On Fuzzy Supra Semi $\widetilde{T}_{i=0,\,1,\,2}$ Space In Fuzzy Topological Space On Fuzzy Set

¹ Assist. Prof. Dr. Munir Abdul Khalik AL-Khafaji, ² Roqaya Mohammed Hussien ^{1, 2}(Department of Mathematics, College of Education, AL-Mustansiriyah University, Iraq)

Abstract: This paper is devoted to introduce the notion of fuzzy supra semi $\tilde{T}_{i=0, l, 2}$ space, fuzzy supra semi $D_{i=0, l, 2}$ space, and use the notion of fuzzy quasi coincident in their definitions, study some properties and theorems related to these subjects.

Keywords: fuzzy supra semi open set, fuzzy supra semi D set, fuzzy supra semi $\tilde{T}_{i=0, l, 2}$ space, fuzzy supra semi $D_{i=0, l, 2}$ space.

I. Introduction

The concept of fuzzy set and fuzzy set operation was first introduced by Zadeh^[13]. Chakrabarty and Ahsanullah^[2] introduced the notion of fuzzy topological space on fuzzy set. In 1986 Abd EL-Monsef and Ramadan^[1] introduced fuzzy supra topological space. In this paper we introduced and study the concept of fuzzy supra semi $\widetilde{T}_{i=0, 1, 2}$ space, fuzzy supra semi $D_{i=0, 1, 2}$ space in fuzzy topological space on fuzzy set.

1. Basic Definitions

Definition 1.1 [13]:Let X be anon-empty set ,a fuzzy set \tilde{A} in X is characterized by a membership function $\mu_{\tilde{A}}(x) : X \rightarrow I$, where I is the closed unite interval [0,1] which is written as $\tilde{A} = \{(x, \mu_{\tilde{A}}(x)\}: x \in X, 0 \le \mu_{\tilde{A}}(x) \le 1\}$, the collection of all fuzzy subsets in X will be denoted by I^x , that is $I^x = \{\tilde{A}: \tilde{A} \text{ is fuzzy subset of } X\}$ and $\mu_{\tilde{A}}(x)$ is called the membership function.

Proposition 1.2 [9, 12, 13]: Let \widetilde{A} and \widetilde{B} be two fuzzy sets in X with membership function $\mu_{\widetilde{A}}(x)$ and $\mu_{\widetilde{B}}(x)$ respectively then for all $x \in X$.

- $\widetilde{A} \subseteq \widetilde{B} \text{ iff } \boldsymbol{\mu}_{\widetilde{A}}(x) \leq \boldsymbol{\mu}_{\widetilde{B}}(x)$
- $\widetilde{A} = \widetilde{B}$ iff $\mu_{\widetilde{A}}(x) = \mu_{\widetilde{B}}(x)$
- \widetilde{A}^{c} is the complement of \widetilde{A} with membership function $\mu_{\widetilde{A}^{c}}(x) = 1 \mu_{\widetilde{A}}(x)$
- $\tilde{C} = \tilde{A} \cap \tilde{B}$ if $\mu_{\tilde{C}}(x) = \min\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\}$
- $\widetilde{D} = \widetilde{A} \cup \widetilde{B}$ if $\mu_{\widetilde{E}}(x) = \max\{\mu_{\widetilde{A}}(x), \mu_{\widetilde{B}}(x)\}$

Remark 1.3 [2, 8]: Let $\tilde{A} \in I^x$ then $p(\tilde{A}) = {\tilde{B} : \tilde{B} \in I^x \text{ and } \mu_{\tilde{B}}(x) \le \mu_{\tilde{A}}(x) \forall x \in X}.$

Definition 1.4 [2]: A collection $\tilde{\tau}$ of fuzzy subset of \tilde{A} , that is $\tilde{\tau} \subseteq P(\tilde{A})$ is said to be fuzzy topology on \tilde{A} if satisfied the following conditions:

- $\widetilde{\varphi}, \widetilde{A} \in \widetilde{\tau}$.
- If $\tilde{B}, \tilde{C} \in \tilde{\tau}$, then $\min\{\mu_{\tilde{B}}(x), \mu_{\tilde{C}}(x)\} \in \tilde{\tau}$.
- If $\widetilde{B}_i \in \tilde{\tau}$, then max{ $\mu_{\widetilde{B}_i}(x) \in J$ } $\in \tilde{\tau}$.

The pair $(\tilde{A}, \tilde{\tau})$ is said to be fuzzy topological space and every member of $\tilde{\tau}$ is said to be fuzzy open set in \tilde{A} , and a fuzzy set is called fuzzy closed set in iff its complement is fuzzy open set in \tilde{A} .

Remark 1.5 [2, 8]: If $(\tilde{A}, \tilde{\tau})$ is a fuzzy topological space and $\tilde{B} \in p$ (\tilde{A}) , the complement of \tilde{B} revered to \tilde{A} , denoted by \tilde{B}^c is defined by $\mu_{\tilde{B}^c}(x) = \mu_{\tilde{A}}(x) - \mu_{\tilde{B}}(x) \forall x \in X$.

Definition 1.6 [1]: A subfamily of $\tilde{\tau}^*$ of \tilde{A} is said to be fuzzy supra topology on \tilde{A} if satisfied the following conditions:

- $\bullet \quad \widetilde{\phi} \ , \ \widetilde{A} \in \widetilde{\tau}^*.$
- If $\widetilde{B}_i \in \tilde{\tau}^*$, then max{ $\mu_{\widetilde{B}_i}(x)$, $i \in J$ } $\in \tilde{\tau}^*$.

The pair $(\tilde{A}, \tilde{\tau}^*)$ is said to be fuzzy supra topological space, the element of $\tilde{\tau}^*$ is said to be fuzzy supra open set in \tilde{A} , and the complement of fuzzy supra open set is called fuzzy supra closed set.

Remark 1.7 [4]: Every fuzzy topological space is a fuzzy supra topological space.

Definition 1.8 [4, 6, 7]: The support of a fuzzy set \tilde{B} in \tilde{A} will be denoted by Supp (\tilde{B}) and defined by Supp $(\tilde{B}) = \{x \in X : \mu_{\tilde{B}}(x) > 0\}.$

Definition 1.9 [4, 6]: A fuzzy point x_r in X is a fuzzy set with membership function $\mu_{x_r}(x) = r$, if x = v where $0 < r \le 1$ and $\mu_{x_r}(x) = 0$, if $x \ne v$, such that v is called the support of x_r and r the value of x_r **Definition 1.10 [2, 5, 10]:** Let \tilde{B} , \tilde{C} be a fuzzy sets in $(\tilde{A}, \tilde{\tau})$, then:

- A fuzzy Point x_r is said to be quasi coincident with a fuzzy set \tilde{B} , if there exists $x \in X$ such that $\mu_{x_r} + \mu_{\tilde{B}}(x) > \mu_{\tilde{A}}(x)$ and denoted by $x_r q \tilde{B}$, if $\mu_{x_r}(x) + \mu_{\tilde{B}}(x) \le \mu_{\tilde{A}}(x) \forall x \in X$, then x_r is not quasi-coincident with a fuzzy set \tilde{B} and denoted by $x_r \tilde{q}\tilde{B}$.
- A fuzzy set B̃ is said to be quasi coincident with a fuzzy set C̃, if there exists x ∈ X such that μ_{B̃}(x) + μ_{C̃}(x) > μ_Ã(x) and denoted by B̃ q Č, if μ_{B̃}(x) + μ_{C̃}(x) ≤ μ_Ã(x)∀x ∈ X, then B̃ is not quasi coincident with a fuzzy set C̃ and denoted by B̃ q̃C̃.

Proposition 1.11 [6, 11]: Let \tilde{B} , \tilde{C} , \tilde{D} be any fuzzy sets in $(\tilde{A}, \tilde{\tau})$, then

- If min{ $\mu_{\widetilde{B}}(x)$, $\mu_{\widetilde{C}}(x)$ } = $\mu_{\widetilde{\omega}}(x)$ }, then $\mu_{\widetilde{B}}(x) + \mu_{\widetilde{C}}(x) \le \mu_{\widetilde{A}}(x)$
- $\boldsymbol{\mu}_{\widetilde{B}}(\mathbf{x}) + \boldsymbol{\mu}_{\widetilde{B}}^{c}(\mathbf{x}) \leq \boldsymbol{\mu}_{\widetilde{A}}(\mathbf{x})$
- $\mu_{\widetilde{B}}(x) + \mu_{\widetilde{C}}(x) \le \mu_{\widetilde{A}}(x), \ \mu_{\widetilde{D}}(x) \le \mu_{\widetilde{C}}(x) \le \mu_{\widetilde{A}}(x) \text{then } \mu_{\widetilde{B}}(x) + \mu_{\widetilde{D}}(x) \le \mu_{\widetilde{A}}(x).$

2. Fuzzy supra semi open set

Definition 2.1: A fuzzy set \tilde{B} of a fuzzy topological space $(\tilde{A}, \tilde{\tau})$ is said to be fuzzy supra s-open (fuzzy supra s-closed) sets if $\mu_{\tilde{B}}(x) \leq \mu_{supracl (supraint (\tilde{B}))}(x)$ ($\mu_{\tilde{B}}(x) \geq \mu_{supracl (supracl (\tilde{B}))}(x)$) $\forall x \in X$ The family of fuzzy supra s-open [fuzzy supra s-closed] sets is denoted by FSSO(\tilde{A}) [FSSC(\tilde{A})] sets. **Definition 2.2:** If \tilde{B} is a fuzzy set in ($\tilde{A}, \tilde{\tau}^*$), then:

- supra s-closure of \tilde{B} is denoted by (suprascl(\tilde{B})) and defined by: $\mu_{suprascl}(\tilde{B})(x) = \min\{\mu_{\tilde{F}}(x): \tilde{F} \text{ is a fuzzy supra s-closed set in } \tilde{A}, \mu_{\tilde{B}}(x) \le \mu_{\tilde{F}}(x)\}.$
- supra s-interior of \tilde{B} is denoted by (suprasint(\tilde{B})) and defined by $\mu_{suprasint}(\tilde{B})(x) = \max\{\mu_{\tilde{G}}(x) : \tilde{G} \text{ is a fuzzy supra s-open set in } \tilde{A}, \ \mu_{\tilde{G}}(x) \le \mu_{\tilde{B}}(x)\}.$

Proposition 2.3: Every fuzzy supra open set (resp. fuzzy supra closed set) in $(\tilde{A}, \tilde{\tau})$ is a fuzzy supra s-open set (resp. fuzzy supra s-closed set) in $(\tilde{A}, \tilde{\tau})$.

Proof: Obvious

Remark 2.4: The converse of *proposition 2.3* is not true in general as shown in the following example.

Example 2.5: Let X={a, b, c}, \tilde{A} ={(a,0.6), (b,0.4), (c,0.4)} \tilde{B} ={(a, 0.3), (b, 0.2), (c,0.2)}, \tilde{C} ={(a, 0.5), (b, 0.4), (c,0.3)}, \tilde{D} ={(a, 0.1), (b, 0.0), (c,0.1)}, be fuzzy sets in \tilde{A} , $\tilde{\tau}$ ={ $\tilde{\phi}$, \tilde{A} , \tilde{B} }, be a fuzzy topology on \tilde{A} , Then \tilde{C} is a fuzzy supra s-open set but not fuzzy supra open set and \tilde{D} is a fuzzy supra s-closed set but not fuzzy supra closed set.

Definition 2.6: A fuzzy set \widetilde{B} of a fuzzy topological space $(\widetilde{A}, \widetilde{\tau})$ is said to be fuzzy supra s-difference set (s-D set) if $\mu_{\widetilde{R}}(x) = \mu_{\widetilde{C}}(x) - \mu_{\widetilde{H}}(x)$, where \widetilde{G} , \widetilde{H} are fuzzy supra s-open sets and $\mu_{\widetilde{C}}(x) \neq \mu_{\widetilde{A}}(x)$

Proposition 2.7: Every fuzzy supra s-open set is a fuzzy supra s-D-set **Proof**: Obvious.

Remark 2.8: The converse of *proposition 2.7* is not true in general as shown in the following example. **Example 2.9:** Let X={a, b, c}, \tilde{A} ={(a,0.4), (b,0.5), (c,0.7)} \tilde{B} ={(a, 0.3), (b, 0.3), (c,0.4)}, \tilde{C} ={(a, 0.3), (b, 0.2), (c,0.2)}, \tilde{D} ={(a, 0.0), (b, 0.1), (c,0.2)}, be fuzzy sets in \tilde{A} , $\tilde{\tau}$ ={ $\tilde{\phi}, \tilde{A}, \tilde{B}, \tilde{C}$ }, be a fuzzy topology on \tilde{A} , Then \tilde{D} is a fuzzy supra s-D set but not fuzzy supra s- open set.

3. Fuzzy supra semi $\widetilde{T}_{i=0, 1, 2}$ space

Definitions 3.1: A fuzzy topological space $(\tilde{A}, \tilde{\tau})$ is said to be:

- *Fuzzy supra s*- \tilde{T}_0 *space* if for every pair of distinct fuzzy points x_r,y_s such that • $\mu_{x_r}(x) < \mu_{\tilde{A}}(x), \mu_{v_c}(x) < \mu_{\tilde{A}}(x)$, there exists fuzzy supra s-open set \tilde{G} in \tilde{A} such that either $\boldsymbol{\mu}_{x_r}(x) < \boldsymbol{\mu}_{\widetilde{G}}(x), y_s \, \widetilde{q} \widetilde{G} \text{ or } \boldsymbol{\mu}_{y_s}(x) < \boldsymbol{\mu}_{\widetilde{G}}(x), x_r \, \widetilde{q} \widetilde{G}.$
- *Fuzzy supra s* \tilde{T}_1 space if for every pair of distinct fuzzy points x_r , y_s such that $\mu_{x_r}(x) < \mu_{\tilde{A}}(x)$, $\mu_{v_c}(x) < \mu_{\tilde{A}}(x)$, there exists two fuzzy supra s -open sets \tilde{G} , \tilde{U} in \tilde{A} such that $\mu_{x_r}(x) < \mu_{\tilde{G}}(x)$, $y_s \tilde{q}\tilde{G}$ and $\boldsymbol{\mu}_{v_r}(x) < \boldsymbol{\mu}_{\widetilde{\Pi}}(x), x_r \, \widetilde{q} \, \widetilde{U}.$
- *Fuzzy supra s* $-\tilde{T}_2$ space if for every pair of distinct fuzzy points x_r , y_s such that $\mu_{x_r}(x) < \mu_{\tilde{A}}(x)$, • $\mu_{V_{\alpha}}(x) < \mu_{\tilde{A}}(x)$, there exists two fuzzy supras open sets \tilde{G} , \tilde{U} in \tilde{A} such that $\mu_{X_{\alpha}}(x) < \mu_{\tilde{G}}(x)$, $\boldsymbol{\mu}_{v_{c}}(x) < \boldsymbol{\mu}_{\widetilde{\Pi}}(x)$ and $\widetilde{G}\widetilde{q}$ \widetilde{U} .

Propositions 3.2:

- **1.** Every fuzzy supra s- \tilde{T}_1 space is a fuzzy supra s- \tilde{T}_0 space
- **2.** Every fuzzy supra s- \tilde{T}_2 space is a fuzzy supra s- \tilde{T}_1 space

Proof: Obvious

Remark 3.3: The converse of *propositions 3.2* is not true in general as shown in the following examples. Examples 3.4:

- 1. Let $X = \{a, b\}$, $\tilde{A} = \{(a, 0.8), (b, 0.7)\}$, $\widetilde{B} = \{(a, 0.0), (b, 0.6)\}, \widetilde{C} = \{(a, 0.0), (b, 0.7)\}, \text{ be a fuzzy sets in } \widetilde{A},$ $\tilde{\tau} = \{\tilde{\varphi}, \tilde{A}, \tilde{B}, \tilde{C}\}$ be a fuzzy topology on \tilde{A} Then $(\tilde{A}, \tilde{\tau})$ is fuzzy supra s- \tilde{T}_0 space but not fuzzy supra s- \tilde{T}_1 space.
- 2. Let $X = \{a, b\}$, $\tilde{A} = \{(a, 0.5), (b, 0.4)\}$, $\widetilde{B} = \{(a, 0.4), (b, 0.0)\}, \widetilde{C} = \{(a, 0.0), (b, 0.1)\}, \widetilde{D} = \{(a, 0.4), (b, 0.1)\},$ $\widetilde{E} = \{(a, 0.4), (b, 0.4)\}, \widetilde{F} = \{(a, 0.0), (b, 0.4)\}, \widetilde{G} = \{(a, 0.5), (b, 0.1)\}, \text{ be a fuzzy sets in } \widetilde{A},$ $\tilde{\tau} = \{ \tilde{\varphi}, \tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}, \tilde{E}, \tilde{F} \}$ be a fuzzy topology on \tilde{A} The FSSO(\tilde{A})={ $\tilde{\phi}, \tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}, \tilde{E}, \tilde{F}, \tilde{G}$ } Then $(\tilde{A}, \tilde{\tau})$ is fuzzy supra s- \tilde{T}_1 space but not fuzzy supra s- \tilde{T}_2 space.

Theorem 3.5: A fuzzy topological space $(\tilde{A}, \tilde{\tau})$ is fuzzy supra s $-\tilde{T}_0$ space if and only if for each pair of distinct fuzzy points x_r, y_s such that $\mu_{x_r}(x) < \mu_{\widetilde{A}}(x), \mu_{y_s}(x) < \mu_{\widetilde{A}}(x)$, then $x_r \, \widetilde{q}$ suprascl (y_s) or $y_s \, \widetilde{q}$ suprascl (x_r)

Proof: Let $\mu_{x_r}(x) < \mu_{\widetilde{A}}(x), \mu_{v_s}(x) < \mu_{\widetilde{A}}(x)$, then there exist a fuzzy supra s-open set \widetilde{G} in \widetilde{A}

such that either $\mu_{x_r}(x) < \mu_{\widetilde{G}}(x)$, $\widetilde{G}\overline{q} y_s$ or $\mu_{y_s}(x) < \mu_{\widetilde{G}}(x)$, $\widetilde{G}\overline{q} x_r$

If $\boldsymbol{\mu}_{x_r}(x) < \boldsymbol{\mu}_{\widetilde{G}}(x)$, $\widetilde{G}\widetilde{q} y_s$ then $\widetilde{G}^{c}\widetilde{q} x_r$, $\boldsymbol{\mu}_{y_s}(x) \leq \boldsymbol{\mu}_{\widetilde{G}^{c}}(x)$

- Since \tilde{G}^{c} is a fuzzy supra s-closed set
- Therefore $\mu_{\text{suprascl }(y_s)}(x) \leq \mu_{\tilde{G}}^{c}(x)$
- Hence $x_r \hat{q}$ suprascl(y_s)
- Similarly if $\mu_{v_s}(x) < \mu_{\tilde{G}}(x), \tilde{G}\tilde{q}x_r$

Conversely, let x_r \vec{q} suprascl(y_s) or y_s \vec{q} suprascl(x_r)

Then $\boldsymbol{\mu}_{x_r}(\mathbf{x}) \leq \boldsymbol{\mu}_{(\text{suprascl }(y_s))^c}$ or $\boldsymbol{\mu}_{y_s}(\mathbf{x}) \leq \boldsymbol{\mu}_{(\text{suprascl }(x_r))^c}$

- If $\boldsymbol{\mu}_{x_r}(\mathbf{x}) \leq \boldsymbol{\mu}_{(\text{suprascl }(\mathbf{y}_s))^c}$ and since $\mathbf{y}_s \left[\mathbf{q} \right] \left[\text{suprascl}(\mathbf{y}_s) \right]^c$
- Then $(\tilde{A}, \tilde{\tau})$ is a fuzzy supra s- \tilde{T}_0 space

And if $\boldsymbol{\mu}_{y_s}(x) \leq \boldsymbol{\mu}_{(\text{suprascl }(x_r))^c}$ and since $x_r \ \mathbf{q}$ [suprascl (x_r)]^c

Then $(\tilde{A}, \tilde{\tau})$ is a fuzzy supra s- \tilde{T}_0 space.

Theorem 3.6: If $(\tilde{A}, \tilde{\tau})$ is a fuzzy topological space then the following statements are equivalents:

1. $(\tilde{A},\tilde{\tau})$ is fuzzy supra s- \tilde{T}_1 space

2. For each two distinct fuzzy points, x_r , y_s then $x_r \hat{q}$ suprascl(y_s) and $y_s \hat{q}$ suprascl(x_r) **Proof:** Obvious

Theorem 3.7: If $(\tilde{A}, \tilde{\tau})$ is a fuzzy supra s- \tilde{T}_2 space then for each two fuzzy points x_r, y_s in \tilde{A} there exists two fuzzy supra s-closed sets \tilde{F}_1 and \tilde{F}_2 in \tilde{A} such that $\mu_{x_r}(x) < \mu_{\tilde{F}_1}(x)$, $y_s \tilde{q} \tilde{F}_1, \mu_{y_s}(x) < \mu_{\tilde{F}_2}(x), x_r \tilde{q} \tilde{F}_2$ and $\max\{\boldsymbol{\mu}_{\widetilde{F}_1}(\mathbf{x}), \boldsymbol{\mu}_{\widetilde{F}_2}(\mathbf{x})\} = \boldsymbol{\mu}_{\widetilde{A}}(\mathbf{x})$

Proof: Obvious

Theorem 3.8: If $(\tilde{A}, \tilde{\tau})$ is a fuzzy topological space then the following statements are equivalents:

- **1.** $(\tilde{A}, \tilde{\tau})$ is a fuzzy supra s- \tilde{T}_2 space
- 2. For each two distinct fuzzy points x_r , y_s in \tilde{A} there exist fuzzy supra s-open set \tilde{G} in \tilde{A} such that $\mu_{x_r}(x) < \mu_{\tilde{G}}(x) < \mu_{suprascl}(\tilde{G})(x) < \mu_{y_s}(x)$

Proof:(1) \rightarrow (2)Let $(\tilde{A}, \tilde{\tau})$ be a fuzzy supra s- \tilde{T}_2 space, x_r , y_s be two distinct fuzzy point such that $\mu_{x_r}(x) < \mu_{\tilde{A}}(x), \mu_{y_s}(x) < \mu_{\tilde{A}}(x)$, and \tilde{G} , \tilde{U} are fuzzy s-open set in \tilde{A}

Such that $\mu_{x_r}(x) < \mu_{\widetilde{G}}(x)\mu_{y_s}(x) < \mu_{\widetilde{U}}(x)$, and $\widetilde{G}\widetilde{q} \widetilde{U}$

Since $\mu_{\text{suprascl}(\widetilde{G})}(x) = \min\{\mu_{\widetilde{U}^{c}}(x) : \widetilde{U}^{c} \text{ is fuzzy supra s-closed set}, \mu_{\widetilde{G}}(x) \le \mu_{\widetilde{U}^{c}}(x)\}$

Therefore $\mu_{x_r}(x) < \mu_{\widetilde{G}}(x) < \mu_{\text{suprascl }(\widetilde{G})}(x) < \mu_{y_s}(x)$

(2) \rightarrow (1)Let x_r , y_s be a distinct fuzzy points in \tilde{A} and \tilde{G} be a fuzzy supra s-open set in \tilde{A} such that $\mu_{v_s}(x) < \mu_{(suprascl (\tilde{G}))}^{c}(x) < \mu_{x_r}^{c}(x)$

since suprasint(\tilde{G}^c) is a fuzzy supra s-open set and $\mu_{suprasint}$ (\tilde{G}^c)(x) $\leq \mu_{\tilde{G}^c}(x)$,

Then there exists two fuzzy supra s-open sets \widetilde{G} , suprasint(\widetilde{G}^{c})

such that $\mu_{x_r}(x) < \mu_{\widetilde{G}}(x)$, $\mu_{y_s}(x) < \mu_{suprasint}(\widetilde{G}^c)$ and \widetilde{G} (suprasint(\widetilde{G}^c))

Hence the space $(\tilde{A}, \tilde{\tau})$ is a fuzzy supra s- \tilde{T}_2 space.

Theorem 3.9: A fuzzy topological space $(\tilde{A}, \tilde{\tau})$ is a fuzzy supra s- \tilde{T}_1 space if for every fuzzy point is a fuzzy supra s-closed set.

Proof: Let x_r , y_s be two distinct fuzzy points in \tilde{A} which are fuzzy supra s-closed set,

then x_r^c , y_s^c are fuzzy supra s-open sets

since $\mu_{x_r}(x) \leq \mu_{\text{suprascl }(x_r)}(x)$, and $\mu_{y_s}(x) \leq \mu_{\text{suprascl }(y_s)}(x)$,

Then $x_r \hat{q}$ [suprascl(x_r)]^c and $y_s \hat{q}$ [suprascl(y_s)]^c

Let $\mu_{\tilde{G}}(x) = \mu_{(\text{suprascl }(x_r))}^{c}(x)$ and $\mu_{\tilde{U}}(x) = \mu_{(\text{suprascl }(y_s))}^{c}(x)$

Hence
$$(\tilde{A}, \tilde{\tau})$$
 is a fuzzy supra s- \tilde{T}_1 space.

Remark 3.10: The converse of *theorem 3.9* is not true in general as shown in the following example.

Example 3.11: The space $(\tilde{A}, \tilde{\tau})$ in the *examples 3.4(2)* is a fuzzy supra s- \tilde{T}_1 space but $a_{0,2}$ is not fuzzy supra s-closed set.

Theorem 3.12: If $(\tilde{A}, \tilde{\tau})$ is a fuzzy supra s- \tilde{T}_2 space then for each two fuzzy points x_r , y_s in \tilde{A} there exists two fuzzy supra s- closed sets \tilde{F}_1 and \tilde{F}_2 in \tilde{A} such that $\mu_{x_r}(x) < \mu_{\tilde{F}_1}(x)$, $y_s \tilde{q} \tilde{F}_1$, $\mu_{y_s}(x) < \mu_{\tilde{F}_2}(x)$, $x_r \tilde{q} \tilde{F}_2$ and $\max\{\mu_{\tilde{F}_1}(x), \mu_{\tilde{F}_2}(x)\} = \mu_{\tilde{A}}(x)$

Proof: Obvious

4. Fuzzy supra semi D_{i=0, 1, 2} space

Definition 4.1: A fuzzy topological space $(\tilde{A}, \tilde{\tau})$ is said to be fuzzy supra s-D₀ space if for every pair of distinct fuzzy points x_r, y_s such that $\mu_{x_r}(x) < \mu_{\tilde{A}}(x), \mu_{y_s}(x) < \mu_{\tilde{A}}(x)$, there exists fuzzy supra s-D set \tilde{B} in \tilde{A} such that either $\mu_{x_r}(x) < \mu_{\tilde{B}}(x), y_s \tilde{q} \tilde{B}$ or $\mu_{y_s}(x) < \mu_{\tilde{B}}(x), x_r \tilde{q} \tilde{B}$.

Example 4.2: The space $(\tilde{A}, \tilde{\tau})$ in the *examples 3.4(1)* is a fuzzy supra s-D₀ space.

Theorem 4.3: If $(\tilde{A}, \tilde{\tau})$ is a fuzzy topological space then the following statements are equivalents:

- **1.** $(\tilde{A}, \tilde{\tau})$ is a fuzzy supra s-D₀ space
- **2.** $(\tilde{A}, \tilde{\tau})$ is a fuzzy supra s- \tilde{T}_0 space

Proof:

(1) \rightarrow (2) Let $(\tilde{A}, \tilde{\tau})$ be a fuzzy supra s-D₀ space,

Then for each distinct fuzzy points $x_r, y_s \in \tilde{A}$, there exist fuzzy supra s-D set \tilde{B} in \tilde{A} such that $\mu_{x_r}(x) < \mu_{\tilde{B}}(x)$, $y_s \hat{q} \tilde{B} \text{or } \mu_{y_s}(x) < \mu_{\tilde{B}}(x), x_r \hat{q} \tilde{B}$ Since \tilde{B} is a fuzzy supra s-D set, then $\mu_{\tilde{B}}(x) = \mu_{\tilde{G}}(x) - \mu_{\tilde{H}}(x)$, where \tilde{G}, \tilde{H} are fuzzy supra s-open set If $\mu_{x_r}(x) < \mu_{\tilde{B}}(x), y_s \hat{q} \tilde{B}$ Then $\mu_{x_r}(x) < \mu_{\tilde{G}}(x), x_r \hat{q} \tilde{H}$ (*) Since $y_s \hat{q} \tilde{B}$ then $y_s \hat{q} \tilde{G}$ or $\mu_{y_s}(x) < \mu_{\tilde{G}}(x)$ and $\mu_{y_s}(x) < \mu_{\tilde{H}}(x)$, If $y_s \hat{q} \tilde{G}$ and by (*) we get $(\tilde{A}, \tilde{\tau})$ is a fuzzy supra s- \tilde{T}_0 space

and if $\mu_{v_c}(x) < \mu_{\widetilde{H}}(x)$, and by (*) we get $(\widetilde{A}, \widetilde{\tau})$ is a fuzzy supra s- \widetilde{T}_0 space

Similarly if $\boldsymbol{\mu}_{v_c}(\mathbf{x}) < \boldsymbol{\mu}_{\widetilde{B}}(\mathbf{x}), \mathbf{x}_r \ \widetilde{q} \ \widetilde{B}$

 $(2) \rightarrow (1)$ Obvious.

Definition 4.4: A fuzzy topological space $(\tilde{A}, \tilde{\tau})$ is said to be fuzzy supra s-D₁ space if for every pair of distinct fuzzy points x_r , y_s such that $\mu_{x_r}(x) < \mu_{\tilde{A}}(x)$, $\mu_{y_s}(x) < \mu_{\tilde{A}}(x)$, there exists two fuzzy supra s-D sets \tilde{B}, \tilde{C} in \tilde{A} such that $\mu_{x_r}(x) < \mu_{\tilde{B}}(x)$, $y_s \tilde{q} \tilde{B}$ and $\mu_{y_s}(x) < \mu_{\tilde{C}}(x)$, $x_r \tilde{q} \tilde{C}$.

Proposition 4.5: Every fuzzy supra s- \tilde{T}_1 space is a fuzzy supra s-D₁ space.

Proof: Obvious

Remark 4.6: The converse of *proposition 4.5* is not true in general as shown in the following example.

Example 4.7:Let X={a, b, c}, \tilde{A} ={(a,0.6), (b,0.5), (c, 0.4)}, \tilde{B} ={(a, 0.6), (b, 0.1), (c, 0.0)}, \tilde{C} ={(a, 0.1), (b, 0.5), (c, 0.0)}, \tilde{D} ={(a, 0.6), (b, 0.5), (c, 0.0)}, \tilde{E} ={(a, 0.1), (b, 0.1), (c, 0.0)}, \tilde{F} ={(a, 0.6), (b, 0.4), (c, 0.4)}, \tilde{G} ={(a, 0.1), (b, 0.4), (c, 0.0)}, \tilde{H} ={(a, 0.6), (b, 0.4), (c, 0.4)}, \tilde{G} ={(a, 0.1), (b, 0.4), (c, 0.0)}, \tilde{H} ={(a, 0.0), (b, 0.0), (c, 0.4)}, be a fuzzy sets in \tilde{A} , $\tilde{\tau}$ ={ $\tilde{\phi}$, \tilde{A} , \tilde{B} , \tilde{C} , \tilde{D} , \tilde{E} , \tilde{F} , \tilde{G} , \tilde{H} }, be a fuzzy topology on \tilde{A} Then (\tilde{A} , $\tilde{\tau}$) is a fuzzy supra s-D₁ space but not fuzzy supra s-D₁ space. **Proposition 4.8:** Every fuzzy supra s-D₁ space is a fuzzy supra s-D₀ space.

Proof: Obvious

Remark 4.9: The converse of *proposition 4.8* is not true in general as shown in the following example.

Example 4.10: The space $(\tilde{A}, \tilde{\tau})$ in the *examples 3.4(1)* is a fuzzy supra s-D₀ space but not fuzzy supra s-D₁ space.

Definition 4.11: A fuzzy topological space $(\tilde{A}, \tilde{\tau})$ is said to befuzzy supra s-D₂space if for every pair of distinct fuzzy points x_r, y_s such that $\mu_{x_r}(x) < \mu_{\tilde{A}}(x), \mu_{y_s}(x) < \mu_{\tilde{A}}(x)$, there exists two fuzzy supra s-D sets \tilde{B} , \tilde{C} in \tilde{A} such that $\mu_{x_r}(x) < \mu_{\tilde{B}}(x), \mu_{y_s}(x) < \mu_{\tilde{C}}(x)$, and $\tilde{B}\tilde{q}\tilde{C}$.

Proposition 4.12: Every fuzzy supra s- \tilde{T}_2 space is a fuzzy supra s- D_2 space. **Proof:** Obvious

Remark 4.13: The converse of *proposition 4.12* is not true in general as shown in the following example. **Example 4.14:**Let X={a, b, c, d}, $\tilde{A} = \{(a,0.4), (b,0.4), (c,0.4), (c,0.4)\}, \tilde{B}=\{(a, 0.4), (b, 0.0), (c, 0.0), (d, 0.0)\}, \tilde{C}=\{(a, 0.4), (b, 0.4), (c, 0.0), (d, 0.0)\}, \tilde{D}=\{(a, 0.4), (b, 0.4), (c, 0.0), (d, 0.0)\}, \tilde{E}=\{(a, 0.4), (b, 0.0), (c, 0.0), (d, 0.0)\}, \tilde{F}=\{(a, 0.4), (b, 0.0), (c, 0.0), (d, 0.4)\}, \tilde{F}=\{(a, 0.4), (b, 0.4), (c, 0.0), (d, 0.4)\}, \tilde{G}=\{(a, 0.0), (b, 0.4), (c, 0.0), (d, 0.0)\}, \tilde{H}=\{(a, 0.0), (b, 0.0), (c, 0.0), (d, 0.4)\}, be a fuzzy sets in <math>\tilde{A}, \tilde{\tau}=\{\tilde{\varphi}, \tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}, \tilde{E}, \tilde{F}\}$, be a fuzzy topology on \tilde{A} , Then $(\tilde{A}, \tilde{\tau})$ is a fuzzy supra s-D₂ space but not fuzzy supra s-D₁ space.

Proof: Obvious

Remark 4.16: The converse of *proposition 4.15* is not true in general as shown in the following example.

Example 4.17: The space $(\tilde{A}, \tilde{\tau})$ in the *example 4.7* is a fuzzy supra s-D₁ space but not fuzzy supra s-D₂ space.

Theorem 4.18: A fuzzy topological space $(\tilde{A}, \tilde{\tau})$ is a fuzzy supra s-D₂ space if for each two distinct fuzzy points x_r , y_s in \tilde{A} there exist fuzzy supra s-open set \tilde{G} in \tilde{A} such that $\mu_{x_r}(x) < \mu_{\tilde{G}}(x) < \mu_{suprascl}(\tilde{G})(x) < \mu_{y_s}^{c}(x)$ **Proof:** Obvious

Propositions 4.19:

- **1.** Every fuzzy supra s- D_2 space is a fuzzy supra s- \tilde{T}_0 space.
- **2.** Every fuzzy supra s- D_1 space is a fuzzy supra s- \tilde{T}_0 space.

Proof: Obvious

Remark 4.20: The converse of *propositions 4.19* is not true in general as shown in the following example.

Example 4.21: The space $(\tilde{A}, \tilde{\tau})$ in the *examples 3.4(1)* is a fuzzy supra s- \tilde{T}_0 space but not fuzzy supra s- D_2 space, fuzzy supra s- D_1 space.

References

- [1] [2]
- Abd EL-Monsef M.E. and Ramadan A. E. "on fuzzy supra topological spaces" J. Pure app. Math., 18(4):322-329(1987). Chakrabarty, M.K. and Ahsanullal, T.M.G." Fuzzy topology on fuzzy sets And Tolerance Topology" Fuzzy sets and systems 45,103-108(1992).
- Ghanim M.H, Tantawy O.A. and SelimFawziaM. "Gradation of supra-openness", Fuzzy sets and Systems, 109, 245-250, (2000). [3]
- HoqueMd F., and Ali D.M "Supra fuzzy Topological space" Lap Lambert Academic Publishing GmbH and Co. KG, (2012). [4]
- Kandil, A. and El-Shafee, M. E., "Regularity Axioms in Fuzzy Topological Spaces and FRi-Proximities", Fuzzy Sets and Systems, [5] 27, 217-231, (1988).
- [6] Kandil, A., Saleh, S. and Yakout, M. M., "Fuzzy Topology On Fuzzy Sets : Regularity And Separation Axioms", American Academic and Scholarly Research Journal, No.2, Vol. 4, (2012).
- Kider, J. R. "Fuzzy Locally Convex-Algebras" Ph. D. Thesis, School of Applied Sciences, Univ. Technology, (2004). [7]
- Mahmuod, F.S., FathAlla M.A, and AbdEllah S.M," Fuzzy topology on Fuzzy sets: Fuzzy semi continuity And Fuzzy separation [8] axioms", APPI.Math.and Comp.153(127-140),(2003).
- Mashhour A.S. and GhanimM.H. "Fuzzy closure spaces "J.Math.Anal.And Appl.106,pp. 145-170(1985). [9]
- P. M. Pu and Y. M. Liu "Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence" Journal of [10] Mathematical Analysis and Applications, vol. 76, no. 2, pp. 571-599(1980).
- Shahla, H.K, "On Fuzzy Δ-Open Sets In Fuzzy Topological Spaces", M.Sc Thesis , College of Science, SalahaddinUniv, (2004) [11]
- Weiss, M. D. "Fixed points, separation and induced topologies for fuzzy sets" J.Math.Anal.Appl.50, 142-150(1975). [12]
- [13] ZadehL.A, "Fuzzy sets", Inform contra.8, 338-353(1965).