using equation (81e)
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(224)
7.5: The fifth integral can be evaluated with the help of (81f)
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7.6: The sixth integral again requires equation (148) to take the following form
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7.7: The last integral is the source integral which takes the following form

[ ij SAT(X,II)GX;{_L(M)]%}
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L ) Ko

The integrals evaluated above can now be calculated numerically once we have calculated the
eigenvalues correctly. We have not specified the form of the source function here. This issue will be taken up in
some detail in our numerical consideration.

—n
=SaT(+)—2
n+pg

VII.  Conclusion

We have applied analytical discrete ordinate method for the radiation transfer in homogeneous
composite atmosphere-ocean system and found exact analytical expressions for emergent upward polarized
radiation intensity in any direction from the top of the atmosphere. However exit polarized radiation intensity
vector in any direction from the air water interfaces and from any point within atmosphere and ocean for any
direction can be computed from the foregoing analysis without much effort. In this article we have not given
specific mathematical expression for source matrix elements for space constraints. However this will be
considered in a subsequent article where we shall report our numerical considerations.
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