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 Abstract: In this paper, magneto hydrodynamics boundary layer heat transfer over a moving flat plate is 

discussed, using similarity transformation momentum and energy equations that are reduced in to nonlinear 

ordinary differential equations. The nonlinear differential equations are solved using implicit finite difference 

Keller box method. Graphical results of fluid velocity and temperature profile are presented and discussed for 

various parameters. 
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I. INTRODUCTION  
Magnetohydrodynamics (MHD) is the study of the collaboration of conducting fluids with 

electromagnetic phenomena. The flow of an electrically conducting fluid in the occurrence of a magnetic field is 

important in various areas of technology and engineering such as MHD power generation, MHD flow meters, 

MHD pumps, etc. 

Rossow [1], was discussed MHD boundary layer flow past a flat plate. He discussed two cases namely, 

magnetic field is fixed relative to play and magnetic fluid is fixed relative to fluid. Heat transfer of MHD 

boundary layer flow past a flat plate has been discussed by Rossow [1], Carrier and Green Span [2], and Afzal 

[3]. Rossow[1] has studied transverse magnetic field whereas Carrier et al. [2] have considered the effect of a 

longitudinal magnetic field effect on the velocity and the temperature profile distribution. 

Sakiadis [4] studied the problem of forced convection along an isothermal moving plate. Erickson et al. 

[5] discussed the heat and mass transfer on a moving continuous flat plate with suction or injection. Tsou et al. 

[6] considered flow and heat transfer in the boundary layer on a continuously moving surface.  

In this paper, MHD boundary layer heat transfer flow over a continuously moving plate is considered 

and solved with the help of implicit finite difference Keller box method and various results are discussed 

graphically. 

 

II. GOVERNING EQUATIONS  
Consider the steady flow of an electrically conducting, viscous, incompressible fluid past a 

continuously moving flat plate with even velocity   and surface temperature   in the presence of uniform 

transverse magnetic field. The magnetic Reynolds number of the flow is taken to be very small so that the 

induced magnetic field can be ignored.  The fluid properties are assumed to be isotropic and constant. Therefore, 

under the usual boundary layer approximations, the governing equations of motion are [7] 
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where u  and v  are velocity components in x and y directions respectively, is the kinematic viscosity , is 

the electrical conductivity, T is the temperature, is the thermal diffusivity of the fluid and pC  is the specific 

heat at constant pressure. 

 

The boundary conditions are 
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where U and wU are constants and denote the free stream and sheet velocities, respectively. 

Define the stream function ( ,y)x  such that 
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Using the following similarity transformation 
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  and U= wU U is  reference velocity. 

 

The momentum and energy equation reduces to  
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is the Eckert Number. 

 

III. KELLER BOX METHOD 
Equation (6)-(7) subject to the boundary conditions (8) is solved numerically using implicit finite 

difference method that is known as Keller-box in combination with the Newton’s linearization techniques as 

described by Cebeci and Bradshaw [8]. This method is completely stable and has second-order accuracy. 

In this method the transformed differential equation (6)-(7) are writes in terms of first order system, for that 

introduce new dependent variable ,u v  such that  

'f u
                                                                                                                                          (9)
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where prime denotes the differentiation w.r.to  .  

Equation (6)-(7) become 
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with new independent boundary conditions are   
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 Now write the finite difference approximations of the ordinary differential equations (9)-(11) for the midpoint 
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Ordinary differential equations (12)-(13) is approximated by the centering about the mid-point 
1
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This can be done in two steps. In first step, approximate equation at 
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In second step approximate equations at
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Now linearize the nonlinear system of equations (15)-(19) using the Newton’s quasi-linearization method [5] 

For that use, 
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Equation (15)-(19) reduces to 
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The linearized difference equation of the system (20) has a block tridiagonal structure. In a vector 

matrix form, it can be written as 
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This block tridiagonal structure can be solved using LU method explained by Na [9] 

 

IV. RESULTS AND DISCUSSION  
Graphically, effects of magnetic parameter (M), moving parameter (r) and Eckert Number (Ec) on 

velocity profile as well as on temperature profile are shown in following figures. 

Fig.1 and Fig 2 shows, the fluid velocity profile decreases as the magnetic parameter increases for 

constant value of moving parameter r =0 and r =0.1 respectively. Fig 3 presents velocity profile for different 

values of moving parameter. In Fig 4 and Fig 5, as the magnetic parameter M and Eckert number (Ec) increases 

the temperature profile increases. While in Fig 6, temperature profile decreases as Prandtl number increases. 
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Figure 1 Effect of magnetic parameter on velocity profile when r=0, Pr=0.7,Ec=0.2. 

 
Figure 2 Effect of magnetic parameter on velocity profile when r=0.1, Pr=0.7,Ec=0.2. 

 
Figure 3 Effect of moving parameter (r) on velocity profile when M=0.2, Pr=0.7,Ec=0.2. 

 
Figure 4 Effect of magnetic parameter (M) on temperature profile when r=0.1, Pr=0.7,Ec=0.2. 
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Figure 5 Effect of Eckert Number (Ec) on temperature profile when r=0.1, Pr=0.7, M=0.2. 

 
Figure 6 Effect of Prandtl Number (Pr) on temperature profile when r=0.2, EC=0.2, M=0.2. 
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