Contra R^*- Continuous And Almost Contra R^*- Continuous Functions

Renu Thomas* and C.Janaki**

*Department of Mathematics, Sree Narayana Guru College, Coimbatore (TN) INDIA.
* Department of Mathematics, L.R.G. Govt.Arts college for Women,Tirupur (TN) INDIA

Abstract: In this paper we present and study a new class of functions as a new generalization of contra continuity. Furthermore we obtain some of their basic properties and relationship with R^*-regular graphs.

Keywords: Contra R^*-continuous function, almost contra R^*-continuous functions, R^*-regular graphs, R^*-locally indiscrte.

AMS subject classification: 54C08, 54C10

I. Introduction

In 1996,Dontchev [5] introduced the notion of contra continuity. Several new generalizations to this class were added by Dontchev and Noiri [6] as contra-continuous functions and S-closed spaces, contra semi continuous,contra δ -precontinuous functions etc. C.W.Baker [2] introduced and investigated the notion of contra β continuity, Jafari and Noiri [11] studied the contra precontinuous and contra α continuous functions.

Almost contra pre continuous function was introduced by Ekici [7].In this direction we will introduce the concept of almost contra R^*-continuous functions. We include the properties of contra R^*-continuous functions and the R^*-regular graphs.

Throughout this paper, the spaces X and Y always mean the topological spaces (X, τ) and (Y, σ) respectively. For $A \subseteq X$, the closure and the interior of A in X are denoted by $\text{cl}(A)$ and $\text{int}(A)$ respectively. Also the collection of all R^*-open subsets of X containing a fixed point x is denoted by $R^*-O(X,x)$.

II. Preliminaries

Definition: 2.1. A subset A of a topological space (X, τ) is called (1) a regular open [17] if $A = \text{int} (\text{cl}(A))$ and regular closed [17] if $A = \text{cl}(\text{int}(A))$.

The intersection of all regular closed subset of (X, τ) containing A is called the regular closure of A and is denoted by $rcl(A)$.

Definition: 2.2. [4] A subset A of a space (X, τ) is called regular semi open set if there is a regular open set U such that $U \subseteq A \subseteq \text{cl}(U)$. The family of all regular semi open sets of X is denoted by $\text{RSO}(X)$.

Lemma: 2.3. [5] In a space (X, τ), the regular closed sets, regular open sets and clopen sets are regular semiopen.

Definition: 2.4. A subset of a topological space (X, τ) is called

1. a regular generalized (briefly rg-closed) [17] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
2. a generalized pre regular closed (briefly gpr-closed) [10] if $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
3. a regular weakly generalized closed (briefly rwg-closed) [15] if $\text{cl}(\text{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
4. a generalized regular closed (briefly gr-closed) [14] if $rcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
5. a regular generalized weak closed set (briefly rgw-closed) [19] if $\text{cl}(\text{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular semi open in X.

The complements of the above mentioned closed sets are their respectively open sets.

Definition: 2.5 [12] A subset A of a space (X, τ) is called R^*-closed if $rcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semiopen in (X, τ). We denote the set of all R^*-closed sets in (X, τ) by $R^*\text{C}(X)$.

Definition: 2.6 [12] A function $f : X \rightarrow Y$ is called R^*-continuous if $f^{-1}(V)$ is R^*-closed in X for every closed set V of Y.

Definition: 2.7 [5] A function $f : X \rightarrow Y$ is called contra continuous if $f^{-1}(V)$ is closed in X for every open set V of Y.
Contra R*. Continuous And Almost Contra R*. Continuous Functions

Definition: 2.8 A function \(f : X \to Y \) is called

1. contra rg- continuous, if \(f^{-1}(V) \) is rg- closed in \(X \) for each open set \(V \) of \(Y \).
2. contra gpr- continuous, if \(f^{-1}(V) \) is gpr- closed in \(X \) for each open set \(V \) of \(Y \).
3. contra rwg-continuous, if \(f^{-1}(V) \) is rwg- closed in \(X \) for each open set \(V \) of \(Y \).
4. contra gr- continuous, if \(f^{-1}(V) \) is gr- closed in \(X \) for each open set \(V \) of \(Y \).
5. contra rgw-continuous, if \(f^{-1}(V) \) is grw- closed in \(X \) for each open set \(V \) of \(Y \).
6. an R-map [8] if \(f^{-1}(V) \) is regular closed in \(X \) for each regular closed set \(V \) of \(Y \).
7. perfectly continuous if \[1, 7\] \(f^{-1}(V) \) is clopen in \(X \) for each open set \(V \) in \(Y \).
8. almost continuous if [20] \(f^{-1}(V) \) is open in \(X \) for each regular open set \(V \) in \(Y \).
9. regular set connected if [9] \(f^{-1}(V) \) is clopen in \(X \) for each regular open set \(V \) in \(Y \).
10. RC-continuous [8] if \(f^{-1}(V) \) is regular closed in \(X \) for each open set \(V \) in \(Y \).

Definition: 2.9 [21] A space is said to be weakly Hausdorff if each element of \(X \) is an intersection of regular closed sets.

Definition: 2.10 [22] A space is said to be Ultra Hausdorff if for every pair of distinct points \(x \) and \(y \) in \(X \), there exist disjoint clopen sets \(U \) and \(V \) containing \(x \) and \(y \) respectively.

Definition: 2.11 [22] A topological space \(X \) is called a Ultra normal space, if each pair of disjoint closed sets can be separated by disjoint clopen sets.

Definition: 2.12 [23] A topological space \(X \) is said to be hyperconnected if every open set is dense.

III. Contra R*-continuous functions

Definition: 3.1 A space \(X \) is called locally R*-indiscrete if every R*-open subset of \(X \) is closed.

Definition: 3.2 A function \(f : X \to Y \) is called contra R*-continuous if \(f^{-1}(V) \) is R*-closed in \(X \) for every open set \(V \) of \(Y \).

Definition: 3.3 A function \(f : X \to Y \) is strongly R*-open if the image of every R*-open set of \(X \) is R*-open in \(Y \).

Definition: 3.4 A function \(f : X \to Y \) is almost R*-continuous if \(f^{-1}(V) \) is R*-open in \(X \) for each regular open set \(V \) of \(Y \).

Theorem: 3.5 Every contra R*-continuous function is contra rg-continuous, contra gpr-continuous, contra rwg-continuous, contra gr-continuous, contra rgw-continuous but not conversely.

Proof: Obvious from definitions.

Example 3.6: Let \(X = \{a, b, c, d\} \equiv Y, \tau = \{X, \phi, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}\} \quad \sigma = \{Y, \phi, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}\)

Define a mapping \(f : X \to Y \) as the identity mapping. Here the function \(f \) is contra rg-continuous, contra gpr-continuous and contra rwg-continuous but not contra R*-continuous since \(f^{-1}(a) = \text{aand} f^{-1}(c) = c \) are not R*-closed.

Example 3.7: Let \(X = \{a, b, c, d\} \equiv Y, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \quad \sigma = \{Y, \phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}\).

Define a mapping \(f : X \to Y \) as \(f(a) = c, f(b) = a, f(c) = d, f(d) = b \), the function \(f \) is contra gr-continuous but not contra R*-continuous.

Example 3.8: \(X = \{a, b, c, d\} \equiv Y, \tau = \{X, \phi, \{a\}, \{d\}, \{a, d\}, \{a, b, d\}\} \quad \sigma = \{Y, \phi, \{c, d\}, \{a, c, d\}\}\).

Define a mapping \(f : X \to Y \) as \(f(a) = b, f(b) = a, f(c) = d, f(d) = c \), the function \(f \) is contra rgw-continuous but not contra R*-continuous.

Remark: 3.9 Contra continuous and contra R*-continuous are independent concepts.
Example 3.10
Let \(X = Y = \{a, b, c\} \) \(\tau = \{X, \phi, \{a\}, \{b, c\}\} \) \(\sigma = \{Y, \phi, \{b\}, \{c\}, \{b, c\}\} \). Define \(f : X \to Y \) as the identity mapping. Here \(f \) is contra \(R^* \)-continuous but not contra continuous since \(f^{-1} \{b\} = \{b\} \) is not closed in \(X \).

Example 3.11: Let \(X = Y = \{a, b, c, d\} \) \(\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\} \) \(\sigma = \{Y, \phi, \{d\}\} \). Define \(f : X \to Y \) as the identity mapping. \(f^{-1} \{d\} = \{d\} \) is not \(R^* \)-closed and hence is not contra \(R^* \)-continuous but contra continuous.

Theorem 3.12: Every RC continuous function is contra \(R^* \)-continuous but not conversely.
Proof: Straight forward.

Example 3.13: Let \(X = Y = \{a, b, c\} \) \(\tau = \{\{X, \phi, \{a\}, \{b\}, \{a, b\}\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}\} \) \(\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, c\}\} \).

Define \(f : X \to Y \) as \(f(a) = b, f(b) = c, f(c) = a \).
Here \(f \) is contra \(R^* \)-continuous but not RC-continuous.

Remark 3.14: The composition of two contra \(R^* \)-continuous functions need not be contra \(R^* \)-continuous as seen in the following example.

Example 3.15: Let \(X = Y = Z = \{a, b, c\} \) \(\tau = \{X, \phi, \{a\}, \{c\}\}, \{a, c\}\} \) \(\sigma = \{Y, \phi, \{a\}, \{b\}\} \).

Define \(f : X \to Y \) by \(f(a) = a, f(b) = c, f(c) = a \). Then \(f \) and \(g \) are contra \(R^* \)-continuous but \(g \circ f : X \to Z \) is not contra \(R^* \)-continuous since \((g \circ f)^{-1} \{b\} = f^{-1} (g^{-1} \{b\}) = f^{-1} \{a\} = \{c\} \) is not \(R^* \)-closed.

Theorem 3.16: If \(f : (X, \tau) \to (Y, \sigma) \) is a contra \(R^* \)-continuous function and \(g : (Y, \sigma) \to (Z, \eta) \) is a continuous function, then the function \(g \circ f : X \to Z \) is contra \(R^* \)-continuous.

Proof: Let \(V \) be open in \(Z \). Since \(g \) is continuous, \(g^{-1}(V) \) is open in \(Y \). \(f \) is contra \(R^* \)-continuous, so \(f^{-1}(g^{-1}(V)) \) is \(R^* \)-closed in \(X \). Hence \(g \circ f \) is contra \(R^* \)-continuous.

Theorem 3.17: If \(f : (X, \tau) \to (Y, \sigma) \) is a contra \(R^* \)-continuous map and \(g : (Y, \sigma) \to (Z, \eta) \) is regular set connected function, then \(g \circ f : X \to Z \) is \(R^* \)-continuous and almost \(R^* \)-continuous.

Proof: Let \(V \) be regular open in \(Z \). Since \(g \) is regular set connected, \(g^{-1}(V) \) is clopen in \(Y \). Since \(f \) is a contra \(R^* \)-continuous \(f^{-1}(g^{-1}(V)) \) is \(R^* \)-closed in \(X \) hence \(g \circ f \) is almost \(R^* \)-continuous.

Theorem 3.18: If \(f : (X, \tau) \to (Y, \sigma) \) is \(R^* \)-irresolute and \(g : (Y, \sigma) \to (Z, \eta) \) is a contra \(R^* \)-continuous function, then \(g \circ f : X \to Z \) is contra \(R^* \)-continuous.

Proof: Let \(V \) be open in \(Z \). Since \(g \) is contra \(R^* \)-continuous, \(g^{-1}(V) \) is \(R^* \)-closed in \(Y \). Since \(f \) is a contra \(R^* \)-irresolute, \(f^{-1}(g^{-1}(V)) \) is \(R^* \)-closed in \(X \). Hence \(g \circ f \) is contra \(R^* \)-continuous.

Theorem 3.19: If \(f : (X, \tau) \to (Y, \sigma) \) is \(R^* \)-continuous and the space \(X \) is \(R^* \)-locally indiscrete, then \(f \) is contra continuous.

Proof: Let \(V \) be an open set in \(Y \). Since \(f \) is \(R^* \)-continuous \(f^{-1}(V) \) is \(R^* \)-open in \(X \). And since \(X \) is locally \(R^* \)-indiscrete, \(f^{-1}(V) \) is closed in \(X \). Hence \(f \) is contra continuous.

Theorem 3.20: If \(f : (X, \tau) \to (Y, \sigma) \) is contra \(R^* \)-continuous, \(X \) is \(R^*-T_{1/2} \) space, then \(f \) is RC-continuous.

Proof: Let \(V \) be open in \(Y \). Since \(f \) is contra \(R^* \)-continuous, \(f^{-1}(V) \) is \(R^* \)-closed in \(X \). And \(X \) is \(R^*-T_{1/2} \) space, hence \(f^{-1}(V) \) is regular closed in \(X \). Thus for every open set \(V \) of \(Y \), \(f^{-1}(V) \) is regular closed in \(X \). Hence \(f \) is RC-continuous.

Theorem 3.21: Suppose \(R^*-O(X) \) is closed under arbitrary unions, then the following are equivalent for a function \(f : (X, \tau) \to (Y, \sigma) \).

(i) \(f \) is contra \(R^* \)-continuous

(ii) for each closed subset \(V \) of \(Y \), \(f^{-1}(V) \in R^*-O(X) \).

(iii) for each \(x \in X \) and each \(V \subseteq C(Y, f(x)) \) there exists a set \(U \subseteq R^*O(X, x) \) such that \(f(U) \subseteq V \).
Proof: (i) \(\Rightarrow \) (ii): Let \(f \) be contra R*-continuous. Then \(f^{-1}(V) \) is R*-closed in X for every open set \(V \) of Y. i.e \(f^{-1}(V) \) is R*-open in X for every closed set \(V \) of Y. Hence \(f^{-1}(V) \in R^*-O(X) \).

(ii) \(\Rightarrow \) (iii): For every closed subset \(V \) of Y, \(f^{-1}(V) \in R^*O(X) \). Then for each \(x \in X \) and each \(V \in C(Y,f(x)) \), there exists a set \(U_x \in R^*O(X,x) \) such that \(f(U_x) \subset V \). So there exists \(U \in R^*O(X) \) such that \(f^{-1}(V) = \cup \{ U_x : x \in f^{-1}(V) \} \) and hence \(f^{-1}(V) \) is R*-open.

Definition 3.22: [7] For a function \(f: X \rightarrow Y \), the subset \(\{(x,f(x)) : x \in X\} \subset X \times Y \) is called the graph of \(f \) and is denoted by \(G(f) \).

Lemma 3.23: [3] Let \(G(f) \) be the graph of \(f \), for any subset \(A \subset X \) and \(B \subset Y \), we have \(f(A) \cap B = \emptyset \) if and only if \((A \times B) \cap G(f) = \emptyset \).

Definition 3.24: The graph \(G(f) \) of a function \(f: X \rightarrow Y \) is said to be contra R*-closed if for each \((x,y) \in (X,Y) - G(f) \) there exists \(U \in R^*O(X,x) \) and \(V \in C(Y,y) \) such that \((U \times V) \cap G(f) = \emptyset \).

Lemma 3.25: The graph \(G(f) \) of a function \(f: X \rightarrow Y \) is said to be contra R*-closed if for each \((x,y) \in (X,Y) - G(f) \) there exists \(U \in R^*O(X,x) \) and \(V \in C(Y,y) \) such that \(f(U) \cap V = \emptyset \).

Proof: The proof is a direct consequence of definition 3.24 and lemma 3.23.

IV. Almost contra R*-continuous function

Definition 4.1: A function \(f: X \rightarrow Y \) is said to be almost contra R*-continuous if \(f^{-1} \) is R*-closed in X for each regular open set \(V \) in Y.

Theorem 4.2: If a function \(f: X \rightarrow Y \) is almost contra R*-continuous and X is locally R*-indiscrete space, then \(f \) is almost continuous.

Proof: Let \(U \) be a regular open set in Y. Since \(f \) is almost contra R*-continuous \(f^{-1}(U) \) is R*-closed set in X and X is locally R*-indiscrete space, which implies \(f^{-1}(U) \) is an open set in X. Therefore \(f \) is almost continuous.

Theorem 4.3: If a function \(f: X \rightarrow Y \) is contra R*-continuous, then it is almost contra R*-continuous.

Proof: Obvious because every regular open set is open set.

Remark 4.4: The converse of the theorem need not be true in general as seen from the following example.

\[X = \{a,b,c \} \subset Y, \quad \tau = \{ X, \emptyset, \{a\}, \{b\}, \{a,b\} \} \quad \sigma = \{ X, \emptyset, \{a\}, \{b\}, \{a\} \}. \]

R*-C(X) = \{ X, \emptyset, \{a\}, \{b\}, \{a\} \}. Define \(f(c) = a, \ f(a) = b, \ f(b) = c, \ f^{-1}((b)) = \{a\} \) which is not R*-closed in X.

Theorem 4.5: The following are equivalent for a function \(f: X \rightarrow Y \)

1. \(f \) is almost contra R*-continuous
2. for every regular closed set \(F \) of Y, \(f^{-1}(F) \) is R*-open set of X.

Proof: (i) Let \(F \) be a regular closed set in Y, then \(Y-F \) is a regular open set in Y. By (i) \(f^{-1}(Y-F) = X-f^{-1}(F) \) is R*-closed in X. Therefore (ii) holds.

(ii) \(\Rightarrow \) (i). Let \(G \) be a regular open set in Y. Then \(Y-G \) is regular closed in Y. By (ii) \(f^{-1}(Y-G) \) is an R*-open set in X. This implies \(X-f^{-1}(G) \) is R*-open which implies \(f^{-1}(G) \) is R*-closed set in X. Therefore (i) holds.

Theorem 4.6: The following are equivalent for a function \(f: X \rightarrow Y \)

1. \(f \) is almost contra R*-continuous.
2. \(f^{-1}(int(cl(G))) \) is a R*-closed set in X for every open set \(G \) of Y.
3. \(f^{-1}(cl(int(F))) \) is a R*-open set in X for every open subset \(F \) of Y.

Proof: (i) \(\Rightarrow \) (ii). Let \(G \) be an open set in Y. Then \(int(cl(G)) \) is regular open set in Y. By (i) \(f^{-1}(int(cl(G))) \in \text{R*-C}(X) \).

(ii) \(\Rightarrow \) (i). Proof is obvious.
(i) \(\Rightarrow \) (iii). Let \(F \) be a closed set in \(Y \). Then \(cl(int(F)) \) is a regular closed set in \(Y \). By (i) \(f^{-1}(cl(int(F))) \in R^*(O(X)) \).

(iii) \(\Rightarrow \) (i). Proof is obvious.

Definition 4.7: A space \(X \) is said to be
1. \(R^*-T_{1\delta} \)-space [13] if every \(R^* \)-closed set is regular closed.
2. \(R^*-T_0 \) if for each pair of distinct points in \(X \), there is an \(R^* \)-open set of \(X \) containing one point but not the other.
3. \(R^*-T_1 \) if for every pair of distinct points \(x \) and \(y \), there exists \(R^* \)-open sets \(G \) and \(H \) such that \(x \in G \), \(y \notin G \) and \(x \notin H \).
4. \(R^*-T_2 \) if for every pair of distinct points \(x \) and \(y \), there exists disjoint \(R^* \)-open sets \(G \) and \(H \) such that \(x \in G \) and \(y \in H \).

Theorem 4.8: If \(f: X \rightarrow Y \) is an almost contra \(R^* \)-continuous injection and \(Y \) is weakly Hausdorff, then \(X \) is \(R^*-T_1 \).

Proof: Suppose \(Y \) is weakly Hausdorff, for any distinct points \(x \) and \(y \) in \(X \), there exists \(V \) and \(W \) regular closed sets in \(Y \) such that \(f(x) \in V \), \(f(y) \notin V \) and \(V \cap W \neq \emptyset \). Since \(f \) is an injective function, there exists \(U \) and \(W \) in \(Y \) such that \(f(x) \in U \) and \(f(y) \notin U \). This shows that \(X \) is \(R^*-T_1 \).

Corollary 4.9: If \(f: (X,T) \rightarrow (Y,O) \) is a contra \(R^* \)-continuous injection and \(Y \) is weakly Hausdorff, then \(X \) is \(R^*-T_2 \).

Proof: Every contra \(R^* \)-continuous is almost contra \(R^* \)-continuous and by the above theorem [4.8] the result follows.

Theorem 4.10 If \(f:X \rightarrow Y \) is an almost contra \(R^* \)-continuous injective function from a space \(X \) into the Ultra Hausdorff space \(Y \), then \(Y \) is an \(R^*-T_2 \).

Proof: Let \(x \) and \(y \) be any two distinct points in \(X \). Since \(f \) is an injective function such that \(f(x) \neq f(y) \) and \(Y \) is Ultra Hausdorff space, there exists disjoint clopen sets \(U \) and \(V \) containing \(f(x) \) and \(f(y) \) respectively. Then \(x \in f^{-1}(U) \) and \(y \in f^{-1}(V) \), were \(f^{-1}(U) \) and \(f^{-1}(V) \) are disjoint \(R^* \)-open sets in \(X \).

Therefore \(Y \) is \(R^*-T_2 \).

Definition 4.11 A topological space \(X \) is called a \(R^* \)-normal space, if each pair of disjoint closed sets can be separated by disjoint \(R^* \)-open sets.

Theorem 4.12 If \(f:X \rightarrow Y \) is an almost contra \(R^* \)-continuous, closed, injective function and \(Y \) is Ultra Normal, then \(X \) is \(R^* \)-normal.

Proof: Let \(E \) and \(F \) be disjoint closed subsets of \(X \). Since \(f \) is closed and injective \(f(E) \subseteq Y \) and \(f(F) \subseteq Y \). This implies \(E \subseteq f^{-1}(U) \) and \(F \subseteq f^{-1}(V) \). Since \(f \) is an almost contra \(R^* \)-continuous injection \(f^{-1}(U) \) and \(f^{-1}(V) \) are disjoint \(R^* \)-open sets in \(X \). This shows that \(X \) is \(R^* \)-normal.

Theorem 4.13 For two functions \(f:X \rightarrow Y \) and \(k:Y \rightarrow Z \), let \(k \circ f : X \rightarrow Z \) is a composition function. Then the following holds:

1. If \(f \) is almost contra \(R^* \)-continuous and \(k \) is an R-map, then \(k \circ f \) is almost contra \(R^* \)-continuous.
2. If \(f \) is almost contra \(R^* \)-continuous and \(k \) is perfectly continuous, then \(k \circ f \) is \(R^* \)-continuous and contra \(R^* \)-continuous.
3. If \(f \) is almost contra \(R^* \)-continuous and \(k \) is almost continuous, then \(k \circ f \) is almost contra \(R^* \)-continuous.

Proof: (1) Let \(V \) be any regular open set in \(X \). Since \(k \) is an R-map, \(k^{-1}(V) \) is regular open in \(Y \). Since \(f \) is almost contra \(R^* \)-continuous, \(f^{-1}(k^{-1}(V)) = (k \circ f)^{-1}(V) \) is \(R^* \)-closed in \(X \). Therefore \(k \circ f \) is almost contra \(R^* \)-continuous.

(2) Let \(V \) be an open set in \(Z \). Since \(k \) is perfectly continuous, \(k^{-1}(V) \) is clopen in \(Y \). Since \(f \) is an almost contra \(R^* \)-continuous, \(f^{-1}(k^{-1}(V)) = (k \circ f)^{-1}(V) \) is \(R^* \)-open and \(R^*-closed \) set in \(X \). Therefore \(k \circ f \) is \(R^* \)-continuous and contra \(R^* \)-continuous.

(3) Let \(V \) be a regular open set in \(Z \). Since \(k \) is almost continuous, \(k^{-1}(V) \) is open in \(Y \). Since \(f \) is contra \(R^* \)-continuous, \(f^{-1}(k^{-1}(V)) = (k \circ f)^{-1}(V) \) is \(R^*-closed \) in \(X \). Therefore \(k \circ f \) is almost contra \(R^* \)-continuous.

Theorem 4.14 Let \(f: X \rightarrow Y \) is a contra \(R^* \)-continuous function and \(g: Y \rightarrow Z \) is \(R^* \)-continuous. If \(Y \) is \(R^*-T_{1/2} \), then \(g \circ f : X \rightarrow Z \) is an almost contra \(R^* \)-continuous function.
Proof: Let \(V \) be regular open and hence open set in \(Z \). Since \(g \) is \(R^* \)-continuous, \(g^{-1}(V) \) is \(R^* \)-open in \(Y \) and \(Y \) is \(T_{1/2} \)-space implies \(g^{-1}(V) \) is regular open in \(Y \). Since \(f \) is almost contra \(R^* \)-continuous, \(f^{-1}\left(g^{-1}(V)\right) = (g \circ f)^{-1}(V) \) is \(R^* \)-closed set in \(X \). Therefore \(g \circ f \) is almost contra \(R^* \)-continuous.

Theorem 4.15 If \(f: X \to Y \) is surjective, strongly \(R^* \)-open (or strongly \(R^* \)-closed) and \(g: Y \to Z \) is a function such that \(g \circ f : X \to Z \) is almost contra \(R^* \)-continuous, then \(g \) is almost contra continuous.

Proof: Let \(V \) be any regular closed set (resp regular open) set in \(Z \). Since \(g \circ f \) is almost contra \(R^* \)-continuous \((g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)) \) is \(R^* \)-open (resp \(R^* \)-closed) in \(X \). Since \(f \) is surjective and strongly \(R^* \)-open (or strongly \(R^* \)-closed), \(f\left(f^{-1}\left(g^{-1}(V)\right)\right) = g^{-1}(V) \) is \(R^* \)-open (resp \(R^* \)-closed). Therefore \(g \) is almost contra \(R^* \)-continuous.

Definition 4.16 A topological space \(X \) is said to be \(R^* \)-ultra connected if every two non empty \(R^* \)-closed subsets of \(X \) intersect.

Theorem 4.17 If \(X \) is \(R^* \)-ultra connected and \(f: X \to Y \) is an almost contra \(R^* \)-continuous surjection, then \(Y \) is hyperconnected.

Proof: Let \(X \) be \(R^* \)-ultra connected and \(f: X \to Y \) is an almost contra \(R^* \)-continuous surjection. Suppose \(Y \) is not hyperconnected. Then there is an open set \(V \) such that \(V \) is not dense in \(Y \). Therefore there exists non empty regular open subsets \(B_1 = \text{int}(V) \) and \(B_2 = Y - \text{cl}(V) \) in \(Y \). Since \(f \) is an almost contra \(R^* \)-continuous surjection, \(f^{-1}(B_1) \) and \(f^{-1}(B_2) \) are disjoint \(R^* \)-closed sets in \(X \). This is contrary to the fact that \(X \) is \(R^* \)-ultra connected. Therefore \(Y \) is hyperconnected.

V. \(R^* \)-Regular graphs

Definition 5.1 A graph \(G(f) \) of a function \(f: X \to Y \) is said to be \(R^* \)-regular if for each \((x,y) \in (X,Y) - G(f)\) there exists \(U \in R^* C(X,x) \) and \(V \in RO(Y,y) \) such that \((U \times V) \cap G(f) = \emptyset\).

Lemma 5.2 The graph \(G(f) \) of a function \(f: X \to Y \) is \(R^* \)-regular (resp strong contra \(R^* \)-closed) in \(X \times Y \) if and only if for each \((x,y) \in (X,Y) - G(f)\), there is an \(R^* \)-closed (resp \(R^* \)-open) set \(U \) in \(X \) containing \(x \) and \(V \in RO(Y,y) \) (resp \(V \in RC(Y,y) \)) such that \(f(U) \cap V = \emptyset \).

Proof: Obvious.

Theorem 5.3 If a function \(f: X \to Y \) is \(R^* \)-continuous and \(Y \) is \(T_2 \), then \(G(f) \) is \(R^* \)-regular in \(X \times Y \).

Proof: Let \((x,y) \in (X,Y) - G(f)\). Then \(y \neq f(x) \). Since \(Y \) is \(T_2 \), there exists open set \(V \) in \(Y \) such that \(f(x) \in V \), \(y \in \text{Wand} V \cap W = \emptyset \). Then \(\text{int}(cl(V)) \cap \text{int}(cl(V)) = \emptyset \). Since \(f \) is almost \(R^* \)-continuous is \(f^{-1}(\text{int}(cl(V))) \) is \(R^* \)-closed set in \(X \) containing \(x \). Set \(U = f^{-1}(\text{int}(cl(V))) \), then \(f(U) \subset \text{int}(cl(V)) \). Therefore \(f(U) \cap \text{int}(cl(V)) = \emptyset \). Hence \(G(f) \) is \(R^* \)-regular in \(X \times Y \).

Theorem 5.4 Let \(f: X \to Y \) be a function and let \(g: X \to X \times Y \) be the graph function of \(f \), defined by \(g(x) = (x,f(x)) \) for every \(x \in X \). If \(g \) is almost contra \(R^* \)-continuous function, then \(f \) is an almost contra \(R^* \)-continuous.

Proof: Let \(V \in RC(Y) \), then
\[X \times V = X \times \text{Cl}(\text{int}(V)) = \text{Cl}(\text{int}(X)) \times \text{Cl}(\text{int}(V)) = \text{Cl}(\text{int}(X \times V)). \]
Therefore, \(X \times V \in RC(X \times Y) \). Since \(g \) is almost contra \(R^* \)-continuous, \(f^{-1}(V) = g^{-1}(X \times V) \in R^* O(X) \). Thus \(f \) is almost contra \(R^* \)-continuous.

Theorem 5.5 Let \(f: X \to Y \) have a \(R^* \)-regular \(G(f) \). If \(f \) is injective, then \(X \) is \(R^* - T_0 \).

Proof: Let \(x \) and \(y \) be two distinct points of \(X \). Then \((x,f(y)) \in (X,Y) - G(f) \). Since \(G(f) \) is \(R^* \)-regular, there exists \(R^* \)-closed set \(U \) in \(X \) containing \(x \) and \(V \in RO(Y,f(y)) \) such that \(f(U) \cap V = \emptyset \) by lemma 5.2.
and hence \(U \cap f^{-1}(V) = \emptyset \). Therefore \(y \not\in U \). Thus \(y \in X - U \) and \(x \not\in X - U \) and \(X - U \) is \(R^* \)-open set in \(X \). This implies that \(X \) is \(R^* \)-T_0.

Theorem 5.6 Let \(f : X \to Y \) be a \(R^* \)-regular \(G(f) \). If \(f \) is surjective then \(Y \) is weakly \(T_2 \).

Proof: Let \(y_1 \) and \(y_2 \) be two distinct points of \(Y \). Since \(f \) is surjective \(f(x) = y_1 \) for some \(x \in X \) and \(x, y_2 \in X \times Y - G(f) \). By lemma 5.2, there exists a \(R^* \)-closed set \(U \) of \(X \) and \(F \in \mathcal{RO}(Y) \) such that \((x, y_2) \in U \times F \) and \(f(U) \cap F = \emptyset \). Hence \(Y_1 \not\in \mathcal{OF} \) Then \(Y_2 \not\in \mathcal{OF} - F \in \mathcal{RC}(Y) \) and \(Y_1 \in Y - F \). This implies that \(Y \) is weakly \(T_2 \).

References