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Abstract: We present a mathematical model for the spread of dracunculiasis with focus on three populations; 

human, vector and parasite. The reproductive number is obtained from next generation matrix and the stability 

analyses of disease-free and endemic equilibria are conducted. Simulation of the model is presented by solving 

the systems of the differential equations to explore the behaviour of the model using maple 14. The paper also 

analyzes key parameters to determine the effective intervention. The result of this paper shows that reducing the 

parasite birth rate is more effective than water treatment. 
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I. Introduction 
Dracunculiasis (Dracontiasis), more generally called Guinea Worm Disease (GWD), is a serious 

problem in various countries in Africa. It is a parasitic infection acquired by drinking water from ponds 

contaminated by cyclopoid copepods infected with third stage larvae of the parasite Dracunculusmedinensis. 

Worm emergence is through the skin after a year of entering the infected person and this is usally associated 

with secondary bacterial infection. It has been called a neglected disease of neglected people since it strikes 

remote farming populations who have been passed over by national development efforts [1]. Intervention and 

prevention techniques have been implemented in endemic areas to significantly reduce outbreaks. 

Dracunculiasis is a disease of poor rural communities where the population often has to obtain drinking water 

from ponds infested with water fleas called Cyclops. Guinea worm eggs are not directly infective to humans. 

They can remain active in water for about three days and die unless they are swallowed by a cyclops. Inside the 

cyclops, the guinea-worm larvae develop over a period of about two weeks into a larval stage that is infective to 

humans [2]. The Cyclops become inactive after infection and die early [3]. 

There are no symptoms during the year long incubation period. High susceptibility to tetanus through 

ulcers caused by the emerging worms in addition to habitual abortion in some pregnant women [4] has been 

associated with guinea-worm diseases. When the adult worms are immersed in water, they release hundreds of 

thousands of mature larvae to begin the cycle anew. Each infection lasts only one year, but more than one 

guinea worm may emerge simultaneously or sequentially over the course of weeks, depending on the number 

and intensity of infection the preceding year. Humans do not develop immunity, and there is no cure or vaccine 

for the infection. However, the worm can be removed by physically pulling the worm out which may take up to 

two months to complete as worm can grow up to a meter in length and only 1-2cm can be removed per day [5]. 

Dracunculiasis can only be prevented by teaching persons to always filter drinking water from unsafe sources 

through a fine cloth and to avoid entering such sources when they have a worm emerging or about to emerge 

from their bodies, by treating contaminated water with ABATE larvicide (temephos; BASF, Mount Olive, NJ) 

or by providing safe drinking water from underground sources. 

Considerable progress has been made since 1986 in reducing the annual numberof reported 

dracunculiasis cases. The 1991 world health assembly (WHA) goal to eradicate dracunculiasis globally by 1995 

was not achieved because of the limited funding available from international organization for support of 

technical and financial assistance to countries with endemic disease, and the limited time (4years) to meet the 

WHA goal [6]. In 2004, WHA established a new target date of 2009 for global eradication [7] despite 

considerable progress, that target also was not met, nevertheless, progress towards eradication continues. The 

number of cases of dracunculiasis worldwide reported by disease endemic countries to WHO and partner 

organizations decreased by 41 percent, from 1,797 cases in 2010 to 1,058 in 2011. As of June 2012, 

dracunculiasis remained endemic in four countries (Chad, Ethiopia, Mali and South Sudan [7]. The 395 cases 

reported and 219 villages reporting cases globally during January to June 2012 represent reductions of 51% and 

39%, respectively, from the 807 cases reported and 358 villages that reported cases during January to June 2011. 

Of the 395 cases reported during January to June 22012, 99% were from South Sudan [7]. 

 Few researchers have contributed towards the mathematical study of the eradication of dracunculiasis 

(guinea worm) diseases.Adetunde [8] investigated the current pattern of dracunculiasis disease in the Northern 

region of Ghana. He analysed the data from the region and wrote a time series model for the purpose of 

prediction. From his analysis it was observed that the number of Guinean infection cases reduce with time and 
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concluded that if the trend continues then there is likelihood that the guinea worm disease will be completely 

eradicated. 

 Recently, KathryhLink [9] in her M.Scthesis, highlighted compartmental modelling of the biological 

description of the disease. The model provides the basis for examining the guinea worm diseases host-

microparasite interaction. An algebraic solution to disease-free equilibrium was found and a numerical stability 

analysis of the solution was conducted. Using next generation matrix, she determined the reproductive number 

R0, which enabled her to discover that the disease-free equilibrium is stable provided the people’s visitation rate 

to the river/water body is reduced.  

 Robert J. Smith et al., [5] developed a mathematical model of guinea worm disease. Impulsive 

differential equations were used to evaluate the effectiveness of chlorination. Latin Hypercube sampling was 

used to determine the practical effectiveness of three control parameters (education, filtration and chlorination). 

Despite the theoretical potential of chlorination to complete the eradication of the disease, education is far more 

effective.  

In this paper we formulate a mathematical model to represent the spread of guinea worm disease 

among three different populations. We analyse the model for two intervention parameters, L (water 

treatment)and0 (education) to check the more effective intervention.  

The rest of this paper is organised as follows. Section 2 is devoted to model formulation. In section 3, we 

analyse the model and state the conditions that guarantee the stability of the disease-free and endemic equilibria, 

then the model is solved numerically. Conclusion is made in Section 4.  

 

II. Model Formulation 
Three different populations are considered in this paper, human, parasite and vector populations. The 

human population is divided into three compartments (or states) containing susceptible human SH, exposed 

human EHand infected human IH(           ). When a man ingests an infected copepod, he becomes 

exposed and later (after about one year when the guinea worm larva has fully grown) becomes infected.  

In this model we assume that more than one guinea worm can emerge simultaneously or sequentially over the 

course of the weeks, depending on the number and the intensity of infection the preceding year.  

No human death occurs due to guinea worm disease. The susceptible human state SH gains individuals through 

birth     (  
  

  
), and recovery from infection    . A loss of individual is as a result of death     (  

  

  
) and infection    (

  

  
)   . The exposed human state EH gains individuals through infection    (

  

  
)    and 

loses individuals when they become infected     and to natural death     (  
  

  
). The infected human    

gains individuals when exposed individuals become infected and loses individuals when they die     (  
  

  
) 

or recover    . 

The susceptible copepod state    gains more individuals only through birth     (  
  

  
). The 

population loses copepods through natural death    (  
  

  
), consumption by human  (

  

  
)  , and to 

infection by guinea worm larvae,    (
 

  
)    (         ). The infected copepod state    loses individual 

through death   
   (  

  

  
)and consumption by human (

  

  
)  . Copepod can never recover from infection. 

In this paper it is assumed that the amount of copepods consumed per time by maximum population of human is 

less than the saturation population of copepods per time(            (     
 )). 

The guinea worm population is represented by both eggs and larvae. The egg state   gains more 

individual by the release of eggs from adult worms existing in human host       . The population loses eggs 

through natural death     and hatching    into the larvae. It is assumed that     . The larvae state   gains 

more larvae by hatching of eggs    . Losses occur due to natural death     and consumption of larvae by 

copepod (
 

  
)  . 

Thus the model is  
   

  
  (         ) (  

  

  
)         (

  

  
)    2.1 

   

  
     (

  

  
)            (  
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             (  
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         (     )      2.4 
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           (

 

  
)       2.5 

   

  
 (         ) (  

  

  
)     (

 

  
)     (

  

  
)   2.6 

   

  
    (

 

  
)     (

  

  
)  –   

   (  
  

  
)   2.7 

 

Since the model monitors changes in the human, cyclops and parasite populations, the variables and the 

parameters are assumed to be non-negative for all    . Therefore (2.1) – (2.7) will be analysed is a suitable 

feasible region  of biological interest. We have the following lemma on the region system (2.1) – (2.7) are 

resisted to.  

 

Lemma 2.1: The Feasible region  defined by 

   {(  ( )   ( )   ( )  ( )  ( )   ( )   ( ))    
     ( )    ( )      

       ( )    } 
with initial conditions  

  ( )      ( )      ( )     ( )     ( )      ( )      ( )   is positive invariant for system 

(2.1) – (2.7). 

 

Proof: Adding (2.1) – (2.3) we obtain  
   
  
  (  

  ( )

  
) (     )  ( ) 

The assumption that   ( )     implies 

  ( )    {

    ( )

(     ( ))    ( (     ) )     ( )
    ( )    

      ( )     

}     

Using the facts that   ( )     and       in (2.8) we have 
   
  
      ( )    ( ) 

thus,   ( )    ( )    . 

Similarly, adding (2.6) and (2.7) we obtain  
   
  
 (  

  
  
) (            

   )   (
  
  
)   

Since   
     and  (

  

  
)     we have 

   
  
 (  

  ( )

  
) (     )   

which follows that  

  ( )  
    ( )

(     ( ))    ( (     ) )    ( )
    

 

Since   ( )    . 
 

Table 1: State variables 
   Number of susceptible humans  

   Number of exposed  

   Number of infected humans 

  Number of guinea worm eggs 

  Number of guinea worm larvae 

   Number of susceptible copepod 

   Number of infected copepod 
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Table 2: List of parameters 

 
 

 Human birth rate (
 

    
) 

   Human death rate (
 

    
) 

  Recovery rate (
 

    
) 

   Human infection fraction (
              

       
) 

  Copepod consumption rate (
                

           
) 

  Worm emergence rate (
 

    
) 

   Visitation rate (
                   

    
) 

   Egg release rate (
            

           
) 

   Natural death rate of eggs (
 

    
) 

  Hatching rate (
 

    
) 

  Ratio of matured larvae to the number of eggs hatched (
               

   
) 

   Natural death rate of larvae (
 

    
) 

  Larvae consumption rate (
               

             
) 

   Copepod infection fraction (
                

      
) 

   Natural death rate of copepod (
 

    
) 

  
  Death rate of infected copepod (

 

    
) 

   Copepod birth rate (
 

    
) 

   Copepod saturation constant (copepod) 

   Larvae saturation constant (larvae) 

 

III. Equilibrium and Stability Analysis 
In this section, equilibrium and stability analysis of the model are discussed. When modelling infectious 

diseases, the most important issue that arises is whether the disease spread could attain pandemic level or it 

could be wiped out. To have a better understanding of the dynamics of the disease, equilibrium and stability 

analysis is performed.  

 

3.1 Disease-Free Equilibrium 

For the disease-free equilibrium, we set the disease states and the left-hand side of (2.1)-(2.7) to zero. The 

resulting system is solved which is given to     (  
            

   ) 
  
     

  
     (  

   

  (      )
)     

The last inequality holds since         (     
 ) 

We obtain the reproductive number    by expressing (2.1) – (2.7) as the difference between the rate of new 

infection in each infected compartment   and the rate of transfer between each infected compartment  . 
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The Jacobian matrices    and    of   and   are found about   . 
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  is the maximum eigenvalue of T given as  

   √
     

              
 (    )(        

 )(   
      

     
    

     
 )

 

 

Clearly,      since     
  

 

Theorem 3.1: If one of the diseased classes of an equilibrium point of the system is zero, then all the diseased 

classes are zero. 

 

Proof: At equilibrium, the left sides of (2-1) – (2.7) are set to zero. Suppose      in (2.4), (    )  

 implies    . In (2.5) we have (   
   

  
)      , but (   

   

  
)    by our assumption, therefore      . 

It follows from (2.7) that     since ,   , C,   ,   
 ,   and    are positive. Finally, we have from (2.2) that 

    if     . 
 

Table 3: Parameter values for the disease-free area (Ghana) and endemic area (Ethiopia) with time in days 
Parameter Diseases 

free area  

Endemic 

area 

Reference  Parameter Diseases 

free area  

Endemic 

area 

Reference  

 H 8.767 

10-5 

1.05510-1 [10] H 2.1110-

5 

2.54810-5 [10] 

 0.0222 0.0222 calculated C 0.004 0.024 calculated 

 0.5 2 Calculate  0.00274 0.00274 calculated 

0 0.002 0.02 Assumed 1 3000000 3000000 [2] 

E 0.333 0.333 [2]   0.072 0.072 [9] 

 0.4 0.4 Calculate L 0.0333 0.0333 [3] 

 3 3 [3] L 0.1 0.1 assumed 

C 0.005 0.005 [2]  C 0.75 0.75 [2] 

’C 0.125 0.125 [3] C 200000 200000  

KH 1000 1000 assumed  KC 100000 100000 assumed 

L 500000 5000000      

 

3.2 Bifurcation 

We consider two parameters 0 and L as means of intervention. Education is the intervention 

represented by 0 and continuous water treatment with the use of larvicide by L. By reducing the visitation rate, 

our model reveals that 0 is stable if             . 
Water treatment with the use of larvicide increases the death rate of guinea worm larva. Our model 

describes that 0 is stable if L>0.1016. 

 

 
Figure 1:  Intervention parameter    (education) 
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Figure 2: Intervention parameter     (water treatment) 

 

3.3 Endemic Equilibrium 
 

Theorem 3.2:If       (    )         , there exist three equilibria 

1 = (KH, 0,0,0,0,0,0) 

2 = (0,0,0,0,0,KC,0) and 

3 = (             
   ) 

where   
     (  

   

  (      )
). 1 is unstable while 2 and3 are locally stable.  

 

Proof: Set the left side of (2.1)-(2.7) to zero. Putting         (    )         for   , in (2.4), we 

have    . This implies, by Lemma 2.1 and Theorem 3.1, that             , thus, (2.1) – (2.7) is 

reduced to 

  (     )  (  
  
  
)                                                                        

  (     )  (  
  
  
)   (

  
  
)       

Neglecting the trivial case, 1, 2 and3 are obtained from (3.1) and (3.2). 

We check the stabilities of 1and3 (because 3 =2when     ) by finding the eigenvalues of the Jacobian 

matrices of system (2.1)-(2.7) evaluated at 1 and 2 respectively [11,12].  

To check the stability of 1, we have the Jacobian matrix 
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1 is not stable since    
   

  
      

For 3, we have the Jacobian matrix  
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Therefore, 3 is locally stable when    . 
 

 
 

 
Figure 3:   ( )        ( )       ( )       ( )         ( )         ( )         ( )      
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We stimulated the endemic equilibrium using the parameter values in Table 3. The results show that 

the disease is present in all the population classes.  

To check Theorem 3.2, we stimulated the endemic equilibrium with 0 = 0. The results agree with 

Theorem 3.2. This means that if the education about the disease is effective and the visitation rate is reduced, the 

disease will be wiped out.  

Using the data in Table 3, we stimulated the case when the intervention parameter L (i.e. water 

treatment) is effective. It was observed that if the water treatment is effective to the level that the life span of 

larvae is reduced to 147minutes (i.e. L=9.796 per day), the population of guinea worm egg remains in the 

system but other disease classes decrease as time increases.  

 

IV. Conclusion 
We have highlighted a compartmental modelling approach for three different populations-human, 

vector and parasite. It is assumed that the human and vector populations grow logistically and parasite 

population increases by infected human’s visitation to the river. The model is analysed for disease-free and 

endemic equilibria. Local stability of the non-trivialequilibria in both cases is guaranteed only under certain 

conditions. 

For disease-free equilibrium, keeping the intervention parameter values in the value intervals given in 

section 3.2 allows the system to remain disease-free, the endemic equilibria2 and 3 are stable when 

      ( ) (    ) ( ). It is concluded from the analysis and simulation that if the intervention parameter 

(visitation rate)    
(    ) 

    
(    ), the spread of disease decreases and could be wiped out. By computer 

simulation it is shown that if the larvicide is effective (i.e. L is increased) to the point when   
  
  , then the 

endemic equilibrium is locally stable.  

 

 
 

 
 

Figure 4:        ( )        ( )       ( )       ( )         ( )         ( )  
       ( )      

 

It is also found by simulation that reducing the parasite birth rate (which can be achieved by educating 

people not to put infected limbs into the drinking water) is more effective than water treatment. This model can 

be a useful tool in the control of the spread of dracunculiasis and the understanding of the model formulation 

can help in modelling any other water-borne disease.  

 

 

 



A Mathematical Model of Dracunculiasis Epidemic and Eradication 

www.iosrjournals.org                                                             56 | Page 

 

 

References 
[1] Anosike, J.C.; Azoro, VA; Nwoke, B.E.B; Keke, IR; Okere, AN; Oku, EE; Ogbul JN; Tony-Njoku, F: Okoro, O.U., Nwosu, 

D.c.Dracunculiasis in the North Eastern Border of Ebonyi State, South Eastern Nigeria. Int. J. Egg. Environm. Hith, 205, 2002, 1-7. 

[2] Cyclops an intermediate host for guinea worm. http://www.who.int/water_sanitation_health/resources/vector324 to 336.pdf 
Accessed May 25, 2013-09-28 

[3] SarojBapnaRelative Susceptibilities of Cyclops species from Rajasthan State of Guinea Worm (Dracunculiasismedinansis) larvae. 

Bulletin of the World Health Organisation, 63(5), 1985, 881-886. 
[4] St. George, J. Bleeding in Pregnancdy due to re-troplacental situation of guinea worm. Annals of Tropical Medicine and 

Parasitology 69, 1975, 383-386. 

[5] Robert J.S., Patrick C., James H., Alex D. A Mathematical Model for the eradication of guinea worm disease. Understanding the 
dynamics of emerging and re-emerging infectious diseases using mathematical models pgs. 2012, 133-156. 

[6] Ruiz-Tiben E., Hopkins D.R.Dracunculiasis (Guinea Worm Disease) eradication. Adv. Parasitol 61, 2006, 275-309. 

[7] World Health Organisation. World Health Assembly, Resolution WHA 57.9. Elimination of dracunculiasis: resolution of the 57 th 
World Health Assembly, Geneva, Switzerland: http//www.whmv/gb/ebwha/pdf_files/wha57/a57_r9-en.pdf Accessed April 25 

2013. 

[8] Adetunde I.A. The Epidemiology of guinea worm infection in Tamale District, in the Northern Region of Ghana. Journal of Modern 
Mathematics and Statistics. 2008, 50-54 

[9] Kathryh L. Guinea worm disease (Dracunculiasis): Opening a mathematical can of worms. M.Sc. Thesis, Bryn Mawr College, 

Pennsylvania, USA, 2012. 
[10] CIA World Factbook (2012). http://www.cia.gov/library/publications/the-wrold-factbook/rankorder/2054rank.html 

[11] Blanchard p., Daveney R.L., Hall G.R.; (2006). Differential Equations (Thomson Brooks/Cole, Belmont, C.A. 2006), 323 
[12] Hirsch, M.W., Smale S. Differential Equations. Dynamical Systems and Linear Algebra. (Academic Press Inc. Harcourt Brace 

Javanovich Publishers, 1974) 185-191 

 

 

http://www.who.int/water_sanitation_health/resources/vector324%20to%20336.pdf
http://www.cia.gov/library/publications/the-wrold-factbook/rankorder/2054rank.html

