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On Contra D-Continuous Functions and Strongly D-Colsed
Spaces

K. Dass, J.Antony Rex Rodrigo

Abstract: In[8], Dontchev introduced and investigated a new notion of continuity called contra-continuity.
Recently, Jafari and Noiri ([12], [13], [14]) introduced new generalization of contra-continuity called contra-
super-continuity, contra-a-continuity and contra-pre-continuity.lt is the objective of this paper to introduce and
study a new class of contra-continuous functions via

I.  Introduction
Jafari and Noiri introduced and investigated the notions of contra-pre-continuity [14], contra-a-
continuity [13] and contra-super-continuity [12] as a continuation of research done by Dontchev [8], and
Dontchev and Noiri [10] on the interesting notions of contra- continuity and contra-semi-continuity, respectively.
Caldas and jafari [7] introduced the notion of contra-f-continuous functions in topologiced spaces. The aim of
this paper is to introduce and investigate a new class of functions called contra-D-continuous functions.

I1.  Preliminaries
Throughout this paper (X,7),(Y,0) and (Z,n) will always denote topological spaces on which no
separation axioms are assumed, unless otherwise mentioned.When A is a subset of (X,1),
cl(A) and int(A) denote the closure and the interior of A, respectively.
We recall some known definitions needed in this paper.

Definition 2.1. Let (X,t) be a topological space. A subset A of the space X is said to be
1. Preopen [17] if A < int(cl(A)) and preclosed if cl(int(A)) < A.

2. Semi open [15] if A < cl(int(A)) and semi closed if int(cl(A)) c A.

3. Regular open [26] if A = int(cl(A)) and regular closed if A = cl(int(A)).

Definition 2.2.Let (X,t) be a topological space . A subset A < X is said to be
1. g-closed [15] if cl(A) < U whenever A < U and Uis open in X.

2. w-closed[28] if cl(A) < U whenever A — U and U is semi open in X.

3. D-closed[1] if pcl(A) < Int(U) whenever A < U and U is w-open in X.

The complements of above mentioned sets are called their respective open sets.

Definition 2.3. A function f: (X,1) — (Y,0) is called

. g-continuous [5] if f (V) is g-closed in (X,t) for every closed set V in (Y,o).

. @-continuous [23] if f (V) is w-closed in (X,z) for every closed set V in (Y,o).

. Perfectly continuous [4] if f (V) is clopen in (X,t) for every open set V in (Y,o).

. D-continuous [3] if f * (V) is D-closed in (X,) for every closed set V in (Y,o).

. D-irresolute [2] if f (V) is D-closed in (X,t) for every D-closed set V in (Y,o).

. Strongly D-continuous [3] if f (V) is closed in (X,t) for every D-closed set V in (Y,o).

. Pre-D-continuous [3] if f (V) is D- closed in (X,7) for every pre-closed set V in (Y,o).
8. Perfectly D-continuous[2] if f (V) is clopen in (X,t) for every D-closed set V in (Y,o).
9. Super continuous [21] if f (V) is regular open in (X,1) for every open set V in (Y,o).
10. Contra-continuous [8] if f (V) is closed in (X,t) for every open set V in (Y,0).

11. Contra pre-continuous [14] if f (V) is preclosed in (X,t) for every open set V in (Y,o).
12. Contra g-continuous [6] if f (V) is g-closed in (X,t) for every open set V in (Y,0).

13. Contra semi-continuous [10] if f (V) is semiclosed in (X,t) for every open set V in (Y,o).
14. RC-continuous [10] if f (V) is regular closed in (X,t) for every open set V in (Y,o).
15. D-open if f(V) is D-open in (Y,c) for every D-open set V in (X,1).

~NOo ok WwN R

Definition 2.4. A space (X,7) is called
1. ATy, space [21] if every g-closed set is closed.
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2. AT, space [23] if every o-closed set is closed.
3. A D-T,space [3] if every D-closed set is closed.
4. A D-Ty space [3] if every D-closed set is preclosed.

Theorem 2.5 [1] Let (X,t) be a topological space.
1. A subset A of (X,7) is regular open if and only if A is open and D-closed.
2. A subset A of (X,7) is open and regular closed then A is D-closed.

Theorem 2.6 [2] Every closed set in a topological space (X,1) is D-closed.

I11.  Contra-D-Continuous Functions
Definition 3.1
A function f : (X;1) — (Y,o) is called contra-D-continuous if f V) is
D-open (resp.D-closed) in (X,t) for every closed (resp. open) set V in (Y,c).

Example 3.2

Let X ={a, b, c} =Y, t={0, {a}, X} and o = {¢, {b, c}, Y}. Then the identity function f: (X, 1) >
(Y, o) is contra-D-continuous function, since for the closed (resp.open) set V = {a} in (Y,o), f (V) = {a} is D-
open (resp. D-closed) in (X, 7).

Definition 3.3
Let A be a subset of a topological space (X, t). The set n{U et/ A < U} is called the kernel of A [19]
and is denoted by Ker(A).

Lemma 3.4 [12]
The following properties hold for subsets A, B of a space X :
1. xe Ker(A)ifand only if A n F = ¢ for any FeC(X, x).
2. AcKer(A)and A =Ker(A) if Aisopenin X.
3. If A c B then Ker(A) c Ker (B)

Theorem 3.5
Every contra-continuous function is a contra-D-continuous function.
Proof
Let f: (X,1) > (Y,o) be a function. Let V be an open set in (Y,o).Since f is contra- continuous, f (V)
is closed in (X, t).Hence by theorem 2.6, f (V) is D-closed in (X, 1).
Thus f is a contra-D-continuous function.

Remark 3.6

Converse of this theorem need not be true as seen from the following example.
Example 3.7

Let X={a,b,c}=Y,t={0, {a}, X} and c = {¢, {a}, {b, c}, Y}.
Define f : (X, 1) — (Y, o) by f(a) = b; f(b) = c and f(c) = a.Then f is contra-D-continuous but not contra-
continuous, since for the open (resp.closed) set U = {b,c}, f (U) = {a, b} is D-closed (resp. D-open) but it is
not closed.

Remark 3.8

Contra-D-continuous and contra-g-continuous (resp. contra-continuous, contra-D-continuous, contra
pre-continuous, contra semi-continuous) are independent concepts.
Example 3.9

As in remarks 3.23, 3.15, 3.13 and 3.18 [1], the result follows.
Remark 3.10

The composition of two contra D-continuous functions need not be contra D-continuous and this is
shown by the following example.
Example 3.11

Let X={a,b,c} =Y =2 t={¢,{a},. X}, o = {¢, {b, c},Y} and n = {¢.{a, c},Z}. Define f: (X, 1) >
(Y, o) by f(a) = a; f(b) = b and f(c) = b. Then f is contra-D-continuous, since for the closed set VV = {a}, f (V) =
{a} is D-open in (X, 1).Define g : (Y, o) = (Z, n) by g(x) = x. Then g is contra-D-continuous, since for the
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closed set V = {b} in (Z, n), g*(V) = {b} is D-open in (Y,s). But their composition is not a contra-D-
continuous, since for the closed set V={b}in (Z,n).f (g (V)) =f *({b})={b, c} is not a D-open in (X, 1).
Theorem 3.12
The following are equivalent for a function f: (X, t) - (Y, o) : Assume that DO(X) (resp. DC(X)) is
closed under any union (resp. intersection)
1. fis contra-D-continuous
2. The inverse image of a closed set V of Y is D-open
3. For each xe X and each VeC(Y, (X)), there exists UeDO(X, x) such that f(U) c V.
4. f(D-cl(A)) < Ker (f(A)) for every subset A of X.
5. D-cI(f (B)) = f * (Ker (B)) for every subset B of Y.
Proof
The implications (1) = (2), (2) = (3) are obvious.
Q)=
Let V be any closed set of Y and x e f (V). Then f(x) € V and there exists
U,eDO(X, x) such that f(U,) <V.Hence we obtain f (V) = u{U, / x € f "(V))and by assumption f (V) is D-
open.
=4
Let A be any subset of X. Suppose thaty ¢ Ker (f(A)).Then by Lemma 3.4, there exists V € C (X, X)
such that f(A) NV = ¢. Thus we have A n f (V) = ¢ and D-cl(A) n f (V) = ¢. Hence we obtain f(D-cI(A)) N
V=¢andy ¢ f(D - cl(A)).Thus f(D-cl(A)) = Ker(f(A)).
(4)=(5)
Let B be any subset of Y.By (4) and Lemma 3.4, we have
f(D-cI(f (B))) = Ker(f(f *(B))) cker(B) andD- cl(f *(B)) — f *(Ker (B)).
®)=(@1)
Let U be any open set of Y.Then by lemma 3.4, we have
D—cl(f "(U)) < f !(Ker(U)) = f (U) and D-cl(f (U)) = f *(U). By assumption, f "*(U) is
D-closed in X.Hence f is contra-D-continuous.
Theorem 3.13
If f: (X, 1) > (Y, o) is D-irresolute (resp. contra-D-continuous) and
g: (Y, o) = (Z, n) in contra-D-continuous (resp. continuous) then their composition
gof : (X,t) — (Z, n) is contra-D-continuous.
Proof
Let U be any open set in (Z, n). Since g is contra-D-continuous (resp. continuous) then g~*(V) is D-
closed (resp. open) in (Y, o) and since f is D-irresolute (resp. contra D-continuous) then f ~(g™(V)) is D-closed
in (X, t). Hence gof is contra-D-continuous.
Theorem 3.14
If f: (X,1) - (Y,0) is contra-continuous and ¢ : (Y,c) — (Z, n) is continuous then their composition
gof : (X, t) = (Z, n) is contra-D-continuous.
Proof
Let U be any open set in (Z, n).Since g is continuous, g~*(U) is open in (Y,o).
Since f is contra-continuous, f ~(g~'(U)) is closed in (X, t).Hence by theorem 2.6, (gof)*(U) is D-closed in (X,
1).Hence gof is contra-D-continuous.
Theorem 3.15
If f: (X, ©) = (Y, o) is contra-continuous and super-continuous and g : (Y, ) — (Z, n) is contra-
continuous then their composition gof : (X, 1) — (Z, n) is contra-D-continuous.
Proof
Let U be any open set in (Z, n).Since g is contra-continuous, g (V) is closed in (Y, o) and since f is
contra-continuous and super-continuous then f ~(g™'(U)) is both open and regular closed in (X, t). Hence by
theorem 2.5(2), (gof) ™(U) is D-closed in (X, t). Hence gof is contra-D-continuous.
Theorem 3.16
Let (X,1), (Y,5) be any topological spaces and (Y,s) be Ty, space (resp.T,. space).Then the
composition gof : (X, 1) — (Z, n) of contra-D-continuous function f: (X, 1) — (Y, o) and the g-continuous
(resp.w-continuous) function g : (Y, ) — (Z, n) is contra-D-continuous.

Proof
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Let V be any closed set in (Z, n). Since g is g-continuous (resp.w-continuous), g (V) is g-closed
(resp.w-closed) in (Y, o) and (Y, o) is Ty, space (resp. Tw-space), hence g (V) is closed in (Y, o). Since f is
contra-D-continuous, f (g }(V)) is D-open in (X, t).Hence gof is contra-D-continuous.

Theorem 3.17

Iff: (X, 1) > (Y, o) is a surjective D-open function and g : (Y, 6) — (Z, n) is a function such that gof
: (X, 1) = (Z, n) is contra-D-continuous then g is contra-D-continuous.

Proof

Let V be any closed subset of (Z, n). Since gof is contra-D-continuous then
(gof) (V) = f "(g7}(V)) is D-open in (X, 1) and since f is surjective and D-open, then
f(f (g(V))) = g (V) is D-open in (Y, 5). Hence g is contra-D-continuous.

Theorem 3.18

Let {X;/ie I} be any family of topological spaces. If f : X — IT X; is a contra-D- Continuous function.
Then =, of : X — X is contra-D-continuous for each i €1, where r; is the projection of IT X; onto X;.

Proof

It follows from theorem 3.13 and the fact that the projection is continuous.

Theorem 3.19

Iff: (X, 1) > (Y, o) is strongly D-continuous and g : (Y, o) — (Z, n) is contra-D-continuous then gof
(X, 1) > (Z, m) is contra-continuous.

Proof

Let U be any open set in (Z, m). Since g is contra-D-continuous, then g*(U) is
D-closed in (Y, o). Since f is strongly D-continuous, then f ~*(g™*(U)) = (gof)™ (U) is closed in (X, ). Hence gof
is contra-continuous.

Theorem 3.20

If f : (X, ©7» - (Y, o) is pre-D-continuous and g : (Y, o) —> (Z, n) is
contra-pre-continuous then gof : (X, t) — (Z, n) is contra-D-continuous.
Proof

Let U be any open set in (Z, 1). Since g is contra-pre-continuous, then g *(U) is
pre-closed in (Y, o) and since f is pre-D-continuous, then f ~(g™(U)) = (gof) (V) is D-closed in
(X, 1). Hence gof is contra-D-continuous.

Theorem 3.21

If f: (X, 1) > (Y, o) is strongly-D-continuous and g : (Y, &) — (Z, n) is contra-D-continuous then gof
: (X, 1) > (Z, m) is contra-D-continuous.

Proof

Let U be any open set in (Z, 1). Since g is contra-D-continuous, then g*(U)) is
D-closed in (Y, o) and since f is strongly-D-continuous, then f (g™ (U)) = (gof) (V) is closed in (X, t). By
theorem 2.6, (gof) (V) is D-closed in (X, t). Hence gof is contra-D-continuous.

Theorem 3.22

Let f: (X, 1) = (Y, o) be surjective D-irresolute and D-open and g : (Y,o) — (Z, n) be any function.
Then gof : (X, 1) = (Z, n) is contra-D-continuous if and only if g is contra-D-continuous.

Proof

The ‘if* part is easy to prove. To prove the ‘only if* part, let V be any closed set in (Z, n). Since gof is
contra-D-continuous, then (gof) (V) is D-open in (X, ) and since f is D-open surjection, then f((gof) *(V)) = g’
(V) is D-open in (Y,o). Hence g is contra-D-continuous.

Theorem 3.23
Let f: (X,1) - (Y,0) be a contra-D-continuous function and H an open D-closed subset of (X,t). Assume

that DC(X,1) (the class of all D-closed sets of (X,t)) is D-closed under finite intersections. Then the restriction
i : (H,th) — (Y,0) is contra-D-continuous.
Proof

Let U be any open set in (Y,o). By hypothesis and assumption,f *(U)nH = H,(say) is
D-closed in (X,7).Since (fy)*(U) = Hy, it is sufficient to show that H, is D-closed in H.
By hypothesis 4.22 [3], H; is D-closed in H.Thus f, is contra-D-continuous.
Theorem 3.24
Letf: (X,1) — (Y,o0) be a function and g : X - X x Y the graph function given by
g(x) = (x,f(x)) for every xe X.Then f is contra-D-continuous if g is contra-D-continuous.
Proof

Let V be a closed subset of Y.Then X x V is a closed subset of X xY.Since g is contra-D-continuous ,then
g (X x V) is a D-open subset of X. Also g™(X x V) = f (V).Hence f is contra-D-continuous.
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Theorem 3.25

If a function f: (X, 1) — (Y, o) is contra-D-continuous and Y is regular, then f is D-continuous.
Proof

Let x be an arbitrary point of X and N be an open set of Y containing f(x). Since Y is regular, there
exists an open set U in Y containing f(x) such that cl(U) < N. Since f is contra-D-continuous, by theorem 3.12,
there exists W e DO(X, x) such that f(W) < cl(U). Then f(W) < N. Hence by theorem 4.13 [3], f is D-
continuous.
Theorem 3.26

Every continuous and RC-continuous function is contra-D-continuous.
Proof

Let f: (X, ©) = (Y, o) be a function. Let U be an open set in (Y, o). Since f is continuous and RC-
continuous, f (V) is open and regular closed in (X, t). Hence by theorem 2.5(1), f is contra-D-continuous.

Theorem 3.27

Every continuous and contra-D-continuous (resp. contra-continuous and
D-continuous) function is a super-continuous (resp. RC—continuous) function.
Proof

Let f: (X, 1) = (Y, o) be a function. Let U be an open (resp. closed) set in (Y, o).
Since f is continuous and contra-D-continuous(resp.contra-continuous and D-continuous),f ~*(U) is open and D-
closed in (X, ). Hence by theorem 2.5(1), f (U) is regular open in (X, t). This shows that f is a super-
continuous (resp. RC-continuous) function.
Theorem 3.28

Letf: (X, 1) = (Y, o) be a function and X a D-T; space. Then the following are equivalent.

1. fis contra-D-continuous.

2. fis contra-continuous

Proof
1) = (2.
Let U be an open set in (Y, o). Since f is contra-D-continuous, f (V) is
D-closed in (X, t) and since X is D-Ts space, f "(U) is closed in (X, 1). Hence f is contra-
continuous.
(2)=(1).
Let U be an open set in (Y, o). Since f is contra-continuous, f (V) is closed in (X, t). Hence by
theorem 2.6, f *(U) is D-closed in (X, t). Hence f is contra-D-continuous.
IV.  Contra-D-closed and strongly D-closed
Definition 4.1

The graph G(f) of a function f : (X, 1) — (Y, o) is said to be contra-D-closed in
X x Y if for each (X, y) € (X x Y) — G(f) there exist U € DO(X, x) and V e C(Y, y) such that
(U x V) nG(f) = ¢.
Lemma 4.2

The graph G(f) of a function f : (X, 1) — (Y, o) is contra-D-closed if and only if for each (X, y) € (X x
Y) — G(f), there exists U € DO(X, x) and V € C(Y, y) such that f(U) NV = ¢.
Theorem 4.3

Iff: (X, 1) > (Y, o) is contra-D-continuous and Y is Urysohn then G(f) is contra-D-closed in X x Y.
Proof

Let (x,y) € X x Y — G(f).Then y = f(x) and there exist open sets V,W such that f(x)e V,y € W and
cl(V) m cl(W) = ¢. Since f is contra-D-continuous and by theorem 3.12 there exists UeDO(X, x) such that f(U)
< V.Hence f(U) n cl(W) = ¢.Thus by lemma 4.2, G(f) is contra D-closed in X x Y.

Definition 4.4. A topological space (X,1) is said to be

1. Strongly S-closed [8] if every closed cover of X has a finite subcover.

2. S-closed [29] if every regular closed cover of X has a finite subcover.

3. Strongly compact [18] if every preopen cover of X has a finite subcover.

4. Locally indiscrete [19] if every open set of X is closed in X.

5. Midly Hausdorff [9] if the &-closed sets form a network for its topology t,where a
8-closed set is the intersection of regular closed sets.

6. Ultra normal [23] if each pair of non-empty disjoint closed sets can be separated by disjoint
clopen sets
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7. Nearly compact [24] if every regular open cover of X has a finite subcover.
8. D-compact [3] if every D-open cover of X has a finite subcover.
9. D-connected [3] if X cannot be written as the disjoint union of two non-empty D-open
Sets.
Definition 4.5 A topological space (X,t) is said to be strongly D-closed if every D-closed cover of X has a
finite subcover.
Example 4.6
A D-T; strongly S-closed space is strongly D-closed.

Theorem 4.7

Let (X, 1) be D-Ts space. If f: (X, 1) = (Y, o) has a contra-D-closed graph, then the inverse image of a
strongly S-closed set K of Y is closed in (X, ).
Proof

Let K be a strongly S-closed set of Y and x e f (K). For each keK, (x, k) ¢G(f). By Lemma 4.2,
there exist Uge DO(X, x) and Ve C(Y, k) such that f(Uy) "V = o.
Since{K NV, / k € K} is a closed cover of the subspace K, there exists a finite subset Ko K such that K <
U{V/ keKq}.Set U = n {U / k € Kg}. Then U is open, since X is a D-Ts space. Therefore f(U) n K=¢ and U
~f (K) = ¢.This shows that f (K) is closed in (X, 7).
Theorem 4.8

If a space (X,t) is strongly D-closed then the space is strongly S-closed.
Proof

This proof follows from the definitions of 4.4 and 4.5 and by theorem 2.6.
Theorem 4.9

Let (X,t) be D-connected and (Y, o) be a T;-space. If f: (X,t) — (Y,o) is contra-D-continuous then f is
constant.
Proof

Since (Y, o) isa Ty space, A = {f (y) / y e Y} is a disjoint D-open partition of X.
If |A] > 2, then X is the wunion of two non-empty D-open sets. Since (X,1) is
D-connected, | A | = 1. Hence f is constant.

Theorem 4.10
Let f: (X, 1) = (Y, o) be a contra-D-continuous and pre-closed surjection. If (X, 1) is a D-Ts, then (X,
1) is a locally indiscrete space.

Proof
Let U be any open set in (Y, o). Since f is contra-D-continuous and (X, 1) is a
D-Ts space, f “(U) is closed in (X, 1). Since f is a pre-closed surjection, then U is
pre-closed in (Y, o). Therefore cl(U) = cl (Int(U)) < U. Hence U is closed in (Y, o). Thus (Y, o) is a locally
indiscrete space.
Theorem 4.11
If every closed subset of a space X is D-open then the following are equivalent.
1. Xis S-closed
2. Xis strongly S-closed
Proof
1) =@
Let {V,/ ae I} be a closed cover of X. Then by hypothesis and by theorem 2.5(1), {V,/ ae I} is
a regular closed cover of X. Since X is S-closed, then we have a finite sub cover of X. Hence X is
strongly S-closed.
2 =@
Let {V, / ael} be a regular closed cover of X. Since every regular closed is closed and X is
strongly S-closed, then we have a finite subcover of X. Hence X is S-closed.
Definition 4.12
A topological space (X, 1) is said to be
1. D-Hausdorff if for each pair of distinct points x and y in X there exist disjoint D-open sets U and V
of x andy respectively.
2. D-Ultra Hausdorff if for each pair of distinct points x and y in X there exist
disjoint D-clopen sets U and V of x and y respectively.
Theorem 4.13
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If f: (X, 1) - (Y, o) is contra-D-continuous injection, where Y is Urysohn then the topological space
(X, 1) is a D-Hausdorff.
Proof :

Let x; and X, be two distinct points of (X, 1). Suppose y; = f(x;) and y, = f(x,). Since f is injective and
Xi# Xp then yy# y,. Since the space Y is Urysohn, there exist open sets V and W such that y;eV,y,eW and
cl(V)ncl(W) = ¢. Since f is contra-D-continuous and by theorem 3.12, there exist D-open sets Ux;eDO(X x;)
and Ux,eDO(X,x;) such that f(Ux;) < cl(V) and f(Ux,) < cl(W). Thus we have Ux;nUx,= ¢, since
cl(V)nel(W) = ¢. Hence X is a D-Hausdorff.

Theorem 4.14

if f : (X1 —> (Y,0) is a contra-D-continuous injection, where Y s
D-ultra Hausdorff then the topological space (X, t) is D-Hausdorff.
Proof

Let x; and x, be two distinct points of (X, 1). Since f is injective and Y is
D-ultra Hausdorff, then f(x;) = f(x,) and also there exist clopen sets U and W in Y such that
f(x,)eU and f(x,)eW, where UNW = ¢. Since f is contra-D-continuous, x; and x, belong to D-open sets f *(U)
and f (W) respectively, where f *(U) nf /(W) = ¢.Hence X is D-Hausdorff.
Lemma 4.15 [9]

Every mildly Hausdorff strongly S-closed space is locally indiscrete.
Theorem 4.16

If a function f: (X, 1) — (Y, o) is continuous and (X, 1) is a locally indiscrete space, then f is contra-D-
continuous.
Proof

Let U be any open set in (Y, o). Since f is continuous, f ~(U) is open in (X, t) and since (X, 1) is
locally indiscrete, f *(U) is closed in (X, t). Hence by theorem 2.6, f (V) is
D-closed in (X, 1). Thus f is contra-D-continuous.
Corollary 4.17

If a function f: (X, 1) — (Y, o) is continuous and (X, 1) is mildly Hausdorff strongly
S-closed space then f is contra-D-continuous.
Proof

It follows from Lemma 4.15 and theorem 4.16.
Theorem 4.18

A contra-D-continuous image of a D-connected space is connected.
Proof

Let f: (X, 1) = (Y, o) be a contra-D-continuous function of D-connected space onto a topological
space Y. If possible, assume that Y is not connected. Then Y = AuUB, A =¢, B =¢ and AnB = ¢, where A and B
are clopen sets in Y. Since f is contra-D-continuous,
X =f7}Y) = f Y(AUB) = f }(A) U f (B), where f '(A) and f "(B) are non-empty D-open sets in X. Also f
(A) N fY(B) = ¢. Hence X is not D-connected, which is a contradiction. Therefore Y is connected.
Definition 4.19

A topological space (X, 1) is said to be D-normal if each pair of non-empty disjoint closed sets can be
separated by disjoint D-open sets.
Theorem 4.20

If f: (X, 1) > (Y, o) is a closed contra-D-continuous injection and Y is ultra-normal, then X is D-
normal.
Proof

Let V; and V; be non-empty disjoint closed subsets of X. Since f is closed and injective, then f(V,) and
f(\V,) are non-empty disjoint closed subsets of Y. Since Y is ultra-normal, then f(\V,) and f(V,) can be separated
by disjoint clopen sets W, and W, respectively.
HenceV, c f {(W,) and V, c f "{(W,).Since f is contra-D-continuous, then f (W) and f "{(W,) are D-open
subsets of X and f (W) N f "{(W,) = ¢. Hence X is D-normal.

Theorem 4.21

The image of a strongly D-closed space under a contra-D-continuous surjective function is compact.
Proof

Suppose that f : (X, © — (Y, o) is a contra-D-continuous surjection. Let
{V, / a.e 1} be any open cover of Y. Since f is contra-D-continuous, then {f (V,)/ a.c 1} is a D-closed cover of
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X. Since X is strongly D-closed, then there exists a finite subset I, of I such that X = U{f *(V,) / ae lg}. Thus
we have Y = u{Va / ae lp}. Hence Y is compact.
Theorem 4.22

Every strongly D-closed space (X, t) is a compact S-closed space.
Proof

Let {V, / ae 1} be a cover of X such that for every ae I, V, is open and regular closed due to
assumption. Then by theorem 2.5(2), each V, is D-closed in X. Since X is strongly D-closed, there exists a finite
subset o of | such that X = u{V, / a.e lg}.Hence (X, t) is a compact S-closed space.
Theorem 4.23

The image of a D-compact space under a contra-D-continuous surjective function is strongly S-closed.
Proof

Suppose that f: (X, t) — (Y, o) is a contra-D-continuous surjection.Let {V,, /ael} be any closed cover
of Y. Since f is contra-D-continuous , then {f ~(V,)) /a.e 1} is a D-open cover of X. Since X is D-compact, there
exists a finite subset Iy of | such that X = U{f (V,) / ae Io}. Thus we have Y = U{V, / a.e Ig}.Hence Y is
strongly S-closed.
Theorem 4.24

The image of a D-compact space in any D-Ts space under a contra-D-continuous surjective function is
strongly D-closed.
Proof

Suppose that f : (X, 1) — (Y, o) is a contra-D-continuous surjection. Let {V, / ae I} be any D-closed
cover of Y. Since Y is D-Ts space, then {V, / ae I} is a closed cover of Y. Since f is contra-D-continuous, then
{f (V) / ae 1} is a D-open cover of X. Since X is D-compact, there exists a finite subset I, of | such that X =
U {f V) / ae lo}. Thus we have
Y = {V,/ ae lp}. Hence Y is strongly D-closed.
Theorem 4.25

The image of strongly D-closed space under a D-irresolute surjective function is strongly D-closed.
Proof

Suppose that f : (X, 1) — (Y, o) is an D-irresolute surjection. Let {V, / ae I} be any
D-closed cover of Y. Since f is D-irresolute then {f (V) / a.e 1} is a D-closed cover of X. Since X is strongly
D-closed, then there exists a finite subset lo of | such that
X = U{f {(V,) / ae Ig}. Thus, we have Y = U{V,, / ae lo}. Hence Y is strongly D-closed.
Lemma 4.26

The product of two D-open sets is D-open.
Theorem 4.27

Letf: (X, 1) = (Y, 0)and g : (X3, 1) = (Y, o) be two functions where Y is a Urysohn space and f
and g are contra-D-continuous function. Then {(x1,X2) /f(X;) = g(X)} is D-closed in the product space X;x X,.
Proof

Let V denote the set {(x1,%2) / f(X1) = g(X2)}. In order to show that V is D-closed, we show that (X;x
Xz) — V is D-open. Let (x1,X2) ¢ V. Then f(x;) # g(X,).Since Y is Urysohn,there exist open sets U; and U, of
f(x,) and g(x,) such that cl(U,)~cl(U,) = ¢. Since f and g are contra-D-continuous, f ~*(cl(U,)) and g*(cl(U.))
are D-open sets containing x; and X, in X; and X,. Hence by Lemma 4.26, f "*(cl(U,)) x g~(cl(U,)) is D-open.
Further (x1,x2)ef (cl(U1)) x g(cl(Uy)) < ((X1x X;) — V). I follows that (X;x X,) — V is D-open. Thus V is D-
closed in the product space X; x Xo.
Corollary 4.28

If f : (X, ©» —> (Y, o) is contra-D-continuous and Y is a Urysohn space, then
V = {(Xyq, X2) / f(x1) = f(x2)} is D-closed in the product space X;x X,.
Theorem 4.29

Let f: (X, 1) = (Y, o) be a continuous function. Then f is RC-continuous if and only if it is contra-D-
continuous.
Proof

Suppose that f is RC-continuous.
Since every RC-continuous function is contra-continuous, Therefore by Theorem 3.5, f is contra D-continuous.

Conversely,
Let V be any open set in (Y, o). Since f is continuous and contra-D-continuous, f (V) is open and

D-closed in (X, 7). By theorem 2.5(1), f (V) is regular open in (X, ). That is, Int(cl(f *(V))) = f (V). Since f
(V) is open, Int(cl(f (V))) = Int(f (V) and so
cl(Int(f *(V))) = f (V). Therefore V is regular closed in (X, t). Hence f is RC-continuous.
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Theorem 4.30

Let f: (X, 1) = (Y, o) be perfectly D-continuous function, X be locally indiscrete space and connected.
Then Y has an indiscrete topology.
Proof

Suppose that there exists a proper open set U of Y. Since Y is locally indiscrete, U is a closed set of .
Therefore by theorem 2.6, U is a D-closed set of Y. Since f is perfectly D-continuous, f ~(U) is a proper clopen
set of X. This shows that X is not connected. Which is a contradiction. Therefore Y has an indiscrete topology.
Theorem 4.31

Iff: (X, 1) = (Y, o) is a function and (X, t) a D-Ts space, then the following statements are equivalent

1. fis perfectly continuous.

2. fis continuous and contra-continuous

3. fis continuous and contra-D-continuous.

4. fis super-continuous.

Proof

(1) = (2) is obvious.

(2) = (3) by theorem 2.6, it is clear.

(3) = (4) by theorem 3.27, it is clear

(4) = (1) Let U be any open set in (Y, o). By assumption, f ™(U) is regular open in

(X, 1). By theorem 2.5(1), f *(U) is open and D-closed in (X, 1). Since (X, 1) is a D-Ts space, f *(U) is
clopen in (X, t). Hence f is perfectly continuous.
Theorem 4.32

Let f : (X, 1) —> (Y, o) be a contra-D-continuous function. Let A be an open
D-closed subset of X and let B be an open subset of Y. Assume that DC(X, 1) (the class of all D-closed sets of

(X, 1)) be D-closed under finite intersections. Then, the restriction
flA: (A 1a) — (B, op) is a contra-D-continuous function.
Proof

Let V be an open set in (B, og). Then V = BNK for some open set K in (Y, o). Since B is an open set
of Y, V is an open set in (Y, ).By hypothesis and assumption,f (V) n A = H, (say) is a D-closed set in (X, 1).
Since (f |JA)™ (V) = Hy, it is sufficient to show that H, is a D-closed set in (A,ta). Let G, be w-open in (A 1a)
such that
H; < G;. Then by hypothesis and by Lemma 4.21[3], G; is w-open in (X, t). Since H; is a
D-closed set in (X, 1), we have pclyx(H;) < Int (Gy). Since A is open and Lemma 2.10[11], pcla(H1) = pclx(Hy)
N A Int (Gy) N Int(A) = Int(Gyn A) < Int(G,) and so H; = (f |JA) (V) is a D-closed set in (A, t). Hence | A
is contra-D-continuous function.

Theorem 4.33

A topological space (X, 1) is nearly compact if and only if it is compact and strongly
D-closed .
Proof

Obvious by theorem 2.5(1).
Theorem 4.34

If a topological space (X, t) is locally indiscrete space then compactness and strongly D-closedness are
the same.
Proof

Let (X, t) be a compact space. Since (X, 7) is a locally indiscrete space, then every open set is closed
and by theorem 2.6, compactness and strongly D-compactness are the same in a locally indiscrete topological
space.
Theorem 4.35

A topological space (X, t) is S-closed if and only if it is strongly S-closed and
D-compact.
Proof

It follows from theorem 2.5(1).
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