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Abstract: In this paper, a general analysis of one dimensional non-steady state temperature distribution and 

stresses under thermal load in a solid sphere subjected to different types of heat sources is developed. The article 

deals with comparative study of the effect of varying heat generation on displacement and thermal stresses. The 

heat conduction equation solved by integral transforms technique with convective thermal boundary condition 

and arbitrary initial and surrounding temperature. The results are obtained in a trigonometric series and are 

studied numerically and are illustrated graphically.   
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I.    Introduction 
The   study of the problems of determination of thermal stresses in different solids under the different 

thermal condition and heat sources become a subject of extensive research all around the globe. Heat conduction 

in spherical objects is an important problem in  engineering practices. Transient thermal stresses in a sphere are 

discussed by a number of authors. Although the thermoelasticity has been well understood for more than a 
century, early studies are focused on the theoretical approach. The history of literature on these problems found in 

the texts by Parkus [1], Boley, Wiener [2], Nowacki [3], Noda [4], Carslaw and Jaeger [5]. During the last two 

decades increased attention has been given to transient problems, especially to those involving cylindrical and 

spherical geometries with heat generation. The generation of heat has a significant effect on the temperature 

profile and its effect on thermal stresses in solids in the Engineering fields and life sciences. 

Carslaw and Jeager [5] studied the use of sources and sinks in cases of variable temperature in a sphere, 

Ozisik [6] discussed many  homogeneous and non homogeneous heat conduction boundary value  problems  with 

heat sources, Cheung et al [7] studied the transient problem in a sphere with local heating,   Takeuti et al [8] 

studied the transient thermal stresses of a hollow sphere due to rotating heat source, Hetnarski [9] discussed the 

stresses in a long cylinder due to rotating line source, Nasser M.   EI-Maghraby [10,11] deal with problems of 

thermoelasticity with heat sources. Deshmukh et al [12] studied the determination of displacement and thermal 
stresses in a thin hollow circular disk due to internal heat generation and integral transform is used to solve the 

heat distribution and stresses are obtained in a Bessel’s functions. Deshmukh et al [13] studied the thermal 

deflection which is built in-edge in a thin hollow disk subjected to the activity of heat source which changes its 

place on the plate surface with time. Recently Kedar and Deshmukh [14]  determined thermal stresses in a thin 

clamped hollow disk under unsteady temperature field due to point heat source.  

In this paper, the one dimensional quasi-static uncoupled thermoelastic problem of a solid sphere with 

heat generation is considered. The aim is to obtain the mathematical model for predicting the results about the 

temperature profile and stresses with considering independently different types of heat sources within a body and 

assuming arbitrary initial and surrounding temperatures. The special cases are studied with instantaneous point, 

volume and spherical heat sources. This is a new approach to have knowledge of comparative study of heat 

distribution and produced stresses in a sphere due to internal heat sources. Integral transform technique is to 

obtain temperature distribution. This is a novel approach of study of thermal stresses which is useful in 
engineering field where different types of sources are to be used. 

 

II.    Formulation Of The Problem 
Consider the solid sphere defined by  0 ≤ 𝑟 ≤ 𝑎 . Initially the sphere is kept at arbitrary 

temperature𝐹(𝑟).  For time 𝑡 > 0 heat generated within the sphere at the rate of 𝑔 𝑟, 𝑡  𝐽/𝑠𝑚3   and heat is 

dissipated by convection from the boundary at 𝑟 = 𝑎 to the medium at temperature𝑓(𝑡). The sphere is 
homogeneous and isotropic. The temperature distribution, displacement and thermal stresses are to be determined 

and analyse graphically. 

The transient temperature distribution is governed by [6] the following equation, 
𝜕2𝑇

𝜕𝑟2  + 
2

𝑟
 
𝜕𝑇

𝜕𝑟
 + 

𝑔 (𝑟,𝑡)

𝑘
 = 

1

𝛼
 
𝜕𝑇

𝜕𝑡
            in   0 ≤ 𝑟 < 𝑎 ,   t > 0                          (1) 
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Boundary and initial condition                                

𝑘
𝜕𝑇

𝜕𝑟
+  𝑕𝑇 = 𝑓(𝑡)                     at        𝑟 = 𝑎,            𝑡 > 0                                         (2) 

𝑇 = 𝐹 𝑟                                    in          0 ≤ 𝑟 ≤ 𝑎        at    𝑡 = 0                                (3) 

A new dependent variable 𝑈(𝑟, 𝑡) is defined as    

𝑈 𝑟, 𝑡 = 𝑟𝑇(𝑟, 𝑡)                                                                                                             (4) 

Then the problem (1-3) is transformed as  
𝜕2𝑈

𝜕𝑟2   + 
𝑟𝑔  (𝑟 ,𝑡)

𝑘
 = 

1

𝛼
 
𝜕𝑈

𝜕𝑡
        in  0 ≤ 𝑟 < 𝑎 ,   t > 0                                                         (5)  

𝑈 = 0  𝑎𝑡 𝑟 = 0             in  0 ≤ 𝑟 ≤ 𝑎                                      (6) 
𝜕𝑈

𝜕𝑟
+ 𝑀𝑈 =

𝑎𝑓(𝑡)

𝑘
 ,          at  𝑟 = 𝑎, 𝑡 > 0                             (7) 

𝑈 = 𝑟𝐹(𝑟)                     in   0 ≤ 𝑟 ≤ 𝑎  , at  𝑟 = 0                                    (8) 

where, 𝐻 =
𝑕

𝑘
 , 𝑀 =  𝐻 −

1

𝑎
                    (9) 

where, 𝑘 is thermal conductivity, 𝑕 is heat transfer coefficient and 𝛼 is thermal diffusivity of the material. 

The temperature is symmetric with respect to centre of sphere, a function of r that is the radial distance 

only. One dimensional problem of thermoelasticity means spherically symmetric problem [4], in which the 

shearing stresses and strains vanish and strain and stress components in spherical coordinate θ and  ∅   direction 

are identical 

𝜍𝜃𝜃   = 𝜍∅∅    , ∈𝜃𝜃  = ∈∅∅                                                               (10) 

𝜍𝑟𝜃  =  𝜍𝜃∅ = 𝜍∅𝑟  = 0                       (11) 

 ∈𝑟𝜃  = ∈𝜃∅ =∈∅𝑟  = 0                                                                           (12) 

The equilibrium equation without body force in spherical coordinates [4] is reduces to 
𝜕𝜍𝑟𝑟  

𝜕𝑟
+

1

𝑟
 2𝜍𝑟𝑟 − 𝜍𝜃𝜃 − 𝜍𝜙𝜙  = 0 

𝑑𝜍𝑟𝑟

𝑑𝑟
  + 

2

𝑟
   ( 𝜍𝑟𝑟  −𝜍𝜃𝜃  )  = 0                                                  (13) 

Stress strain relation or Hooke’s relations are 

𝜍𝑟𝑟   = 2µ ∈𝑟𝑟  + 𝜆𝑒 – βτ                                                   (14) 

𝜍𝜃𝜃 =  𝜍𝜙𝜙= 2µ ∈𝜃𝜃  + λe - βτ                                                           (15) 

where, strain dilation 𝑒 = ∈𝑟𝑟+∈𝜃𝜃 +∈∅∅= ∈𝑟𝑟  + 2 ∈𝜃𝜃       (16) 

𝜍𝑟𝑟  , 𝜍𝜃𝜃  and 𝜍𝜙𝜙  are the stresses in the radial and tangential direction and ∈𝑟𝑟  and ∈𝜃𝜃  are strains in radial and 

tangential   direction, τ is the temperature change, 𝑒 is the strain dilation and 𝜆 and µ are the Lamé constants 

related to the modulus of elasticity 𝐸 and the Poisson’s ratio 𝜈 as, 

 𝜆 =
𝜐𝐸

 1−𝜐  1−2𝜐 
    ,  µ =

𝐸

2 1−𝜐 
                (17) 

The strain component in terms of radial displacement 𝑢𝑟 = 𝑢 is 

∈𝑟𝑟    = 
𝑑𝑢

𝑑𝑟
            ∈𝜃𝜃  =   ∈∅∅  = 

𝑢

𝑟
                                                     (18) 

The boundary condition on traction free surface is       

𝜍𝑟𝑟 = 0     at         𝑟 = 𝑎                                                     (19) 

Now with equations (10-19) one can obtain the displacement and thermal stresses as [4] 

 𝑢 =
𝛼

 1−𝜐 
  [(1+ 𝜐) 

1

𝑟2    𝜏𝑟2 𝑟

0
𝑑𝑟+2 (1-2𝜐) 

𝑟

𝑎3  𝜏𝑟2𝑎

0
𝑑𝑟]                                                    (20) 

𝜍𝑟𝑟    = 
𝛼𝐸

 1−𝜐 
  [ 

2

𝑎3    𝜏𝑟2 𝑎

0
𝑑𝑟 − 

2

𝑟3  𝜏𝑟2𝑟

0
𝑑𝑟]                                                                     (21) 

𝜍𝜃𝜃  = 𝜍∅∅   = 
𝛼𝐸

 1−𝜐 
  [ 

2

𝑎3    𝜏𝑟2 𝑎

0
𝑑𝑟+ 

1

𝑟3  𝜏𝑟2𝑟

0
𝑑𝑟 −  𝜏]                                                  (22) 

The equations (1-22) constitutes the Mathematical formulation of the problem   

 

III.     Analytic Solutions 
Following the general procedure of Ozisik [6], we develop the Fourier integral transform of 𝑈(𝑟, 𝑡) over 

the variable r in problem (4-8) and the inverse formula as 

 (Integral Transform)        𝑈  (𝛽𝑚 , 𝑟)   =  𝐾(𝛽𝑚  𝑟′
𝑎

𝑟 ′=0
) 𝑈(𝑟′, 𝑡)𝑑𝑟′                                                  (23) 

(Inverse Formula)             𝑈 𝑟, 𝑡         =  𝐾(∞
𝑚=1 𝛽𝑚 , 𝑟)  𝑈 (𝛽𝑚 , 𝑟)                    (24) 

Where, the summation is taken over all Eigen values. 

On applying the above integral transform and inverse formula to the problem (5-8), one obtains, the 

expression for the temperature function of a non-homogeneous boundary problem of heat conduction in a solid 

sphere as, 
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𝑇 𝑟, 𝑡 =
2

𝑟
 𝑒−∝𝛽𝑚

2 𝑡𝑠𝑖𝑛(𝛽𝑚𝑟
∞
𝑚=1 )  

𝛽𝑚
2 +𝑀2

𝑎 𝛽𝑚
2 +𝑀2 +𝑀

   𝑟′𝐹(
𝑎

𝑟 ′ =0
𝑟)𝑠𝑖𝑛 𝛽𝑚𝑟 +  eαβm

2 𝑡t

t′=0
  
∝

𝑘
 𝑟 ′𝑔 𝑟 ′, 𝑡 ′ 𝑠𝑖𝑛 𝛽𝑚𝑟 𝑑𝑟′
𝑎

𝑟 ′=0
 +

∝𝑎𝑘𝑠𝑖𝑛𝛽𝑚𝑎𝑓(𝑡′)𝑑𝑡′                     (25) 

K (𝛽𝑚 , 𝑟)  =  
𝑠𝑖𝑛𝛽𝑚 𝑟

 𝑁
=   2     

𝛽𝑚
2  + 𝑀    

2

𝑎  𝛽𝑚
2  + 𝑀 

2 + 𝑀
 

1

2
 𝑠𝑖𝑛𝛽𝑚 𝑟                                                     (26) 

N = 
1

2
  
𝑎  𝛽𝑚

2  + 𝑀  
2 +  𝑀 

𝛽𝑚
2  + 𝑀2

  

 𝑀 = 𝐻 −
1

𝑎
, a finite value  

𝐻 =
𝑕

𝑘
                                        (27) 

𝛽𝑚  are the positive roots of the transcendental equation 𝛽𝑚𝑐𝑜𝑡𝛽𝑚𝑎 = −𝑀   

The roots of this transcendental equation are real if  𝑎(𝐻 −
1

𝑎
)  >  −1 

→ 𝐻 > 0                                                                                                                                (28) 

The temperature change is obtained as 

𝜏 = 𝑇 𝑟, 𝑡 − 𝐹 𝑟 =
2

𝑟
 𝑒−∝𝛽𝑚

2 𝑡𝑠𝑖𝑛(𝛽𝑚𝑟
∞
𝑚=1 )  

𝛽𝑚
2 +𝑀2

𝑎 𝛽𝑚
2 +𝑀2 +𝑀

   𝑟 ′𝐹(
𝑎

𝑟 ′=0
𝑟)𝑠𝑖𝑛 𝛽𝑚𝑟 +  𝑒∝𝛽𝑚

2 𝑡   
∝

𝑘
 𝑟 ′𝑔 𝑟 ′, 𝑡 ′ 𝑠𝑖𝑛 𝛽𝑚𝑟 𝑑𝑟′
𝑎

𝑟 ′=0
 +

𝑡

𝑡 ′=0

∝𝑎𝑘𝑠𝑖𝑛𝛽𝑚𝑎𝑓(𝑡′)𝑑𝑡′   −   𝐹(𝑟)             (29) 

Using Equations (20-22), Displacement and stresses are obtained as,  

𝑢 =
∝

 1−𝜐 
  1 − 𝜐 

1

𝑟2 (  𝑒−∝𝛽𝑚
2 𝑡  

𝑠𝑖𝑛  𝛽𝑚 𝑟 −𝑟𝛽𝑚 𝑐𝑜𝑠  𝛽𝑚 𝑟 

𝛽𝑚
2 𝑁

 ∞
𝑚=1 𝐿 −  𝐹(𝑟

𝑟

0
)𝑟2𝑑𝑟) +

21−2𝜐 𝑟𝑎3𝑚=1∞𝑒−∝𝛽𝑚2𝑡𝑠𝑖𝑛𝛽𝑚𝑎−𝑎𝛽𝑚𝑐𝑜𝑠𝛽𝑚𝑎𝛽𝑚2𝑁𝐿−0𝑎𝐹(𝑟)𝑟2𝑑𝑟                 (30) 

 𝜍𝑟𝑟 =
2∝𝐸

1−𝜐
 

1

𝑎3
  𝑒−∝𝛽𝑚

2 𝑡  
𝑠𝑖𝑛  𝛽𝑚 𝑎 −𝑎𝛽𝑚 𝑐𝑜𝑠  𝛽𝑚 𝑎 

𝛽𝑚
2 𝑁

 ∞
𝑚=1 𝐿 −  𝐹(𝑟

𝑎

0
)𝑟2𝑑𝑟 −

1

𝑟3
  𝑒−∝𝛽𝑚

2 𝑡  
𝑠𝑖𝑛  𝛽𝑚 𝑟 −𝑟𝛽𝑚 𝑐𝑜𝑠  𝛽𝑚 𝑟 

𝛽𝑚
2 𝑁

 ∞
𝑚=1 𝐿 −  𝐹(𝑟

𝑟

0
)𝑟2𝑑𝑟) 

                       (31) 

  𝜍𝜃𝜃 = 𝜍𝜙𝜙 =
∝𝐸

1−𝜐

 
 
 
 
 

2

𝑎3
  𝑒−∝𝛽𝑚

2 𝑡  
𝑠𝑖𝑛  𝛽𝑚 𝑎 −𝑎𝛽𝑚 𝑐𝑜𝑠  𝛽𝑚 𝑎 

𝛽𝑚
2 𝑁

 ∞
𝑚=1 𝐿 −  𝐹(𝑟

𝑎

0
)𝑟2𝑑𝑟 +

1

𝑟3
  𝑒−∝𝛽𝑚

2 𝑡  
𝑠𝑖𝑛  𝛽𝑚 𝑟 −𝑟𝛽𝑚 𝑐𝑜𝑠  𝛽𝑚 𝑟 

𝛽𝑚
2 𝑁

 ∞
𝑚=1 𝐿 −  𝐹(𝑟

𝑟

0
)𝑟2𝑑𝑟) −

 
1

𝑟
  𝑒−∝𝛽𝑚

2 𝑡 𝑠𝑖𝑛  𝛽𝑚 𝑟 

𝑁
∞
𝑚=1 𝐿 − 𝐹(𝑟)  

 
 
 
 

      (32) 

where, 

𝐿 =   𝑟 ′𝐹(
𝑎

𝑟 ′=0
𝑟)𝑠𝑖𝑛 𝛽𝑚 𝑟 +  𝑒−∝𝛽𝑚

2 𝑡  
 
∝

𝑘
 𝑟 ′𝑔 𝑟 ′, 𝑡 ′ 𝑠𝑖𝑛 𝛽𝑚𝑟 𝑑𝑟′
𝑎

𝑟 ′=0
 

+
∝𝑎

𝑘
𝑠𝑖𝑛 𝛽𝑚𝑎 𝑓(𝑡 ′)

 𝑑𝑡′
𝑡

𝑡′
       (33) 

 

IV.     Results and Discussion 
The exact analytical solutions for temperature, displacement and thermal stresses are obtained in the 

previous part. The mathematical software MATLAB is used for further numerical calculation and graphical 

analysis. 

For special cases we assume the initial temperature 𝐹 𝑟 = 0, therefore 𝜏 = 𝑇(𝑟, 𝑡)                                                  

and for simplicity take the ambient temperature𝑓 𝑡 = 𝑡. The numerical solutions are presented for following 

material properties, 

Thermal diffusivity       𝛼 = 112.34 × 10−6𝑚2𝑠−1              

Thermal conductivity   𝑘 = 386𝑊/𝑚𝑘 

Specific heat                 𝑐𝜌 = 383 𝐽/𝑘𝑔𝐾 

Poisson’s Ratio             𝜐 = 0.35 

Setting the radius of the sphere 𝑟 = 1𝑚 and 𝑀 = −0.4 , the roots of the transcendental equation 𝛽𝑚𝑐𝑜𝑡𝛽𝑚𝑎 =
−𝑀 are as [6]  

𝛽1 = 0.7593 , 𝛽2 = 4.5379 , 𝛽3 = 7.7511 , 𝛽4 = 10.9225 , 𝛽5 = 14.0804 , 𝛽6 = 17.2324     
Then temperature change eq. (29) reduces to, 
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𝜏 𝑟, 𝑡 =  
 2

𝑟
 𝑒−∝𝛽𝑚

2 𝑡𝑠𝑖𝑛(𝛽𝑚𝑟

∞

𝑚=1

)  
𝛽𝑚

2 + 𝑀2

𝑎 𝛽𝑚
2 + 𝑀2 + 𝑀

   𝑟 ′𝐹(

𝑎

𝑟 ′=0

𝑟)𝑠𝑖𝑛 𝛽𝑚𝑟 

+  𝑒∝𝛽𝑚
2 𝑡′   

∝

𝑘
 𝑟 ′𝑔 𝑟 ′, 𝑡 ′ 𝑠𝑖𝑛 𝛽𝑚𝑟 𝑑𝑟′

𝑎

𝑟 ′=0

 +
∝ 𝑎

𝑘
𝑠𝑖𝑛 𝛽𝑚𝑎 𝑓(𝑡 ′) 𝑑𝑡′

𝑡

𝑡 ′=0

  

                                (34) 

Following cases are independently discussed with different types of sources, 

 

Case 1 

 Let heat source is instantaneous constant volume source of strength 𝑔𝑖 𝐽/𝑚
2 that releases its heat 

spontaneously at 𝑡 = 0 i.e. single explosion takes place within the sphere and the energy released throughout the 

solid sphere. It is related with volume heat source by the relation as [6] 

𝑔 𝑟 ′, 𝑡 ′ = 𝑔𝑖𝛿(𝑡 ′ − 0), therefore using (30, 31, 32 and 34) 

𝜏(𝑟, 𝑡) =
  2∝

𝑟𝑘
 𝑒−∝𝛽𝑚

2 𝑡𝑠𝑖𝑛(𝛽𝑚 𝑟
∞
𝑚=1 )  

𝛽𝑚
2 +𝑀2

 𝛽𝑚
2 +𝑀2 +𝑀

  

𝑔𝑖
 𝑠𝑖𝑛 𝛽𝑚−𝛽𝑚 𝑐𝑜𝑠𝛽𝑚  

𝛽𝑚
3 +

𝑠𝑖𝑛𝛽𝑚  
(∝𝛽𝑚

2 𝑡−1)𝑒∝𝛽𝑚
2 𝑡+1

𝛼2𝛽𝑚
4  

                (35)   

𝒖 =
𝟐𝜶𝟐

 𝟏−𝝊 𝒌
  

 𝟏−𝝊  𝒔𝒊𝒏 𝜷𝒎𝒓 −𝜷𝒎𝒓𝒄𝒐𝒔 𝜷𝒎𝒓  

𝒓𝟐𝜷𝒎
𝟐 +

𝟐 𝟏−𝟐𝝊 𝒓 𝒔𝒊𝒏𝜷𝒎−𝜷𝒎𝒄𝒐𝒔𝜷𝒎 

𝜷𝒎
𝟐  ∞

𝒎=𝟏   

          
𝛽𝑚

2 +𝑀2

 𝛽𝑚
2 +𝑀2 +𝑀

  𝑔𝑖
 𝑠𝑖𝑛 𝛽𝑚−𝛽𝑚 𝑐𝑜𝑠 𝛽𝑚  

𝛽𝑚
2 + 𝑠𝑖𝑛𝛽𝑚  

(∝𝛽𝑚
2 𝑡−1)𝑒∝𝛽𝑚

2 𝑡+1

𝛼2𝛽𝑚
4   𝑒−∝𝛽𝑚

2 𝑡                    (36) 

𝜍𝑟𝑟 =
4𝛼2𝐸

 1−𝜐 𝑘
  

 𝑠𝑖𝑛 𝛽𝑚−𝛽𝑚 𝑐𝑜𝑠 𝛽𝑚  

𝛽𝑚
2 −

 𝑠𝑖𝑛 (𝛽𝑚 𝑟)−𝛽𝑚 𝑟𝑐𝑜𝑠 (𝛽𝑚 𝑟 

𝑟3𝛽𝑚
2  ∞

𝑚=1   

            
𝛽𝑚

2 +𝑀2

 𝛽𝑚
2 +𝑀2 +𝑀

  𝑔𝑖
 𝑠𝑖𝑛 𝛽𝑚−𝛽𝑚 𝑐𝑜𝑠 𝛽𝑚  

𝛽𝑚
2 + 𝑠𝑖𝑛𝛽𝑚  

(∝𝛽𝑚
2 𝑡−1)𝑒∝𝛽𝑚

2 𝑡+1

𝛼2𝛽𝑚
4   𝑒−∝𝛽𝑚

2 𝑡        (37) 

𝜍𝜃𝜃 = 𝜍𝜙𝜙 =
2𝛼2𝐸

 1−𝜐 𝑘
  

2 𝑠𝑖𝑛 𝛽𝑚−𝛽𝑚 𝑐𝑜𝑠𝛽𝑚  

𝛽𝑚
2 +

 𝑠𝑖𝑛 (𝛽𝑚 𝑟)−𝛽𝑚 𝑟𝑐𝑜𝑠 (𝛽𝑚 𝑟 

𝑟3𝛽𝑚
2 −

𝑠𝑖𝑛  (𝛽𝑚 𝑟 

𝑟
 ∞

𝑚=1   

                      
𝛽𝑚

2 +𝑀2

 𝛽𝑚
2 +𝑀2 +𝑀

  𝑔𝑖
 𝑠𝑖𝑛 𝛽𝑚−𝛽𝑚 𝑐𝑜𝑠 𝛽𝑚  

𝛽𝑚
2 + 𝑠𝑖𝑛𝛽𝑚  

(∝𝛽𝑚
2 𝑡−1)𝑒∝𝛽𝑚

2 𝑡+1

𝛼2𝛽𝑚
4   𝑒−∝𝛽𝑚

2 𝑡               (38) 

 

Case2 

The heat source is instantaneous point heat source of strength 𝑔𝑝𝑡𝑖  (𝐽) situated at the centre of the sphere 

and releases its heat spontanteniously at time 𝑡 = 0. this source is related with volumetric heat source [6] by  

𝑔 𝑟 ′, 𝑡 ′ =
𝑔𝑝𝑡𝑖

4𝜋 ′2
 𝛿 𝑡 ′ − 0 𝛿 𝑟 ′ − 0                   (39) 

𝑇(𝑟, 𝑡) =  
  2∝

𝑟𝑘
 𝑒−∝𝛽𝑚

2 𝑡𝑠𝑖𝑛(𝛽𝑚𝑟
∞
𝑚=1 )  

𝛽𝑚
2 +𝑀2

 𝛽𝑚
2 +𝑀2 +𝑀

  
𝛽𝑚𝑔𝑝𝑡𝑖

4𝜋
+ 𝑠𝑖𝑛𝛽𝑚  

 ∝𝛽𝑚
2 𝑡−1 𝑒∝𝛽𝑚

2 𝑡+1

∝2𝛽𝑚
4             (40)    

𝑢 =
2𝛼2

 1−𝜐 𝑘
  

 1−𝜐  𝑠𝑖𝑛  𝛽𝑚 𝑟 −𝛽𝑚 𝑟𝑐𝑜𝑠  𝛽𝑚 𝑟  

𝑟2𝛽𝑚
2 +

2 1−2𝜐 𝑟 𝑠𝑖𝑛 𝛽𝑚−𝛽𝑚 𝑐𝑜𝑠𝛽𝑚  

𝛽𝑚
2  ∞

𝑚=1   

                              
𝛽𝑚

2 +𝑀2

 𝛽𝑚
2 +𝑀2 +𝑀

  
𝛽𝑚𝑔𝑝𝑡𝑖

4𝜋
+ 𝑠𝑖𝑛𝛽𝑚  

(∝𝛽𝑚
2 𝑡−1)𝑒∝𝛽𝑚

2 𝑡+1

𝛼2𝛽𝑚
4   𝑒−∝𝛽𝑚

2 𝑡                            (41) 

𝜍𝑟𝑟 =
4𝛼2𝐸

 1−𝜐 𝑘
  

 𝑠𝑖𝑛 𝛽𝑚−𝛽𝑚 𝑐𝑜𝑠 𝛽𝑚  

𝛽𝑚
2 −

 𝑠𝑖𝑛 (𝛽𝑚 𝑟)−𝛽𝑚 𝑟𝑐𝑜𝑠 (𝛽𝑚 𝑟 

𝑟3𝛽𝑚
2  ∞

𝑚=1   

                                  
𝛽𝑚

2 +𝑀2

 𝛽𝑚
2 +𝑀2 +𝑀

  
𝛽𝑚𝑔𝑝𝑡𝑖

4𝜋
+ 𝑠𝑖𝑛𝛽𝑚  

(∝𝛽𝑚
2 𝑡−1)𝑒∝𝛽𝑚

2 𝑡+1

𝛼2𝛽𝑚
4   𝑒−∝𝛽𝑚

2 𝑡                         (42)     

𝜍𝜃𝜃 = 𝜍𝜙𝜙 =
2𝛼2𝐸

 1−𝜐 𝑘
  

2 𝑠𝑖𝑛 𝛽𝑚−𝛽𝑚 𝑐𝑜𝑠𝛽𝑚  

𝛽𝑚
2 +

 𝑠𝑖𝑛 (𝛽𝑚 𝑟)−𝛽𝑚 𝑟𝑐𝑜𝑠 (𝛽𝑚 𝑟 

𝑟3𝛽𝑚
2 −

𝑠𝑖𝑛  (𝛽𝑚 𝑟 

𝑟
 ∞

𝑚=1   

                                  
𝛽𝑚

2 +𝑀2

 𝛽𝑚
2 +𝑀2 +𝑀

  
𝛽𝑚𝑔𝑝𝑡𝑖

4𝜋
+ 𝑠𝑖𝑛𝛽𝑚  

(∝𝛽𝑚
2 𝑡−1)𝑒∝𝛽𝑚

2 𝑡+1

𝛼2𝛽𝑚
4   𝑒−∝𝛽𝑚

2 𝑡                         (43) 

  

Case3 

The heat source is instantaneous spherical source of radius 𝑟1of total strength 𝑔𝑠𝑝𝑕𝑖  𝐽 situated concentrically inside 

the sphere and releases its heat spontaneously at time 𝑡 = 𝜏′ then as [6]  

𝑔 𝑟 ′, 𝑡 ′ =
𝑔𝑠𝑝𝑕𝑖

4𝜋𝑟′2
 𝛿 𝑡 ′ − 𝜏′ 𝛿 𝑟 ′ − 𝑟1   

𝑇(𝑟, 𝑡) =   

 
  2∝

𝑟𝑘
 𝑒−∝𝛽𝑚

2 𝑡𝑠𝑖𝑛(𝛽𝑚𝑟
∞
𝑚=1 )  

𝛽𝑚
2 +𝑀2

 𝛽𝑚
2 +𝑀2 +𝑀

  
𝑔𝑠𝑝𝑕𝑖

4𝜋𝑟1
𝑒∝𝛽𝑚

2 𝜏′𝑠𝑖𝑛 𝛽𝑚𝑟1 +

                                                                                  𝑠𝑖𝑛𝛽𝑚(∝𝛽𝑚2𝑡−1)𝑒∝𝛽𝑚2𝑡+1∝2𝛽𝑚4                           
  (44) 
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𝑢 =
2𝛼2

 1−𝜐 𝑘
  

 1−𝜐  𝑠𝑖𝑛  𝛽𝑚 𝑟 −𝛽𝑚 𝑟𝑐𝑜𝑠  𝛽𝑚 𝑟  

𝑟2𝛽𝑚
2 +

2 1−2𝜐 𝑟 𝑠𝑖𝑛 𝛽𝑚−𝛽𝑚 𝑐𝑜𝑠𝛽𝑚  

𝛽𝑚
2  ∞

𝑚=1   

                              
𝛽𝑚

2 +𝑀2

 𝛽𝑚
2 +𝑀2 +𝑀

  
𝑔𝑠𝑝𝑕 𝑖

4𝜋𝑟1
𝑒∝𝛽𝑚

2 𝜏′𝑠𝑖𝑛 𝛽𝑚𝑟1 + 𝑠𝑖𝑛𝛽𝑚  
(∝𝛽𝑚

2 𝑡−1)𝑒∝𝛽𝑚
2 𝑡+1

∝2𝛽𝑚
4   𝑒−∝𝛽𝑚

2 𝑡       (45) 

𝜍𝑟𝑟 =
4𝛼2𝐸

 1−𝜐 𝑘
  

 𝑠𝑖𝑛 𝛽𝑚−𝛽𝑚 𝑐𝑜𝑠 𝛽𝑚  

𝛽𝑚
2 −

 𝑠𝑖𝑛 (𝛽𝑚 𝑟)−𝛽𝑚 𝑟𝑐𝑜𝑠 (𝛽𝑚 𝑟 

𝑟3𝛽𝑚
2  ∞

𝑚=1   

           
𝛽𝑚

2 +𝑀2

 𝛽𝑚
2 +𝑀2 +𝑀

  
𝑔𝑠𝑝𝑕𝑖

4𝜋𝑟1
𝑒∝𝛽𝑚

2 𝜏′𝑠𝑖𝑛 𝛽𝑚𝑟1 + 𝑠𝑖𝑛𝛽𝑚  
(∝𝛽𝑚

2 𝑡−1)𝑒∝𝛽𝑚
2 𝑡+1

𝛼2𝛽𝑚
4   𝑒−∝𝛽𝑚

2 𝑡                 (46)     

𝜍𝜃𝜃 = 𝜍𝜙𝜙 =
2𝛼2𝐸

 1−𝜐 𝑘
  

2 𝑠𝑖𝑛 𝛽𝑚−𝛽𝑚 𝑐𝑜𝑠𝛽𝑚  

𝛽𝑚
2 +

 𝑠𝑖𝑛 (𝛽𝑚 𝑟)−𝛽𝑚 𝑟𝑐𝑜𝑠 (𝛽𝑚 𝑟 

𝑟3𝛽𝑚
2 −

𝑠𝑖𝑛  (𝛽𝑚 𝑟 

𝑟
 ∞

𝑚=1   

                   
𝛽𝑚

2 +𝑀2

 𝛽𝑚
2 +𝑀2 +𝑀

  
𝑔𝑠𝑝𝑕𝑖

4𝜋𝑟1
𝑒∝𝛽𝑚

2 𝜏′𝑠𝑖𝑛 𝛽𝑚𝑟1 + 𝑠𝑖𝑛𝛽𝑚  
(∝𝛽𝑚

2 𝑡−1)𝑒∝𝛽𝑚
2 𝑡+1

𝛼2𝛽𝑚
4   𝑒−∝𝛽𝑚

2 𝑡           (47)  

 

 
Figure 1: Temperature case 1 

 

 
Figure2: Temperature case 2 

 

 
Figure 3: Temperature case 3 
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Fig 1, 2 and 3 represent the temperature variation for the instantaneous constant volume, instantaneous 

point and instantaneous spherical source respectively.  In every case has the source of constant magnitude 𝑔 =
50 but the nature is different. The temperature variation along the radial direction is shown in the graphs.  In case 

1 the temperature decreases along the radial direction and there are some radii where it has the constant value and 

independent of time. Temperature is lowest near the centre of the sphere and time passes first it immediately 

increases and has local minimum and maximum peaks. For the curve associated with time 𝑡 = 0.1 the temperature 

decreases along the radial direction. In case 2 the temperature is highest about the centre and it agree with the 

instantaneous point source at the centre of the sphere. The temperature decreases along the radial direction. It is 

observed that for very small time it changes the direction also. For the spherical source employed at 𝑟 = 0.8  and 

𝑡 = 𝜏′ = 1, the temperature decreases along the radial direction. It has the maximum values at about the radius 

𝑟 = 0.1  and minimum value at the centre of the sphere. The temperature distribution changes with the change in 

the nature of the source. 

 
Figure 4: Displacement Case 1 

 
Figure 5: Displacement case2 

Fig 4, 5 and 6 shows the change in the displacement along the radius. In case 1 it is seen that the displacement 

increases along the radial direction. For a very small time the increase is linear. As time passes there is a 

variation in the temperature distribution and maximum displacement occur near the surface of the sphere and the 

displacement at the centre is very minor.. For the instantaneous point source at the centre, fig 5 shows the 

greater displacement about the centre and highest values occur at about the radius 𝑟 = 0.15, while for the 

spherical source the maximum values of the shifts towards the surface. The displacement is minor at the centre 

of the sphere in case 1 and 3.In case 3 the displacement is independent of the time at about 𝑟 = 0.2𝑚. For case 1 

and 3 the displacement is large on the surface but for case 2 conditions is reversed and it agree with the point 

heat source at the centre. 
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Figure 6: Displacement case 3 

 

 
Figure 7: Radial stress case 1 

 
Figure 8: Radial stress case 2 

 
Figure 9: Radial Stress case 3 
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Figure 10: Hoop stress case1 

 
Figure 11: Hoop stress case 2 

 
Figure 12: Hoop stress case 3 

Fig 7, 8 and 9 shows the variation of radial stresses along the radial direction for three different types of 

heat generation within the sphere respectively. From the graph it is very much clear that the stresses on the surface 

are null as per the assumed mechanical condition induced for the radial stresses on the surface of sphere. For 

instantaneous volume heat source within the sphere the stresses are compressive inside the sphere and the values 

decreases gradually on the surface. The tension is large and as good as constant for 𝑟 < 0.5 and the nature of the 

variation is minor. For case 2 the nature of the stresses is compressive as well as tensile. There is large 

compression on the surface for case 2, while there is tension on the surface for case 3. 
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Fig 10, 11 and 12 shows the variation of tangential stresses along the radial direction. For instantaneous 

volumetric source the stresses are compressive for very small time. As time passes the nature of the stresses 

abruptly changes, centre of the sphere is under tension for case 1, and there are certain radii where the stress is 
independent of time while the surface has got compression. The nature of the stresses continuously changes from 

tensile to compression and compression to tensile and stress values are highest about the centre and gradually 

decreases on the surface. For the point heat source, the centre is under compression and stresses increases along 

the radial direction with variation. Like case 1, the there are certain radii where the stresses are constant. For the 

spherical source the variation of tangential stress is shown in fig 12.  

 

V.    Conclusions 
 In this study the analytical solutions are obtained for temperature distribution, displacement and stresses 

under thermal load with arbitrary initial and ambient temperature and analysis is made by employing three 

different heat source cases and results are obtained independently. In the analysis instantaneous point, volume and 

spherical source are used to make the comparative study. In observations it is found that there is a total change in 

the temperature and thermal stresses profile along the radius with change in the nature of the sources. This model 

can be applied to spherical structures and to design useful structural applications. The proposed method may be 

readily extended to solve a wide range of physical engineering problems with change in the form of arbitrary 

initial and surrounding temperature. The numerical results are discussed as special cases.               
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