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Abstract: The multinomial distribution has found applications in many practical situations that deal with a 

discrete random variable with k possibilities (k > 2). Interval estimation for the proportion parameter in a 

special case k = 2, the binomial distribution has been studied extensively in literature. However for k > 2, 

studies have focused the performance of estimation procedure mainly on coverage probabilities and yet there 

are other important aspects such as propensity of aberration in the limits of confidence intervals and 

computational issues. The present paper makes an attempt to look beyond coverage probabilities by marshalling 
the existing procedures in classical and Bayesian approaches for k > 2. To alleviate the computational issues, a 

comprehensive R program is also made available to facilitate the implementation of the procedures in both 

classical and Bayesian statistical paradigms. 
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I. INTRODUCTION 

Probability estimation has drawn an active research attention as it has found wider applications in many 

areas. Statistical methods for estimating single binomial proportion or associated arithmetic forms of two 

proportions have discussed extensively in statistical literature (Subbiah, 2009). This includes point and interval 

estimation procedures and related properties such as coverage probabilities, expected length and existence of 

unrealistic bounds (Newcombe, 1998 and Sweeting, 2004) 

The problem of estimating simultaneous confidence intervals for multinomial proportion has witnessed 

an active discussion in terms of theoretical, computational and application aspects. Different procedures have 

been discussed extensively in the literature. Quesenberry and Hurst (1964), Goodman (1965), Fitzpatrick and 

Scott (1987), Sison and Glaz (1995), Glaz and Sison (1999) can be considered as an earlier work. Also similar 

to binomial proportion problems, Wald type intervals and Wilson intervals are also available. Further boot strap 
methods (Jhun and Jeong, 2000), power divergence methods (Hou et al, 2003) are discussed for developing 

simultaneous confidence intervals. Wang (2008) has proposed exact confidence coefficient; Chafai and 

Concordat (2009) has discussed the problem especially for small samples.  
Bayesian procedures have also been discussed in obtaining simultaneous confidence coefficients for 

multinomial proportion. A conjugate prior model, multinomial – Dirichlet has been discussed extensively in 

many literature and Gelman et al (2002) provides the details of the relations and effect of hyper parameters; 

Tuyl et al (2009) have shown that the uniform prior could be considered as the consensus prior for multinomial 

parameters and recently, Komaki (2012) has developed a prior based on a specific Dirichlet prior that would be 

asymptotically minimax.  

Further, the performance of methods is studied based on coverage probability length of intervals and 

computational flexibility; small and large sample sizes; polarized cell counts are also considered in this 
comparison. However, aberrations are not elaborately discussed especially on small samples though direct 

adjustments on such limits are recommended in practice. Computational issues have also been discussed in 

many studies and in particular, May and Johnson (1997, 2000) have listed the computational tools for most of 

the available methods, however the availability of these procedures are limited to selected software so that most 

of the applications might rely on a specific method or a software.  

This paper has two fold objectives: discussion of possible aberration more generally for widely 

applicable procedures in classical and Bayesian approaches. Similar discussions for other estimation problems 

(for example, Newcombe, 1998) only illustrate the propensity of overshoot and a more general way to 

understand such existence has been attempted to classify the methods.  

Secondly, limited availability of procedures like Sison and Glaz in selected software that may deter its 

usage (http://www.rforge.net/doc/packages/NCStats/gofCI.html) and an attempt has been made to develop 

comprehensive computational tools for most of the methods in both classical and Bayesian methods. R 
programming environment has been used to provide a tool for obtaining multinomial interval estimate based on 
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 Wald, Wilson, Quesenberry and Hurst (QH), Goodman (GM), Fitzpatrick and Scott (FS), Sison and 

Glaz (SG) methods in classical inference and multinomial-Dirichlet distribution method in Bayesian procedure. 

Numerical examples are presented to compare these methods especially on the small counts. Findings of this 

work have encouraged to further investigate sparse data sets in large two dimensional categorical tables that are 

being analyzed under multinomial sampling. 

 
II. METHODS 

To depict the multinomial sampling which is generally represented as a contingency table following list 

of notations could be useful 

I = No. of rows; J = No. of columns; k = IxJ 

𝑛𝑖  = Cell counts 

n = ∑ ni (Size of the sample) 

πi = Population proportion of ith  cell where i = 1, 2,…,k 

p
i 
= Sample proportion 

MLE estimation of πi = 
ni

N
 

(p
i
)
B.

 = Bayesian estimation of πi, and a dot represents the prior 

A = χ2 α, 1   i.e, the upper 100 1-α %point of the chi square distribution 

𝐴1 = χ2 α, k-1  

𝐴2 = χ2 α
k ,1  

𝑍𝛼  = 100 1-α % point of the standard normal distribution 

 

Queensberry and Hurst (1964), have proposed interval based on Pearson statistic  that has limits as  

 2npi +A1 ∓ A1(A1+4npi 1-pi  ) 

2 A1+n 
. Fitzpatrick and Scott (1987) have proposed confidence interval as p

i
± Zα 2  

1

2 n
 .  A 

Wald type interval based on the multivariate central limit theorem has the form p
i
 ± 

A pi(1-pi)

n
  and subsequently a 

continuity correction version  of these limits is of the form p
i
± 

Api(1-pi)

n
 +

1

2n
 .  

 
Further Sison and Glaz (1995) have proposed a method to determine simultaneous confidence intervals 

for multinomial proportions; one method is based on the truncated Poisson random variable and associated 

central and factorial moments. In this method, cell counts are assumed to be independent Poisson random 

variable with parameter λi=nπi Since πi is unknown, λi is estimated as np
i
=ni   

If Ai= ni bi  ≤ ni ≤ ai  then p Ai,.. Ak ∑n
i

 =n  = 
n!

nne-n
 p(bi ≤ ni ≤ k

i=1 ai)p(w=n) where w = Yi
k
i=1  and Yi is the 

truncated Poisson variable in  bi ,ai  

  ∴p[bi  ≤  ni  ≤ ai] = 
n!

nne-n
 p(bi ≤ Zi ≤ k

i=1 ai)p(w=n)  

Also, ni~ Poisson  λi , and hence p bi ≤ Zi ≤ ai  = p(Zi=t)
ai

t=bi
 

          = p(Zi=t)
ai

t=0
- p(Zi=t)

ai

t=0
 

          = F ai - F(bj-1) where F is CPDF of Poisson random variable.  

Further, the central factorial moments μ
(r)

=  
F a-r -F b-r-1 

F a -F b-1 
  of truncated Poisson variable Yi and the central 

moments (up to r=4) of Yi are calculated to obtain p(w=n). Then the limits of  100(1-α) % confidence limits are 

obtained as LL = p
i
-

C

n
 and UL = p

i
+

C

n
+

2δ

n
  where C is a positive integer that satisfies the condition 

ρ C  ≤ 1-α ≤ ρ C+1  with ρ C =p[p
i
-C n ≤ πi  ≤  p

i
+ C n] =1-α  and δ = 

 1-α -ρ(C)

ρ C+1 -ρ(C)
. 

  

The Bayesian approach for estimating cell probabilities for a two way contingency table under 

multinomial sampling could be outlined with a two-step likelihood-prior combination. If the random vector 

n=(n1,n2,…,nk) has a multinomial distribution with n trials and cell probabilities π1,π2,………….πk then the joint 

pmf of (n1,n2,…,nk) is 

 

 

k21 n

k

n

2

n

1

k21

k21 ...πππ
!!...nn!n

n!
)n,...,n,f(n 
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 The conjugate prior (Gelman et al, 2002) for the proportion parameters  = (π1,π2,………….πk) could 

be a multivariate generalization of Beta distribution known as Dirichlet  α1,α2, ……αk  with αj > 0 and PDF is   

p θ = 
Γ  αi 

 Γ(αi)
 π1

α1-1
π2

α2-1
………..π

k

αk-1
,  πj=1. Hence, the posterior distribution will be 

Π  θ/X  α π1

α1+x1-1
 …………..π

k

αk+xk-1
 = Dirichlet (α1+x1, α2+x2, ……αk+xk) up to normalizing constant. For a 

non-informative prior, widely chosen values for )α,...,α,(α k21 includes αi=1 corresponds to the uniform prior 

distribution, Jeffrey’s prior αi=1 and αi=1.41 corresponds to asymptotic prior (Komaki, 2012) distribution. 

 

III. CONDITIONS FOR ABERRATIONS  
In most of the studies, overshoot or zero width intervals have been illustrated based on the low (zero or 

positive) cell counts. However, a more general scenario can be derived by considering the mathematical form of 

each method to indicate the possible chances of aberrations. This section includes the possibilities of cells with 

zero counts and the range of cell counts that may result with over shooting estimated values for the associated 

lower and upper limits (LL & UL) of confidence intervals. 

In Qusenberry and Hurst, if  ni = 0 for some ‘i' then LL =
 0+A1 - A1(A1+0) 

2(A1+n)
 =0 and UL =    

A1

A1+n
. that yield fixed 

limits for the cells with zero count. 

Also LL < 0 is true  

only if A1+2np
i
- A1  A1+4np

i
 1-p

i
   < 0  

  only if  A1+2np
i
 

2
 < A1

2
+ 4nA1p

i
(1-p

i
) 

  only if A1
2
+4n2p

i
2+4np

i
A1 <  A1

2
+4nA1p

i
-4nA1p

i
2 

  only if 4n2p
i
2 < -4nA1p

i
2 

  only if n < -A1 which is not possible.  
Hence QH never have negative lower limits. 

Similarly UL >1 is true only if   2np
i
+A1 + A1 A1)+4nAp

i
 1-p

i
   > 2(A1+n) and subsequent algebra 

will yield a condition   0 > n 1-p
i
 +A1 1-p

i
  which is not possible (since n,  1-p

i
 ,  A1 are positive) and hence  

QH will never provide UL which are more than 1. Since, Goodman and Wilson differ from Qusenberry and 

Hurst only in the 𝜒2  value (A, A1, A2) similar conclusions can be made regarding these two procedures. 

In Fitzpatrick and Scott method, when ni=0 corresponding LL and UL will be ∓
Zα 2  

2 n
  that obviously 

yield a negative LL.  

Also LL < 0 only if  p
i
-Zα 2  

1

2 n
 < 0  

  p
i 
< Zα 2  

1

2 n
 

  0 < ni <  n
Zα 2  

2
 

 This could be possible and such a case could also be attributed towards polarized cell counts with 

varying k. For example, if n = 36, 1 ≤  ni ≤ 5 will have negative lower limits for a 95% confidence interval. 

Further, in this case if k is small say 4 and ni<5 for at least one i (say i=1) remaining three cells must be added 

upto 32. A hypothetical example (1,14,12,9) would bring a negative Lower Limit for the cell i=1.  

Also, in this case, UL > 1 only if p
i
+Zα 2  

1

2 n
>1,  p

i
>1-Zα 2  

1

2 n
  only if  ni>n- 

 n

2
Zα 2  . This case is also 

possible in practice and that might indicate the extremely distant values in the data set. Though FS has a 

symmetry property, aberration is an issue which would exist in possible cases. Hypothetical data set is (73, 1, 1, 

6) will bring Upper Limit > 1 in first case and negative Lower Limit in all other 3 cases. 

In Wald Type, when ni=0, both Lower Limit and Upper Limit are 0 which is an existence of zero width 

interval. Also, LL < 0 only if p
i
-  

A pi(1-pi)

n
 < 0  

   p
i
2 <  

A pi 1-pi 

n
 

   p
i
 < 

A (1-pi)

n
 

   n2p
i
 < A n-ni  

   nni < An-Ani 
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   ni< 
n

(n+A)
A =  1-

A

 n+A   A = (AF)A where AF is an adjusting factor 













An

A
1  

 

Also, UL > 1 Only if  p
i
+ 

Api(1-pi)

n
 > 1 

   
Api 1-pi 

n
 >  1-p

i
 

2
 

   
Api

n
 > 1-p

i
 

   
Api

n
 > 1-p

i
 

   Ani>n2  
n-ni

n
  = n(n-ni)  

   ni> 1-
A

n+A
 n  

However if n is large then AF→1 thereby ni→n in ith cell. This means nJ→0 as j≠i and could be an illustration 

of polarized cell counts. 

  In Wald CC method, if ni=0, then limits for the corresponding intervals are ∓
1

2n
 that yield an 

obvious negative limits. Also, LL < 0 only if  p
i
- 

Api(1-pi)

n
 -

1

2n
<0  

    p
i
-

1

2n
 

2

< 
Api(1-pi)

n
 

   
ni

2

n2
 + 

1

4n2 -
ni

n2
< 

A

n
p

i

A

n
p

i
2 

   
ni

2

n2
 + 

1

4n2 -
ni

n2
< 

(n-ni)Ani

n3
 

   ni
2 n+A -ni n+nA +

n

4
<0 

   ni

-
<ni<ni

+ where ni
±=

n n+A ± n2A2+2n2A-nA

2(n+A)
 

 

 For, Sison and Glaz method  p
i
=

ni

n
  LL=

ni

n
-

C

n
 and hence whenever C>ni (for some i), LL could be 

negative in ith confidence interval. Similarly, p
I
+ 

C

n
+

2δ

n
>1 only if ni+ C+2δ>n, only if ni>n-(C+2δ) where δ 

depends on the distance between p(C), 1-α and p(C+1), such that δ≤1  so that -δ≥-1 ⇒ni>n- C+2δ > n-1 -C or 

equivalently C>(n-1)-ni   For any i then UL of ith CI will be more than 1. 
 

IV. Data Analysis 
To illustrate the notion of estimation and the cases in which negative lower limits occur, four data sets 

(referred to as I - IV) have been considered and presented in TABLE 1. The first data set have been used in 

Chafai and Concordet (2009) which deal with the difference in behavior of male and female students with 

respect to smoking habits; second one from Szyda et al (2008) that has been used to analyze DNA pooling 

experiments with arctic fox; a data set from Sison and Glaz (1995), Hou et al (2003) is the third set; The fourth 

one is a partial collection of data sets from the data repository (www.fars-nhtsa.gov/states/statesAlcohol.aspx) 

that deals with fatal crashes and related information from National Highway Traffic Safety Administration’s 

(NHTSA) Fatality Analysis Reporting System (FARS) and its supplemental files. FARS has a collection of most 

or all fatal motor vehicle crashes that occur in United States of America. Further, alcohol related files are made 

up of the counts of crashes and fatalities due to three different levels of blood level consumptions (BAC equals 

to 0.00, between 0.01-0.07 and 0.08 or more). However, only nine tables for the year 2009 with wider range of 
cell counts have been included for the analysis.   

The data sets are collected in such a way to describe the presence of zeros; sparse non zero counts and 

has wider range. Also, minimum count in I and III data sets is 3 and 56 respectively and that of IV varies from 2 

to 14 over the nine tables. It has been observed that some procedures yield obvious negative lower limits 

whereas Wald method provides zero width intervals (ZWI) for zero counts. However, the main interest of the 

study lies on the aberrations that could occur for non-zero counts. In the case of data set I, uniformly three 

methods W, WCC, FS and SG yield negative lower limits when the cell count is 3 and such a result does not 

exist in the other methods. In fact QH, GM, and WS can be eliminated from such comparison as they never 

exhibit the characteristic of aberration and similar conclusions can be made for the Bayesian procedures too.   

http://www.fars-nhtsa.gov/states/statesAlcohol.aspx
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For data set II, Wald type intervals do not yield negative estimates for positive counts, whereas SG and 

FS result with negative lower limits when the cell counts are 5, 14 and 10; further, when the cell count is 16, SG 

has zero as lower limit but FS has a negative lower limit. In fact, the choice of c in the SG procedure will decide 

such values when any cell count is equal to C, lower limit is zero for the lesser cell counts it is negative. This 

kind of behavior warrants a deeper insight into deciding the sparse nature among positive cell counts and when 

cell counts are highly polarized.  

Similar conclusions are visible in the case of all nine tables of data set IV but a careful observation 
throws the light for SG when the range of cell counts are very high as much as 176 does not result with a 

negative lower limit for the cell count 14 in contrast to data set II. Hence, a quick decision could not be arrived 

regarding the performance of SG when high polarized count exist (May and Johnson, 2000) in the given data 

set; but the value of C is a notably influencing number for such cases in the estimated values. On the other hand, 

with larger values (more than 56) present in data set III, none of the cells have aberrations though range is 

notably high.  

 Further, TABLE 2 and TABLE 3 summarize the interval estimates (LL: lower limit and UL: upper 

limit) for the multinomial proportions related to the data set III to facilitate a comparison of the seven classical 

with three Bayesian methods. Bayesian methods yield least volume when compared to all other classical 

methods and the estimates are quite closer to the methods due to Wilson and Wald CC. Comparisons among 

classical procedures have been done already in many studies such as Hou et al (2003), this work does not 
include similar effort among non-Bayesian methods. But an emphasis is made to note the advantage of using 

Bayesian direct posterior estimation from Dirichlet distribution with standard objective priors that will yield 

better results and involve lesser computation and never yield implausible estimates under different 

circumstances of cell counts and size of the I x J tables. 

 

V. CONCLUSION 
Methods for estimating simultaneous multinomial proportions have found research attention in recent 

times but not specific to the unrealistic confidence intervals. For example Lee et al (2011) have pointed out the 

implausible limits for confidence interval as unrealistic. Though a simple practical remedy is visible such as 
truncating the limits suitably, a systematic method to understand such impractical estimates has not been 

developed at least in the case of multinomial proportions. This paper makes an attempt to derive suitable 

mathematical expression for the propensity of aberrations in the method for estimating multinomial proportions. 

 In the present work, seven classical procedures and Bayesian method with three priors are compared 

for the interval estimation of multinomial proportions. For the large samples and for an introductory level Wald 

type intervals can be suggested which are computationally simpler yet do not posses essential other properties 

(such as coverage probability) so as not to recommend for practical applications especially for low cell counts. 

 Though FS can be equally compared to Wald type intervals for its mathematical simplicity, this method 

is also not a favorable choice when the cell counts are small. Wilson intervals and similar forms QH and GM are 

providing plausible set of limits for all kind of data; but conservatism is an issue when k is comparatively large.  

 However, SG performs better in terms of achieving required coverage probability in all cases by the 

virtue of its mathematical form; yet it suffers a limitation in terms of propensity of aberration whenever the cell 
counts are polarized. Hence a careful judgment is needed to handle such limits which could occur even when a 

cell count is as large as 14. The availability of SG has also made wide spread in this work, and hence among the 

method considered in classical statistics, SG can be recommended with a caution about the range of cell counts. 

This paper provides a beforehand indication for the propensity of aberrations in confidence limits.  

 On the other hand, Bayesian Multinomial-Dirichlet methodology has been revisited with two well 

known objective priors (uniform and Jeffreys) together with a recently discussed asymptotic prior. It has been 

observed that Bayesian methods are quite flexible in modeling, mathematical treatment, computation and its 

uniform behavior over a variety of data, and never warrant corrections due to over shoot of the estimates. 

Further, advances in simulation techniques encourage adopting Bayesian objective methods to obtain interval 

estimates for multinomial proportions. Together with the existing literature on multinomial proportions, this 

study provides a consolidated view to select the procedures based on some criteria such as size of the 
contingency table (k), nature of cell counts and its range to indicate polarization, computational flexibility, 

propensity of aberrations, and desirable frequentist properties. However, the choice between Bayesian and 

classical methods need to be handled similar to other situations of data analyses.   
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Table 1: Illustrative data sets and their basic characteristics 

Data sets 

Size of the 

original 

table 

No. of 

Cells 

Zero entries 
Range of table totals 

No % 

I 2 x 2 4 0 0 7 

II 4 x 5 20 12 60 66 

III 1 x 7 7 0 0 31 

IV 
1 x 3 

(9 tables) 
3 0 0 

39,64,15, 

46,66,75, 

176,42,74 

 

Table 2: Comparison of six 95% confidence interval resulted from classical procedures for the data set III 

Cell 
Wald Wald CC Wilson 

Qusenberry-

Hurst 
Goodman Fitzpatrick-Scott Sison-Glaz 

LL UL LL UL LL UL LL UL LL UL LL UL LL UL 

1 0.090 0.149 0.089 0.150 0.094 0.153 0.076 0.183 0.085 0.166 0.075 0.165 0.079 0.164 

2 0.121 0.187 0.120 0.188 0.124 0.190 0.104 0.222 0.115 0.204 0.109 0.200 0.114 0.199 

3 0.123 0.189 0.122 0.190 0.126 0.192 0.106 0.225 0.116 0.207 0.111 0.202 0.116 0.201 

4 0.096 0.156 0.095 0.158 0.099 0.160 0.081 0.191 0.091 0.173 0.081 0.172 0.086 0.171 

5 0.102 0.164 0.101 0.165 0.105 0.167 0.087 0.198 0.096 0.181 0.087 0.178 0.092 0.177 

6 0.151 0.222 0.150 0.223 0.154 0.224 0.131 0.258 0.143 0.239 0.141 0.232 0.146 0.231 

7 0.094 0.154 0.093 0.155 0.097 0.157 0.080 0.188 0.089 0.171 0.079 0.170 0.084 0.169 

Vol-

ume 
4.07 x 10

-7
 5.14 x 10

-9
 4.08 x 10

-9
 2.52 x 10

-7
 3.59 x 10

-8
 5.11 x 10

-8
 3.24 x 10

-8
 

 

Table 3: Comparison of three 95% confidence interval resulted from Bayesian procedures for the data set III 

Cell 
 Bayesian-1 Bayesian-2 Bayesian-3 

 LL UL LL UL LL UL 

1  0.093 0.151 0.092 0.151 0.093 0.1505 

2  0.123 0.188 0.123 0.188 0.1237 0.1874 

3  0.125 0.191 0.124 0.191 0.1247 0.1902 

4  0.099 0.159 0.090 0.158 0.0984 0.1581 

5  0.104 0.164 0.109 0.166 0.1038 0.1648 

6  0.152 0.223 0.153 0.223 0.1518 0.2208 

7  0.097 0.156 0.096 0.156 0.0971 0.1556 

Volume  3.76 x 10
-9

 3.96 x 10
-9

 3.53 x 10
-9
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