Even-even gracefulness of some families of graphs

M. Sudha1, A. Chandra Babu2

1Assist. Professor, Department of Mathematics, Noorul Islam Centre for Higher Education, India.
2Professor, Department of Mathematics, Noorul Islam Centre for Higher Education, India.

Abstract: In this paper, we prove that the Dumbbell graph, Star graph, Cartesian product \(P_2 \times C_n \) and \(K_t + C_n \) are even-even graceful. The even-even graceful labeling of a graph \(G \) with \(q \) edges means that there is an injection \(f: E(G) \rightarrow \{2, 4, \ldots, 2q\} \) so that induced map \(f^*: V(G) \rightarrow \{0, 2, \ldots, (2k-2)\} \) defined by \(f^*(x) = \Sigma f(x, y) \) (mod 2k) where \(k = \max \{p, q\} \) makes all distinct and even.

Keywords: Even-even graceful labeling, Dumbbell graph, Star graph and wheel graph.

I. Introduction

Most graph labeling methods trace their origin to one introduced by Rosa\cite{1} in 1967, or the one given by Graham and Sloane\cite{2} in 1980. Rosa\cite{1} called a function \(f \) a \(\beta \)-valuation of a graph \(G \) with \(q \) edges if \(f \) is an injection from the vertices of \(G \) to the set \(\{0, 1, \ldots, q\} \) such that, when each edge \(xy \) is assigned the label \(|f(x) − f(y)| \), the resulting edge labels are distinct. Golomb subsequently called such labeling graceful and this is now the popular term. For all terminology and notation Bondy\cite{3} has been followed. Solairaju and Chithra\cite{4} have introduced the concept of edge-odd graceful labeling. Gayathri and Duraisamy have introduced the concept of even edge-graceful labeling. A graph is even vertex-graceful if there exists an injective map \(\gamma: E(G) \rightarrow \{1, 2, \ldots, 2q\} \) so that the induced map \(\gamma^*: V(G) \rightarrow \{0, 2, 4, \ldots, 2k-2\} \) defined by \(\gamma^*(x) = \Sigma \gamma(xy) \) (mod 2k) where \(k = \max \{p, q\} \) makes all distinct. R. Sridevi, S. Navaneethakrishnan, A. Nagarajan and K. Nagarajan\cite{5} have introduced the concept of even-odd graceful labeling. They proved that some well known graphs namely \(P_n, P'_n, K_{1,n}, K_{1,2,n}, K_{n,n} \) and \(B_{n,n} \) are even-odd graceful. In this paper we introduce the definition even-even gracefulness and also prove that some well known graphs namely \(S_n, D(m,n) \) and \(P_2 \times C_n \) etc are even-even graceful.

Definition 1.1

The odd-even graceful labeling of a graph \(G \) with \(q \) edges is an injection \(f: V(G) \rightarrow \{1, 3, 5, \ldots, 2q + 1\} \) such that, when each edge \(uv \) is assigned the label \(|f(u)−f(v)| \), the resulting edge labels are \(\{2, 4, 6, \ldots, 2q\} \). A graph which admits an odd-even graceful labeling is called an odd-even graceful graph.

Definition 1.2

A graph is even vertex graceful if there exists an injective map \(f: E(G) \rightarrow \{1, 2, \ldots, 2q\} \) so that the induced map \(f^*: V(G) \rightarrow \{0, 2, 4, \ldots, 2k-2\} \) defined by \(f^*(x) = f(xy) \) (mod 2k) where \(k = \max \{p, q\} \) makes all distinct.

Definition 1.3

A graph is even-even graceful if there exists an injective map \(f: E(G) \rightarrow \{2, 4, \ldots, 2q\} \) so that the induced map \(f^*: V(G) \rightarrow \{0, 2, \ldots, (2k-2)\} \) defined by \(f^*(x) = \Sigma f(x, y) \) (mod 2k) where \(k = \max \{p, q\} \) makes all distinct and even.

II. Main Results

Definition 2.1

A star \(S_n \) is the complete bipartite graph \(K_{1,n} \). It is a tree with one internal node and \(n \) leaves.

Theorem 2.1

A star graph \(S_n \) is even-even graceful when \(n \) is even.

Proof: Let \(G \) be a star graph with \(n+1 \) vertices and \(n \) edges.

Let \(\{e_i, e_2, \ldots, e_n\} \) be the edge set of \(S_n \).

Define \(f: E(G) \rightarrow \{2, 4, \ldots, 2q\} \) such that (here \(q = n \)) \(f(e_i) = 2i; i = 1, 2, \ldots, n \).

The internal vertex of \(S_n \) has induced label

\[
2 + 4 + 6 + \ldots + 2n = 2(1 + 2 + 3 + \ldots + n) = \frac{2n(n+1)}{2} = n(n+1) = n.k \text{ where } k = p = n+1
\]

www.iosrjournals.org 7 | Page
Even-even gracefulness of some families of graphs

Hence, the induced label of internal vertex is '0' and other vertices have induced label from 2 to 2n.

Example 2.1 The star graph S_n is even-even graceful.

\[2+4+6+...+2n \equiv 0 \pmod{2k} \text{ when } n \text{ is even} \]

Figure: 1

Definition 2.2 The Dumbbell graph $D(m,n)$ is formed by two disconnected cycles C_m and C_n joined by an edge.

Theorem 2.2 Dumbbell graph $D(m,n)$ is even-even graceful for $m = n$.

Proof: For any $n \geq 3$, the Dumbbell graph $D(m,n)$ has $2n$ vertices and $2n+1$ edges. Let $\{e_1,e_2,\ldots,e_n\}$ be the edge set of the first cycle C_m. ‘e_{m+1}’ be a connecting edge. $\{e_{m+2},e_{m+3},\ldots,e_{2n+1}\}$ be the edge set of the second cycle C_n. We begin with the first cycle C_m by labeling 2 to 2n to each edge anticlockwise consecutively from one side of the connected vertex. Then we label $2n+2$ to the connected edge. Finally we label $2n+4$ to $4n+2$ to each edge of the second cycle C_n clockwise from one side of the connecting vertex.

Hence, the vertices of first cycle C_m has induced labels $f(v_i) = 4i-2 ; i = 1,2,\ldots,n$ and the vertices of second cycle C_n has induced labels $f(v_i) = 4i ; i = 1,2,3,\ldots,n$.

Example: 2.2 The Dumbbell graph with even-even graceful labeling.

Figure: 2

Theorem 2.3 The ladder graph $P_2 \times C_n$ is even-even graceful.

Proof:

The graph $P_2 \times C_n$ has 2n vertices and 3n edges. First we consider e_1 and e_{3n}, the two outer edges of $P_2 \times C_n$.

Let $\{e_2,e_3,\ldots,e_n\}$ be the edge set of one of the long sides of the ladder and $\{e_{2n+1},e_{2n+2},\ldots,e_{3n-1}\}$ be the edge set of the other long side of ladder. Finally let $\{e_{n+1},e_{n+2},\ldots,e_{2n}\}$ be the edge set of rungs of ladder.

Define $f : E(G) \rightarrow \{2,4,\ldots,2q\}$ such that

\[
 f(e_1) = 2 ; f(e_{3n}) = 6n \text{ and } f(e_i) = 2i ; \quad i = 2,3,\ldots,3n-1.
\]

From the above labeling, the induced vertex labels of the two paths P_n are

\[
 f'(v_i) = 4(n+1)+2i \text{ for } i = 1,2,\ldots,n-3;
\]

\[
 f'(v_{n-3}) = 0 ; f'(v_{n-2}) = 2 \text{ & } f'(v_{n-1}) = 4(n+1);
\]

\[
 f'(v_{n}) = 2(n+1);
\]

\[
 f'(v_i) = 2i \text{ for } i = 2,3,\ldots,n.
\]

Hence the graph $P_2 \times C_n$ is an even-even graceful.
Example 2.3 The following figure shows that the graph $P_2 \times C_5$ is even-even graceful.

Definition 2.3

The wheel, W_n, is the graph obtained by joining every vertex of the cycle C_n to exactly one isolated vertex called the center. The edges incident to the center are called spokes.

Theorem 2.4 The wheel W_n is even-even graceful when $n \equiv 0 \pmod{4}$

Proof:

The graph W_n has $n+1$ vertices and $2n$ edges. Let $\{e_1, e_2, e_3, \ldots, e_n\}$ be the edge set of the spokes and $\{e_{n+1}, e_{n+2}, \ldots, e_{2n}\}$ be the edge set of consecutive cycle. Let v_0 be a center vertex and v_1, v_2, \ldots, v_n be the consecutive cycle vertices.

Define $f: E(G) \rightarrow \{2, 4, \ldots, 2q\}$ such that

- $f(v_0v_i) = 2i$ for $i = 1, 2, \ldots, n$
- $f(v_i v_n) = 4n - 2(i-1)$ for $i = 1, 2, \ldots, n$

Hence the induced mapping are $f'(v_0) = n$;

- $f'(v_1) = 2n+4$;
- $f'(v_2) = 2$;
- $f'(v_i) = 0$ and
- $f'(v_i) = 4n-2i+6$ for $i = 4, 5, \ldots, n$.

Figure: 3

Figure: 4
Example 2.4 The following figure shows that the graph W_8 is an even-even graceful.

![Diagram of W_8](image)

Definition 2.4 The join of graphs K_1 and C_n, $K_1 + C_n$, is obtained by joining every vertex of K_1 with every vertex of C_n with an edge.

Theorem 2.5 The graph $K_1 + C_n$ is even-even graceful if n is a multiple of 4.

Proof: The graph $K_1 + C_n$ has $n+1$ vertices and $2n$ edges. Let ‘v’ be vertex of K_1 and $v_1,v_2,...,v_n$ be vertices of the cycle. Start at the first edge which are incident to the K_1 with 2 and continue in strictly increasing order by 2. The smallest edge label is 2 and largest edge label is $2n$.

Similarly, label the edges of C_n, start from right hand side with $2n+2$ and continue in strictly increasing order by 2. So the smallest edge label of C_n is $2n+2$ and largest edge label is $4n$.

Hence the induced labels of vertices are,

$f(v) = n$; $f(v_1) = 0$; $f(v_i) = 2$ and $f(v_i) = 4n-2i+2$ if $n = 2,4,...,n-1$
Even-even gracefulness of some families of graphs

Example: 2.5 The graph $K_1 + C_{12}$ and its even-even graceful labeling are shown in the following Figure.

III. Conclusion

In this paper we have introduced the definition for ‘even-even graceful labeling’. We have proved that the Dumbbell graph, Star graph, Cartesian product $P_2 \times C_n$ and $K_1 + C_n$ are all even-even graceful. We have also proved that the wheel W_n is even-even graceful when $n \equiv 0(\text{mod}4)$.

References

[7]. J.A.Gallian, A dynamic survey of graph labeling, Electronic, J.Comb.