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On Contra D-Continuous Functions and Strongly D-Colsed 

Spaces 
 

K. Dass, J.Antony Rex Rodrigo 
 

Abstract: In[8], Dontchev introduced and  investigated  a new notion of continuity called contra-continuity. 

Recently, Jafari and Noiri ([12], [13], [14]) introduced new generalization of contra-continuity called contra-

super-continuity, contra--continuity and contra-pre-continuity.It is the objective of this paper to introduce and 

study a new class of contra-continuous functions via  

 

I. Introduction 
Jafari and Noiri introduced and investigated the notions of contra-pre-continuity [14], contra--

continuity [13] and contra-super-continuity [12] as a continuation of research done by Dontchev [8], and 

Dontchev and Noiri [10] on the interesting notions of contra- continuity and contra-semi-continuity, respectively. 

Caldas and jafari [7] introduced the notion of  contra--continuous functions in topologiced spaces. The aim of 

this paper is to introduce and investigate a new class of functions called contra-D-continuous functions.  

 

II. Preliminaries 
     Throughout this paper (X,),(Y,) and (Z,) will always denote topological spaces on which no 

separation axioms are assumed, unless otherwise mentioned.When A is a subset of (X,τ), 

cl(A) and int(A) denote  the closure and the interior of A, respectively. 

We recall some known definitions needed in this paper. 

 

Definition 2.1. Let (X,τ) be a topological space. A subset A of the space X is said to be  

1. Preopen [17]  if A  int(cl(A)) and preclosed if cl(int(A))  A. 

2. Semi open [15] if A  cl(int(A)) and semi closed if int(cl(A))  A . 

3. Regular open [26]  if A = int(cl(A)) and regular closed if A = cl(int(A)). 

 

Definition 2.2.Let (X,τ) be a topological space . A subset A  X is said to be 

1. g-closed [15] if cl(A)  U whenever A  U and Uis open in X. 

2. -closed[28] if cl(A)  U whenever A  U and U is semi open in X.  

3. D-closed[1] if pcl(A)  Int(U) whenever A  U and U is -open in X. 

The complements of above mentioned sets are called their respective open sets. 

 

Definition 2.3. A function f : (X,)  (Y,) is called 

1. g-continuous [5] if f 
-1

(V) is g-closed in (X,) for every closed set V in (Y,).  

2. -continuous [23] if f 
-1

(V) is -closed in (X,) for every closed set V in (Y,). 

3. Perfectly continuous [4] if f 
-1

(V) is clopen in (X,τ) for every open set V in (Y,). 

4. D-continuous [3] if f 
-1

 (V) is D-closed in (X,) for every closed set V in (Y,). 

5. D-irresolute [2] if f 
-1

(V) is D-closed in (X,τ) for every D-closed set V in (Y,). 

6. Strongly D-continuous [3] if f 
-1

(V) is closed in (X,τ) for every D-closed set V in (Y,). 

7. Pre-D-continuous [3] if f 
-1

(V ) is D- closed in (X,τ) for every pre-closed set V in (Y,). 

  8. Perfectly D-continuous[2] if f 
-1

(V) is clopen in (X,τ) for every D-closed set V in (Y,). 

  9. Super continuous [21] if f 
-1

(V ) is regular open in (X,τ) for every open set V in (Y,). 

10. Contra-continuous [8] if f 
-1

(V) is closed in (X,τ) for every open set V in (Y,). 

11. Contra pre-continuous [14] if f 
-1

(V) is preclosed in (X,τ) for every open set V in (Y,). 

12. Contra g-continuous [6] if f 
-1

(V) is g-closed in (X,τ) for every open set V in (Y,). 

13. Contra semi-continuous [10] if f 
-1

(V) is semiclosed in (X,τ) for every open set V in (Y,). 

14. RC-continuous [10] if f 
-1

(V) is regular closed in (X,τ) for every open set V in (Y,). 

15. D-open if f(V) is D-open in (Y,) for every D-open set V in (X,). 

 

Definition 2.4.  A space (X,τ) is called 

1. A T1/2 space [21] if every g-closed set is closed. 
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2. A T space [23] if every -closed set is closed. 

3. A  D-Ts space [3] if every D-closed set is closed. 

4. A  D-T1/2 space [3] if every D-closed set is preclosed. 

 

Theorem 2.5 [1]  Let (X,τ) be a topological space.  

1. A subset A of (X,τ) is regular open if and only if A is open and D-closed.  

      2.   A subset A of (X,τ) is open and regular closed then A is D-closed. 

 

 Theorem 2.6 [2] Every closed set in a topological space (X,τ) is D-closed. 

 

III. Contra-D-Continuous Functions 
Definition 3.1 

                A function f : (X,)  (Y,) is called contra-D-continuous if f 
1

(V) is  

D-open (resp.D-closed) in (X,) for every closed (resp. open) set V in (Y,). 

 

Example 3.2 

 Let X = {a, b, c} = Y,  = {, {a}, X} and  = {, {b, c}, Y}. Then the identity function  f : (X, )  

(Y, )  is contra-D-continuous function, since for the closed (resp.open) set V = {a} in (Y,), f 
1

(V) = {a} is D-

open (resp. D-closed) in (X, ). 

 

Definition 3.3 

 Let A be a subset of a topological space (X, ). The set {U  / A  U} is called the kernel of A [19] 

and  is denoted by Ker(A). 

 

Lemma 3.4 [12] 

 The following properties hold for subsets A, B of a space X : 

1. x Ker(A) if and only if A  F   for any FC(X, x). 

2. A  Ker(A) and A = Ker(A) if A is open in X. 

3. If A  B then Ker(A)  Ker (B) 

 

Theorem 3.5 

 Every contra-continuous function is a contra-D-continuous function. 

Proof 

 Let f : (X,)  (Y,) be a function. Let V be an open set in (Y,).Since f is contra- continuous, f 
1

(V) 

is closed in (X, ).Hence by theorem 2.6, f 
1

(V) is D-closed in (X, ).  

Thus f is a contra-D-continuous function. 

 

Remark 3.6 

 Converse of this theorem need not be true as seen from the following example. 

Example 3.7 

 Let X = {a, b, c} = Y,  = {, {a}, X} and  = {, {a}, {b, c}, Y}. 

Define f : (X, )  (Y, ) by f(a) = b; f(b) = c and f(c) = a.Then f is contra-D-continuous but not contra-

continuous, since for the open (resp.closed) set U = {b,c}, f 
1

(U) = {a, b} is D-closed (resp. D-open) but it is 

not closed. 

 

Remark 3.8 

 Contra-D-continuous and contra-g-continuous (resp. contra-continuous, contra-D-continuous, contra 

pre-continuous, contra semi-continuous) are independent concepts. 

Example 3.9 

 As in remarks 3.23, 3.15, 3.13 and 3.18 [1], the result follows. 

Remark 3.10 

 The composition of two contra D-continuous functions need not be contra D-continuous and this is 

shown by the following example. 

Example 3.11 

 Let X = {a, b, c} = Y = Z,  = {,{a},X},  = {, {b, c},Y} and  = {,{a, c},Z}. Define f : (X, )  

(Y, ) by f(a) = a; f(b) = b and f(c) = b. Then f is contra-D-continuous, since for the closed set V = {a}, f 
1

(V) = 

{a} is D-open in (X, ).Define g : (Y, )  (Z, ) by g(x) = x. Then g is contra-D-continuous, since for the 
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closed set V = {b} in (Z, ), g
-1

(V) = {b} is D-open in (Y,). But their composition is not a contra-D-

continuous, since for the closed set V={b}in (Z,),f 
1

(g
1

(V)) =f 
1

({b})={b, c} is not a D-open in (X, ). 

Theorem 3.12 

 The following are equivalent for a function f : (X, )  (Y, ) : Assume that DO(X) (resp. DC(X)) is 

closed under any union (resp. intersection) 

   1. f is contra-D-continuous 

   2. The inverse image of a closed set V of Y is D-open 

   3. For each xX and each VC(Y, f(x)), there exists UDO(X, x) such that f(U)  V. 

   4. f(D-cl(A))  Ker (f(A)) for every subset A of X. 

   5. D-cl(f 
1

(B))  f 
1

 (Ker (B)) for every subset B of Y. 

Proof  

 The implications (1)  (2), (2)  (3) are obvious. 

(3)  (2) 

 Let V be any closed set of Y and x  f 
1

(V). Then f(x)  V and there exists  

UxDO(X, x) such that f(Ux) V.Hence we obtain f 
1

(V) = {Ux / x  f 
1

(V))and by assumption f 
1

(V) is D-

open. 

(2)  (4) 

 Let A be any subset of X. Suppose that y  Ker (f(A)).Then by Lemma 3.4, there exists V  C (X, x) 

such that f(A)  V = . Thus we have A  f 
1

(V) =  and D-cl(A)  f 
1

(V) = . Hence we obtain f(D-cl(A))  

V =  and y  f(D – cl(A)).Thus f(D-cl(A))  Ker(f(A)). 

(4)  (5) 

 Let B be any subset of Y.By (4) and Lemma 3.4, we have  

f(D-cl(f 
1

(B)))  Ker(f(f 
1

(B))) ker(B) andD– cl(f 
1

(B))  f 
1

(Ker (B)). 

(5)  (1) 

 Let U be any open set of Y.Then by lemma 3.4, we have  

D–cl(f 
1

(U))  f 
1

(Ker(U)) = f 
1

(U) and D-cl(f 
1

(U)) = f 
1

(U). By assumption, f 
1

(U) is  

D-closed in X.Hence f is contra-D-continuous. 

Theorem 3.13 

 If f : (X, )  (Y, ) is D-irresolute (resp. contra-D-continuous) and  

g : (Y, )  (Z, ) in contra-D-continuous (resp. continuous) then their composition 

gof : (X,)  (Z, ) is contra-D-continuous. 

Proof  

 Let U be any open set in (Z, ). Since g is contra-D-continuous (resp. continuous) then g
1

(V) is D-

closed (resp. open) in (Y, ) and since f is D-irresolute (resp. contra D-continuous) then f 
1

(g
1

(V)) is D-closed 

in (X, ). Hence gof is contra-D-continuous. 

Theorem 3.14 

 If f : (X,)  (Y,) is contra-continuous and g : (Y,)  (Z, ) is continuous then their composition 

gof : (X, )  (Z, ) is contra-D-continuous. 

Proof 

 Let U be any open set in (Z, ).Since g is continuous, g
1

(U) is open in (Y,). 

Since f is contra-continuous, f 
1

(g
1

(U)) is closed in (X, ).Hence by theorem 2.6, (gof)
1

(U) is D-closed in (X, 

).Hence gof is contra-D-continuous. 

Theorem 3.15 

 If f : (X, )  (Y, ) is contra-continuous and super-continuous and g : (Y, )  (Z, ) is contra-

continuous then their composition gof : (X, )  (Z, ) is contra-D-continuous. 

Proof 

 Let U be any open set in (Z, ).Since g is contra-continuous, g
1

(U) is closed in (Y, ) and since f is 

contra-continuous and super-continuous then f 
1

(g
1

(U)) is both open and regular closed in (X, ). Hence by 

theorem 2.5(2), (gof)
1

(U) is D-closed in (X, ). Hence gof is contra-D-continuous. 

Theorem 3.16 

 Let (X,), (Y,) be any topological spaces and (Y,) be T1/2 space (resp.T- space).Then the 

composition gof : (X, )  (Z, ) of contra-D-continuous function f : (X, )  (Y, ) and the g-continuous 

(resp.-continuous) function g : (Y, )  (Z, ) is contra-D-continuous. 

 

Proof 
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 Let V be any closed set in (Z, ). Since g is g-continuous (resp.-continuous), g
1

(V) is g-closed 

(resp.-closed) in (Y, ) and (Y, ) is T1/2 space (resp. T-space), hence g
1

(V) is closed in (Y, ). Since f is 

contra-D-continuous, f 
1

(g
1

(V)) is D-open in (X, ).Hence gof is contra-D-continuous. 

Theorem 3.17 

 If f : (X, )  (Y, ) is a surjective D-open function and g : (Y, )  (Z, ) is a function such that gof 

: (X, )  (Z, ) is contra-D-continuous then g is contra-D-continuous. 

Proof 

 Let V be any closed subset of (Z, ). Since gof is contra-D-continuous then  

(gof)
1

(V) = f 
1

(g
1

(V)) is D-open in (X, ) and since f is surjective and D-open, then  

f(f  
1

(g
1

(V))) = g
1

(V) is D-open in (Y, ).  Hence g is contra-D-continuous. 

Theorem 3.18 

 Let {Xi / i I} be any family of topological spaces. If f : X   Xi is a contra-D- Continuous function. 

Then I f : X  Xi is contra-D-continuous for each i I, where i is the projection of  Xi onto Xi. 

Proof 

 It follows from theorem 3.13 and the fact that the projection is continuous. 

Theorem 3.19 

 If f : (X, )  (Y, ) is strongly  D-continuous and g : (Y, )  (Z, ) is contra-D-continuous then gf 

: (X, )  (Z, ) is contra-continuous. 

Proof  

 Let U be any open set in (Z, ). Since g is contra-D-continuous, then g
1

(U) is  

D-closed in (Y, ). Since f is strongly D-continuous, then f 
1

(g
1

(U)) = (gof)
1

 (U) is closed in (X, ). Hence gof 

is contra-continuous. 

Theorem 3.20 

 If f : (X, )  (Y, ) is pre-D-continuous and g : (Y, )  (Z, ) is  

contra-pre-continuous then gof : (X, )  (Z, ) is contra-D-continuous. 

Proof 

 Let U be any open set in (Z, ). Since g is contra-pre-continuous, then g
1

(U) is  

pre-closed in (Y, ) and since f is pre-D-continuous, then f 
1

(g
1

(U)) = (gof)
1

(U) is D-closed in  

(X, ). Hence gof is contra-D-continuous. 

Theorem 3.21 

 If f : (X, )  (Y, ) is strongly-D-continuous and g : (Y, )  (Z, ) is contra-D-continuous then gof 

: (X, )  (Z, ) is contra-D-continuous. 

Proof 

 Let U be any open set in (Z, ). Since g is contra-D-continuous, then g
1

(U)) is  

D-closed in (Y, ) and since f is strongly-D-continuous, then f 
1

(g
1

(U)) = (gof)
1

(U) is closed in (X, ). By 

theorem 2.6, (gof)
1

(U) is D-closed in (X, ). Hence gof is contra-D-continuous. 

Theorem 3.22 

 Let f : (X, )  (Y, ) be surjective D-irresolute and D-open and g : (Y,)  (Z, ) be any function. 

Then gof : (X, )  (Z, ) is contra-D-continuous if and only if g is contra-D-continuous. 

Proof 

 The ‘if’ part is easy to prove. To prove the ‘only if’ part, let V be any closed set in (Z, ). Since gof is 

contra-D-continuous, then (gof)
1

(V) is D-open in (X, ) and since f is D-open surjection, then f((gof)
1

(V)) = g
-

1
(V) is D-open in (Y,). Hence g is contra-D-continuous. 

Theorem 3.23 

           Let f : (X,)  (Y,) be a contra-D-continuous function and H an open D-closed subset of (X,). Assume 

that DC(X,) (the class of all D-closed sets of (X,)) is D-closed under finite intersections. Then the restriction 

fH : (H,H)  (Y,) is contra-D-continuous. 

Proof  

       Let U be any open set in (Y,). By hypothesis and assumption,f 
-1

(U)H = H1(say) is  

D-closed in (X,).Since (fH)
-1

(U) = H1, it is sufficient to show that H1 is D-closed in H. 

By hypothesis 4.22 [3], H1 is D-closed in H.Thus fH is contra-D-continuous. 

Theorem 3.24 

 Let f : (X,)  (Y,) be a function and g : X X  Y the graph function given by  

g(x) = (x,f(x)) for every xX.Then f is contra-D-continuous if g is contra-D-continuous. 

Proof    

       Let V be a closed subset of Y.Then X  V is a closed subset of X Y.Since g is contra-D-continuous ,then 

g
-1

( X  V) is a D-open subset of X. Also g
-1

(X  V) = f 
-1

(V).Hence f is contra-D-continuous.  
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 Theorem 3.25 

 If a function f : (X, )  (Y, ) is contra-D-continuous and Y is regular, then f is D-continuous. 

Proof 

 Let x be an arbitrary point of X and N be an open set of Y containing f(x). Since Y is regular, there 

exists an open set U in Y containing f(x) such that cl(U)  N. Since f is contra-D-continuous, by theorem 3.12, 

there exists W  DO(X, x) such that f(W)  cl(U). Then f(W)  N. Hence by theorem 4.13 [3], f is D-

continuous. 

Theorem 3.26 

 Every continuous and RC-continuous function is contra-D-continuous. 

Proof 

 Let f : (X, )  (Y, ) be a function. Let U be an open set in (Y, ). Since f is continuous and RC-

continuous, f 
1

(U) is open and regular closed in (X, ). Hence by theorem 2.5(1), f is contra-D-continuous. 

 

Theorem 3.27 

 Every continuous and contra-D-continuous (resp. contra-continuous and  

D-continuous) function is a super-continuous (resp. RC–continuous) function. 

Proof 

 Let f : (X, )  (Y, ) be a function. Let U be an open (resp. closed) set in (Y, ).  

Since f is continuous and contra-D-continuous(resp.contra-continuous and D-continuous),f 
1

(U) is open and D-

closed in (X, ). Hence by theorem 2.5(1), f 
1

(U) is regular open in (X, ). This shows that f is a super-

continuous (resp. RC-continuous) function. 

Theorem 3.28 

 Let f : (X, )  (Y, ) be a function and X a D-Ts space. Then the following are equivalent. 

1. f is contra-D-continuous. 

2. f is contra-continuous 

Proof 

(1)  (2).   

Let U be an open set in (Y, ). Since f is contra-D-continuous, f 
1

(U) is  

D-closed in (X, ) and since X is D-Ts space, f 
1

(U) is closed in (X, ). Hence f is contra-

continuous. 

(2)  (1).  

Let U be an open set in (Y, ). Since f is contra-continuous, f 
1

(U) is closed in (X, ). Hence by 

theorem 2.6, f 
1

(U) is D-closed in (X, ). Hence f is contra-D-continuous. 

 

IV. Contra-D-closed and strongly D-closed 
Definition 4.1 

 The graph G(f) of a function f : (X, )  (Y, ) is said to be contra-D-closed in  

X  Y if for each (x, y)  (X  Y) – G(f) there exist U  DO(X, x) and V  C(Y, y) such that  

(U  V) G(f) = . 

Lemma 4.2 

 The graph G(f) of a function f : (X, )  (Y, ) is contra-D-closed if and only if for each (x, y)  (X  

Y)  G(f), there exists U  DO(X, x) and V  C(Y, y) such that f(U)  V = . 

Theorem 4.3 

 If f : (X, )  (Y, ) is contra-D-continuous and Y is Urysohn then G(f) is contra-D-closed in X  Y. 

Proof  

 Let (x, y)  X  Y – G(f).Then y  f(x) and there exist open sets V,W such that f(x) V, y  W and 

cl(V)  cl(W) = . Since f is contra-D-continuous and by theorem 3.12 there exists UDO(X, x) such that f(U) 

 V.Hence f(U)  cl(W) = .Thus by lemma 4.2, G(f) is contra D-closed in X  Y. 

 

Definition 4.4.  A topological space  (X,τ) is said to be 

1. Strongly S-closed [8] if every closed cover of X has a finite subcover. 

2. S-closed [29] if every regular closed cover of X has a finite subcover. 

3. Strongly compact [18] if every preopen cover of X has a finite subcover. 

4. Locally indiscrete [19] if every open set of X is closed in X. 

 5.  Midly Hausdorff [9] if the -closed sets form a network for its topology τ,where  a  

-closed set is the intersection of regular closed sets. 

   6.   Ultra normal [23] if each pair of non-empty disjoint closed sets can be separated by disjoint 

         clopen sets 
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   7.   Nearly compact [24] if every regular open cover of X has a finite subcover. 

   8.   D-compact [3] if every D-open cover of X has a finite subcover. 

   9.   D-connected [3] if X cannot be written as the disjoint union of two non-empty D-open      

         Sets. 

Definition 4.5  A topological space (X,) is said to be strongly D-closed if every D-closed cover of X has a 

finite subcover. 

 Example 4.6 

         A D-Ts strongly S-closed space is strongly D-closed. 

Theorem 4.7 

 Let (X, ) be D-Ts space. If f : (X, )  (Y, ) has a contra-D-closed graph, then the inverse image of a 

strongly S-closed set K of Y is closed in (X, ). 

Proof 

 Let K be a strongly S-closed set of Y and x  f 
1

(K). For each kK, (x, k) G(f). By Lemma 4.2, 

there exist Uk DO(X, x) and Vk C(Y, k) such that f(Uk) Vk = .  

Since{K Vk / k  K} is a closed cover of the subspace K, there exists a finite subset K0 K such that K  

{Vk/ kK0}.Set U =  {Uk / k  K0}. Then U is open, since X is a D-Ts space.Therefore f(U)  K= and U 

f 
1

(K) = .This shows that f 
1

(K) is closed in (X, ). 

Theorem 4.8 

 If a space (X,) is  strongly D-closed then the  space is strongly S-closed. 

Proof 

 This proof follows from the definitions of 4.4 and 4.5 and by theorem 2.6. 

Theorem 4.9 

 Let (X,) be D-connected and (Y, ) be a T1-space. If f : (X,)  (Y,) is contra-D-continuous then f is 

constant. 

Proof 

 Since (Y, ) is a T1 space,  = {f 
1

(y) / y  Y} is a disjoint D-open partition of X.  

If ||  2, then X is the union of two non-empty D-open sets. Since (X,) is  

D-connected, |  | = 1. Hence f is constant. 

 

Theorem 4.10 

 Let f : (X, )  (Y, ) be a contra-D-continuous and pre-closed surjection. If (X, ) is a D-Ts, then (X, 

) is a locally indiscrete space. 

 

Proof 

 Let U be any open set in (Y, ). Since f is contra-D-continuous and (X, ) is a  

D-Ts space, f 
1

(U) is closed in (X, ). Since f is a pre-closed surjection, then U is  

pre-closed in (Y, ). Therefore cl(U) = cl (Int(U))  U. Hence U is closed in (Y, ). Thus (Y, ) is a locally 

indiscrete space. 

Theorem 4.11 

     If every closed subset of a space X is D-open then the following are equivalent. 

1. X is S-closed 

2. X is strongly S-closed 

Proof 

(1)  (2)   

Let {V /  I} be a closed cover of X. Then by hypothesis and by theorem 2.5(1), {V /  I} is 

a regular closed cover of X. Since X is S-closed, then we have a finite sub cover of X. Hence X is 

strongly S-closed. 

(2)  (1)   

Let {V / I} be a regular closed cover of X. Since every regular closed is closed and X is 

strongly S-closed, then we have a finite subcover of X. Hence X is S-closed. 

Definition 4.12 

A topological space (X, ) is said to be  

1. D-Hausdorff if for each pair of distinct points x and y in X there exist  disjoint D-open sets U and V 

of  x and y respectively. 

2. D-Ultra Hausdorff if for each pair of distinct points x and y in X there exist  

disjoint D-clopen sets U and V of  x and y respectively.  

Theorem 4.13 
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 If f : (X, )  (Y, ) is contra-D-continuous injection, where Y is Urysohn then the topological space 

(X, ) is a D-Hausdorff. 

Proof : 

 Let x1 and x2 be two distinct points of (X, ). Suppose y1 = f(x1) and y2 = f(x2). Since f is injective and 

x1 x2 then y1 y2. Since the space Y is Urysohn, there exist open sets V and W such that y1V,y2W and 

cl(V)cl(W) = . Since f is contra-D-continuous and by theorem 3.12, there exist D-open sets Ux1DO(X, x1) 

and Ux2DO(X,x2) such that f(Ux1)  cl(V) and f(Ux2)  cl(W). Thus we have Ux1Ux2= , since 

cl(V)cl(W) = . Hence X is a D-Hausdorff. 

 

Theorem 4.14 

 If f : (X,)  (Y,) is a contra-D-continuous injection, where Y is  

D-ultra Hausdorff then the topological space (X, ) is D-Hausdorff. 

Proof 

 Let x1 and x2 be two distinct points of (X, ). Since f is injective and Y is  

D-ultra Hausdorff, then f(x1)  f(x2) and also there exist clopen sets U and W in Y such that  

f(x1)U and f(x2)W, where UW = . Since f is contra-D-continuous, x1 and x2 belong to D-open sets f 
-1

(U) 

and f 
1

(W) respectively, where f 
1

(U) f 
1

(W) = .Hence X is D-Hausdorff. 

Lemma 4.15 [9] 

 Every mildly Hausdorff strongly S-closed space is locally indiscrete. 

Theorem 4.16 

 If a function f : (X, )  (Y, ) is continuous and (X, ) is a locally indiscrete space, then f is contra-D-

continuous. 

Proof 

 Let U be any open set in (Y, ). Since f is continuous, f 
1

(U) is open in (X, ) and since (X, ) is 

locally indiscrete, f 
1

(U) is closed in (X, ). Hence by theorem 2.6, f 
1

(U) is  

D-closed in (X, ). Thus f is contra-D-continuous. 

Corollary 4.17 

 If a function f : (X, )  (Y, ) is continuous and (X, ) is mildly Hausdorff strongly  

S-closed space then f is contra-D-continuous. 

Proof 

 It follows from Lemma 4.15 and theorem 4.16. 

Theorem 4.18 

 A contra-D-continuous image of a D-connected space is connected. 

Proof 

 Let f : (X, )  (Y, ) be a contra-D-continuous function of D-connected space onto a topological 

space Y. If possible, assume that Y is not connected. Then Y = AB, A , B  and AB = , where A and B 

are clopen sets in Y. Since f is contra-D-continuous,  

X = f 
1

(Y) = f 
1

(AB) = f 
1

(A)  f 
1

(B), where f 
1

(A) and f 
1

(B) are non-empty D-open sets in X. Also f 
1

(A)  f 
1

(B) = . Hence X is not D-connected, which is a contradiction. Therefore Y is connected. 

Definition 4.19 

 A topological space (X, ) is said to be D-normal if each pair of non-empty disjoint closed sets can be 

separated by disjoint D-open sets. 

Theorem 4.20 

 If f : (X, )  (Y, ) is a closed contra-D-continuous injection and Y is ultra-normal, then X is D-

normal. 

Proof 

 Let V1 and V2 be non-empty disjoint closed subsets of X. Since f is closed and injective, then f(V1) and 

f(V2) are non-empty disjoint closed subsets of Y. Since Y is ultra-normal, then f(V1) and f(V2) can be separated 

by disjoint clopen sets W1 and W2 respectively. 

HenceV1  f 
1

(W1) and V2  f 
1

(W1).Since f is contra-D-continuous, then f 
1

(W1) and f 
1

(W2) are D-open 

subsets of X and f 
1

(W1)  f 
1

(W2) = . Hence X is D-normal. 

 

Theorem 4.21 

 The image of a strongly D-closed space under a contra-D-continuous surjective function is compact. 

Proof 

 Suppose that f : (X, )  (Y, ) is a contra-D-continuous surjection. Let  

{V /  I} be any open cover of Y. Since f is contra-D-continuous, then {f 
1

(V)/  I} is a D-closed cover of 
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X. Since X is strongly D-closed, then there exists a finite subset I0 of I such that X = {f 
1

(V) /  I0}. Thus 

we have Y = {V /  I0}. Hence Y is compact. 

Theorem 4.22 

 Every strongly D-closed space (X, ) is a compact S-closed space. 

Proof 

 Let {V /  I} be a cover of X such that for every  I, V is open and regular closed due to 

assumption. Then by theorem 2.5(2), each V is D-closed in X. Since X is strongly D-closed, there exists a finite 

subset I0 of I such that X = {V /  I0}.Hence (X, ) is a compact S-closed space. 

Theorem 4.23 

 The image of a D-compact space under a contra-D-continuous surjective function is strongly S-closed. 

Proof 

 Suppose that f : (X, )  (Y, ) is a contra-D-continuous surjection.Let {V /I} be any closed cover 

of Y. Since f is contra-D-continuous , then {f 
1

(V) / I} is a D-open cover of X. Since X is D-compact, there 

exists a finite subset I0 of I such that X = {f 
1

(V) /  I0}. Thus we have Y = {V /  I0}.Hence Y is 

strongly S-closed. 

Theorem 4.24 

 The image of a D-compact space in any D-Ts space under a contra-D-continuous surjective function is 

strongly D-closed. 

Proof 

 Suppose that f : (X, )  (Y, ) is a contra-D-continuous surjection. Let {V /  I} be any D-closed 

cover of Y. Since Y is D-Ts space, then {V /  I} is a closed cover of Y. Since f is contra-D-continuous, then 

{f 
1

(V) /  I} is a D-open cover of X. Since X is D-compact, there exists a finite subset I0 of I such that X = 

 {f 
1

(V) /  I0}. Thus we have  

Y = {V /  I0}. Hence Y is strongly D-closed. 

Theorem 4.25 

 The image of strongly D-closed space under a D-irresolute surjective function is strongly D-closed. 

Proof 

 Suppose that f : (X, )  (Y, ) is an D-irresolute surjection. Let {V /  I} be any  

D-closed cover of Y. Since f is D-irresolute then {f 
1

(V) /  I} is a D-closed cover of X. Since X is strongly 

D-closed, then there exists a finite subset I0 of I such that  

X = {f 
1

(V) /  I0}. Thus, we have Y = {V /  I0}. Hence Y is strongly D-closed. 

Lemma 4.26 

 The product of two D-open sets is D-open. 

Theorem 4.27 

 Let f : (X1, )  (Y, ) and g : (X2, )  (Y, ) be two functions where Y is a  Urysohn space and f 

and g are contra-D-continuous function. Then {(x1,x2) /f(x1) = g(x2)} is D-closed in the product space X1 X2. 

Proof 

 Let V denote the set {(x1,x2) / f(x1) = g(x2)}. In order to show that V is D-closed, we show that (X1 

X2) – V is D-open. Let (x1,x2)  V. Then f(x1)  g(x2).Since Y is Urysohn,there exist open sets U1 and U2 of 

f(x1) and g(x2) such that cl(U1)cl(U2) = . Since f and g are contra-D-continuous, f 
1

(cl(U1)) and g
1

(cl(U2)) 

are D-open sets containing x1 and x2 in X1 and X2. Hence by Lemma 4.26, f 
1

(cl(U1))  g
1

(cl(U2)) is D-open. 

Further (x1,x2)f 
-1

(cl(U1))  g
1

(cl(U2))  ((X1 X2) – V). If follows that (X1 X2) – V is D-open. Thus V is D-

closed in the product space X1  X2. 

Corollary 4.28 

 If f : (X, )  (Y, ) is contra-D-continuous and Y is a Urysohn space, then  

V = {(x1, x2) / f(x1) = f(x2)} is D-closed in the product space X1 X2. 

Theorem 4.29 

 Let f : (X, )  (Y, ) be a continuous function. Then f is RC-continuous if and only if it is contra-D-

continuous. 

Proof 

 Suppose that f is RC-continuous.  

 Since every RC-continuous function is contra-continuous,Therefore by Theorem 3.5, f is contra D-continuous. 

           Conversely, 

     Let V be any open set in (Y, ). Since f is continuous and contra-D-continuous, f 
1

(V) is open and 

D-closed in (X, ). By theorem 2.5(1), f 
1

(V) is regular open in (X, ). That is, Int(cl(f 
1

(V))) = f 
1

(V). Since f 
1

(V) is open, Int(cl(f 
1

(V))) = Int(f 
1

(V)) and so  

cl(Int(f 
1

(V))) = f 
1

(V). Therefore V is regular closed in (X, ). Hence f is RC-continuous. 
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Theorem 4.30 

 Let f : (X, )  (Y, ) be perfectly D-continuous function, X be locally indiscrete space and connected. 

Then Y has an indiscrete topology. 

Proof 

 Suppose that there exists a proper open set U of Y. Since Y is locally indiscrete, U is a closed set of Y. 

Therefore by theorem 2.6, U is a D-closed set of Y. Since f is perfectly D-continuous, f 
1

(U) is a proper clopen 

set of X. This shows that X is not connected. Which is a contradiction. Therefore Y has an indiscrete topology. 

Theorem 4.31 

 If f : (X, )  (Y, ) is a function and (X, ) a D-Ts space, then the following statements are equivalent 

: 

1. f is perfectly continuous. 

2. f is continuous and contra-continuous 

3.   f is continuous and contra-D-continuous. 

            4.   f is super-continuous. 

Proof 

(1)  (2) is obvious. 

(2)  (3) by theorem 2.6 , it is clear. 

(3)  (4) by theorem 3.27, it is clear 

(4)  (1) Let U be any open set in (Y, ). By assumption, f 
1

(U) is regular open in  

(X, ). By theorem 2.5(1), f 
1

(U) is open and D-closed in (X, ). Since (X, ) is a D-Ts space, f 
1

(U) is 

clopen in (X, ). Hence f is perfectly continuous. 

Theorem 4.32 

 Let f : (X, )  (Y, ) be a contra-D-continuous function. Let A be an open  

D-closed subset of X and let B be an open subset of Y. Assume that DC(X, ) (the class of all D-closed sets of 

(X, )) be D-closed under finite intersections. Then, the restriction  

f | A : (A, A)  (B, B) is a contra-D-continuous function. 

Proof 

 Let V be an open set in (B, B). Then V = BK for some open set K in (Y, ). Since B is an open set 

of Y, V is an open set in (Y, ).By hypothesis and assumption,f 
1

(V)  A = H1 (say) is a D-closed set in (X, ). 

Since (f |A)
1

 (V) = H1, it is sufficient to show that H1 is a D-closed set in (A,A). Let G1 be -open in (A,A) 

such that  

H1  G1. Then by hypothesis and by Lemma 4.21[3], G1 is -open in (X, ). Since H1 is a  

D-closed set in (X, ), we have pclX(H1)  Int (G1). Since A is open and Lemma 2.10[11], pclA(H1) = pclX(H1) 

 A  Int (G1)  Int(A) = Int(G1 A)  Int(G1) and so H1 = (f |A)
1

(V) is a D-closed set in (A, A). Hence f | A 

is contra-D-continuous function. 

 

Theorem 4.33 

 A topological space (X, ) is nearly compact if and only if it is compact and strongly  

D-closed . 

Proof 

 Obvious by theorem 2.5(1). 

Theorem 4.34 

 If a topological space (X, ) is locally indiscrete space then compactness and strongly D-closedness are 

the same. 

Proof 

 Let (X, ) be a compact space. Since (X, ) is a locally indiscrete space, then every open set is closed 

and by theorem 2.6, compactness and strongly D-compactness are the same in a locally indiscrete topological 

space. 

Theorem 4.35 

 A topological space (X, ) is S-closed if and only if it is strongly S-closed and  

D-compact. 

Proof 

 It follows from theorem 2.5(1). 
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